Properties

Label 1078.2.a.j
Level $1078$
Weight $2$
Character orbit 1078.a
Self dual yes
Analytic conductor $8.608$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.60787333789\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 3 q^{9} + O(q^{10}) \) \( q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 3 q^{9} - 2 q^{10} - q^{11} - 2 q^{13} + q^{16} - 2 q^{17} - 3 q^{18} - 2 q^{20} - q^{22} - 8 q^{23} - q^{25} - 2 q^{26} - 2 q^{29} + 8 q^{31} + q^{32} - 2 q^{34} - 3 q^{36} - 2 q^{37} - 2 q^{40} - 10 q^{41} + 4 q^{43} - q^{44} + 6 q^{45} - 8 q^{46} - 8 q^{47} - q^{50} - 2 q^{52} + 6 q^{53} + 2 q^{55} - 2 q^{58} - 10 q^{61} + 8 q^{62} + q^{64} + 4 q^{65} - 12 q^{67} - 2 q^{68} + 16 q^{71} - 3 q^{72} + 14 q^{73} - 2 q^{74} - 2 q^{80} + 9 q^{81} - 10 q^{82} + 4 q^{85} + 4 q^{86} - q^{88} + 6 q^{89} + 6 q^{90} - 8 q^{92} - 8 q^{94} - 10 q^{97} + 3 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 −2.00000 0 0 1.00000 −3.00000 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.a.j 1
3.b odd 2 1 9702.2.a.v 1
4.b odd 2 1 8624.2.a.o 1
7.b odd 2 1 154.2.a.c 1
7.c even 3 2 1078.2.e.c 2
7.d odd 6 2 1078.2.e.b 2
21.c even 2 1 1386.2.a.b 1
28.d even 2 1 1232.2.a.h 1
35.c odd 2 1 3850.2.a.f 1
35.f even 4 2 3850.2.c.l 2
56.e even 2 1 4928.2.a.o 1
56.h odd 2 1 4928.2.a.n 1
77.b even 2 1 1694.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.a.c 1 7.b odd 2 1
1078.2.a.j 1 1.a even 1 1 trivial
1078.2.e.b 2 7.d odd 6 2
1078.2.e.c 2 7.c even 3 2
1232.2.a.h 1 28.d even 2 1
1386.2.a.b 1 21.c even 2 1
1694.2.a.c 1 77.b even 2 1
3850.2.a.f 1 35.c odd 2 1
3850.2.c.l 2 35.f even 4 2
4928.2.a.n 1 56.h odd 2 1
4928.2.a.o 1 56.e even 2 1
8624.2.a.o 1 4.b odd 2 1
9702.2.a.v 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1078))\):

\( T_{3} \)
\( T_{5} + 2 \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( 2 + T \)
$7$ \( T \)
$11$ \( 1 + T \)
$13$ \( 2 + T \)
$17$ \( 2 + T \)
$19$ \( T \)
$23$ \( 8 + T \)
$29$ \( 2 + T \)
$31$ \( -8 + T \)
$37$ \( 2 + T \)
$41$ \( 10 + T \)
$43$ \( -4 + T \)
$47$ \( 8 + T \)
$53$ \( -6 + T \)
$59$ \( T \)
$61$ \( 10 + T \)
$67$ \( 12 + T \)
$71$ \( -16 + T \)
$73$ \( -14 + T \)
$79$ \( T \)
$83$ \( T \)
$89$ \( -6 + T \)
$97$ \( 10 + T \)
show more
show less