Properties

Label 1078.2.a.l
Level $1078$
Weight $2$
Character orbit 1078.a
Self dual yes
Analytic conductor $8.608$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1078,2,Mod(1,1078)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1078, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1078.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + 2 q^{3} + q^{4} + 2 q^{5} + 2 q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + 2 q^{3} + q^{4} + 2 q^{5} + 2 q^{6} + q^{8} + q^{9} + 2 q^{10} + q^{11} + 2 q^{12} - 2 q^{13} + 4 q^{15} + q^{16} + q^{18} + 2 q^{19} + 2 q^{20} + q^{22} + 2 q^{24} - q^{25} - 2 q^{26} - 4 q^{27} + 6 q^{29} + 4 q^{30} - 4 q^{31} + q^{32} + 2 q^{33} + q^{36} + 2 q^{37} + 2 q^{38} - 4 q^{39} + 2 q^{40} - 8 q^{41} + 12 q^{43} + q^{44} + 2 q^{45} - 12 q^{47} + 2 q^{48} - q^{50} - 2 q^{52} - 2 q^{53} - 4 q^{54} + 2 q^{55} + 4 q^{57} + 6 q^{58} - 10 q^{59} + 4 q^{60} + 10 q^{61} - 4 q^{62} + q^{64} - 4 q^{65} + 2 q^{66} - 12 q^{67} + 4 q^{71} + q^{72} - 12 q^{73} + 2 q^{74} - 2 q^{75} + 2 q^{76} - 4 q^{78} + 2 q^{80} - 11 q^{81} - 8 q^{82} + 18 q^{83} + 12 q^{86} + 12 q^{87} + q^{88} + 2 q^{90} - 8 q^{93} - 12 q^{94} + 4 q^{95} + 2 q^{96} + 12 q^{97} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 2.00000 1.00000 2.00000 2.00000 0 1.00000 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.a.l yes 1
3.b odd 2 1 9702.2.a.e 1
4.b odd 2 1 8624.2.a.g 1
7.b odd 2 1 1078.2.a.h 1
7.c even 3 2 1078.2.e.a 2
7.d odd 6 2 1078.2.e.e 2
21.c even 2 1 9702.2.a.t 1
28.d even 2 1 8624.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1078.2.a.h 1 7.b odd 2 1
1078.2.a.l yes 1 1.a even 1 1 trivial
1078.2.e.a 2 7.c even 3 2
1078.2.e.e 2 7.d odd 6 2
8624.2.a.g 1 4.b odd 2 1
8624.2.a.y 1 28.d even 2 1
9702.2.a.e 1 3.b odd 2 1
9702.2.a.t 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1078))\):

\( T_{3} - 2 \) Copy content Toggle raw display
\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T - 2 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T - 2 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T - 6 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T + 8 \) Copy content Toggle raw display
$43$ \( T - 12 \) Copy content Toggle raw display
$47$ \( T + 12 \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T + 12 \) Copy content Toggle raw display
$71$ \( T - 4 \) Copy content Toggle raw display
$73$ \( T + 12 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T - 18 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T - 12 \) Copy content Toggle raw display
show more
show less