# Properties

 Label 1078.2.a.v Level $1078$ Weight $2$ Character orbit 1078.a Self dual yes Analytic conductor $8.608$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1078,2,Mod(1,1078)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1078, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1078.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1078 = 2 \cdot 7^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1078.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$8.60787333789$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 2$$ x^2 - 2 Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + 2 \beta q^{3} + q^{4} + 2 \beta q^{6} + q^{8} + 5 q^{9}+O(q^{10})$$ q + q^2 + 2*b * q^3 + q^4 + 2*b * q^6 + q^8 + 5 * q^9 $$q + q^{2} + 2 \beta q^{3} + q^{4} + 2 \beta q^{6} + q^{8} + 5 q^{9} - q^{11} + 2 \beta q^{12} + 3 \beta q^{13} + q^{16} - 2 \beta q^{17} + 5 q^{18} - 3 \beta q^{19} - q^{22} + 6 q^{23} + 2 \beta q^{24} - 5 q^{25} + 3 \beta q^{26} + 4 \beta q^{27} - 4 q^{29} - 5 \beta q^{31} + q^{32} - 2 \beta q^{33} - 2 \beta q^{34} + 5 q^{36} + 2 q^{37} - 3 \beta q^{38} + 12 q^{39} + 2 \beta q^{41} + 10 q^{43} - q^{44} + 6 q^{46} - 9 \beta q^{47} + 2 \beta q^{48} - 5 q^{50} - 8 q^{51} + 3 \beta q^{52} + 2 q^{53} + 4 \beta q^{54} - 12 q^{57} - 4 q^{58} + 8 \beta q^{59} - 7 \beta q^{61} - 5 \beta q^{62} + q^{64} - 2 \beta q^{66} + 8 q^{67} - 2 \beta q^{68} + 12 \beta q^{69} + 16 q^{71} + 5 q^{72} - 6 \beta q^{73} + 2 q^{74} - 10 \beta q^{75} - 3 \beta q^{76} + 12 q^{78} - 8 q^{79} + q^{81} + 2 \beta q^{82} - 9 \beta q^{83} + 10 q^{86} - 8 \beta q^{87} - q^{88} + 5 \beta q^{89} + 6 q^{92} - 20 q^{93} - 9 \beta q^{94} + 2 \beta q^{96} - 5 \beta q^{97} - 5 q^{99} +O(q^{100})$$ q + q^2 + 2*b * q^3 + q^4 + 2*b * q^6 + q^8 + 5 * q^9 - q^11 + 2*b * q^12 + 3*b * q^13 + q^16 - 2*b * q^17 + 5 * q^18 - 3*b * q^19 - q^22 + 6 * q^23 + 2*b * q^24 - 5 * q^25 + 3*b * q^26 + 4*b * q^27 - 4 * q^29 - 5*b * q^31 + q^32 - 2*b * q^33 - 2*b * q^34 + 5 * q^36 + 2 * q^37 - 3*b * q^38 + 12 * q^39 + 2*b * q^41 + 10 * q^43 - q^44 + 6 * q^46 - 9*b * q^47 + 2*b * q^48 - 5 * q^50 - 8 * q^51 + 3*b * q^52 + 2 * q^53 + 4*b * q^54 - 12 * q^57 - 4 * q^58 + 8*b * q^59 - 7*b * q^61 - 5*b * q^62 + q^64 - 2*b * q^66 + 8 * q^67 - 2*b * q^68 + 12*b * q^69 + 16 * q^71 + 5 * q^72 - 6*b * q^73 + 2 * q^74 - 10*b * q^75 - 3*b * q^76 + 12 * q^78 - 8 * q^79 + q^81 + 2*b * q^82 - 9*b * q^83 + 10 * q^86 - 8*b * q^87 - q^88 + 5*b * q^89 + 6 * q^92 - 20 * q^93 - 9*b * q^94 + 2*b * q^96 - 5*b * q^97 - 5 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 10 q^{9}+O(q^{10})$$ 2 * q + 2 * q^2 + 2 * q^4 + 2 * q^8 + 10 * q^9 $$2 q + 2 q^{2} + 2 q^{4} + 2 q^{8} + 10 q^{9} - 2 q^{11} + 2 q^{16} + 10 q^{18} - 2 q^{22} + 12 q^{23} - 10 q^{25} - 8 q^{29} + 2 q^{32} + 10 q^{36} + 4 q^{37} + 24 q^{39} + 20 q^{43} - 2 q^{44} + 12 q^{46} - 10 q^{50} - 16 q^{51} + 4 q^{53} - 24 q^{57} - 8 q^{58} + 2 q^{64} + 16 q^{67} + 32 q^{71} + 10 q^{72} + 4 q^{74} + 24 q^{78} - 16 q^{79} + 2 q^{81} + 20 q^{86} - 2 q^{88} + 12 q^{92} - 40 q^{93} - 10 q^{99}+O(q^{100})$$ 2 * q + 2 * q^2 + 2 * q^4 + 2 * q^8 + 10 * q^9 - 2 * q^11 + 2 * q^16 + 10 * q^18 - 2 * q^22 + 12 * q^23 - 10 * q^25 - 8 * q^29 + 2 * q^32 + 10 * q^36 + 4 * q^37 + 24 * q^39 + 20 * q^43 - 2 * q^44 + 12 * q^46 - 10 * q^50 - 16 * q^51 + 4 * q^53 - 24 * q^57 - 8 * q^58 + 2 * q^64 + 16 * q^67 + 32 * q^71 + 10 * q^72 + 4 * q^74 + 24 * q^78 - 16 * q^79 + 2 * q^81 + 20 * q^86 - 2 * q^88 + 12 * q^92 - 40 * q^93 - 10 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
1.00000 −2.82843 1.00000 0 −2.82843 0 1.00000 5.00000 0
1.2 1.00000 2.82843 1.00000 0 2.82843 0 1.00000 5.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$7$$ $$1$$
$$11$$ $$1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.a.v 2
3.b odd 2 1 9702.2.a.co 2
4.b odd 2 1 8624.2.a.bz 2
7.b odd 2 1 inner 1078.2.a.v 2
7.c even 3 2 1078.2.e.o 4
7.d odd 6 2 1078.2.e.o 4
21.c even 2 1 9702.2.a.co 2
28.d even 2 1 8624.2.a.bz 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1078.2.a.v 2 1.a even 1 1 trivial
1078.2.a.v 2 7.b odd 2 1 inner
1078.2.e.o 4 7.c even 3 2
1078.2.e.o 4 7.d odd 6 2
8624.2.a.bz 2 4.b odd 2 1
8624.2.a.bz 2 28.d even 2 1
9702.2.a.co 2 3.b odd 2 1
9702.2.a.co 2 21.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1078))$$:

 $$T_{3}^{2} - 8$$ T3^2 - 8 $$T_{5}$$ T5 $$T_{13}^{2} - 18$$ T13^2 - 18

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{2}$$
$3$ $$T^{2} - 8$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$(T + 1)^{2}$$
$13$ $$T^{2} - 18$$
$17$ $$T^{2} - 8$$
$19$ $$T^{2} - 18$$
$23$ $$(T - 6)^{2}$$
$29$ $$(T + 4)^{2}$$
$31$ $$T^{2} - 50$$
$37$ $$(T - 2)^{2}$$
$41$ $$T^{2} - 8$$
$43$ $$(T - 10)^{2}$$
$47$ $$T^{2} - 162$$
$53$ $$(T - 2)^{2}$$
$59$ $$T^{2} - 128$$
$61$ $$T^{2} - 98$$
$67$ $$(T - 8)^{2}$$
$71$ $$(T - 16)^{2}$$
$73$ $$T^{2} - 72$$
$79$ $$(T + 8)^{2}$$
$83$ $$T^{2} - 162$$
$89$ $$T^{2} - 50$$
$97$ $$T^{2} - 50$$