Properties

Label 1078.2.a
Level $1078$
Weight $2$
Character orbit 1078.a
Rep. character $\chi_{1078}(1,\cdot)$
Character field $\Q$
Dimension $35$
Newform subspaces $24$
Sturm bound $336$
Trace bound $23$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(336\)
Trace bound: \(23\)
Distinguishing \(T_p\): \(3\), \(5\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1078))\).

Total New Old
Modular forms 184 35 149
Cusp forms 153 35 118
Eisenstein series 31 0 31

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(7\)\(11\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(4\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(5\)
\(-\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(3\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(14\)
Minus space\(-\)\(21\)

Trace form

\( 35 q - q^{2} + 35 q^{4} - 2 q^{5} + 4 q^{6} - q^{8} + 39 q^{9} - 6 q^{10} - q^{11} + 2 q^{13} + 16 q^{15} + 35 q^{16} + 6 q^{17} + 3 q^{18} + 12 q^{19} - 2 q^{20} - q^{22} + 8 q^{23} + 4 q^{24} + 37 q^{25}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1078))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 7 11
1078.2.a.a 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.d \(-1\) \(-3\) \(-4\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-3q^{3}+q^{4}-4q^{5}+3q^{6}-q^{8}+\cdots\)
1078.2.a.b 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.a.b \(-1\) \(-2\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}-2q^{5}+2q^{6}-q^{8}+\cdots\)
1078.2.a.c 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.c \(-1\) \(-1\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}-q^{8}-2q^{9}+\cdots\)
1078.2.a.d 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.a.a \(-1\) \(0\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{5}-q^{8}-3q^{9}-4q^{10}+\cdots\)
1078.2.a.e 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.c \(-1\) \(1\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{3}+q^{4}-q^{6}-q^{8}-2q^{9}+\cdots\)
1078.2.a.f 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.d \(-1\) \(3\) \(4\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+3q^{3}+q^{4}+4q^{5}-3q^{6}-q^{8}+\cdots\)
1078.2.a.g 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.a \(1\) \(-3\) \(-2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-3q^{3}+q^{4}-2q^{5}-3q^{6}+q^{8}+\cdots\)
1078.2.a.h 1078.a 1.a $1$ $8.608$ \(\Q\) None 1078.2.a.h \(1\) \(-2\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-2q^{5}-2q^{6}+q^{8}+\cdots\)
1078.2.a.i 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.b \(1\) \(-1\) \(0\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-q^{6}+q^{8}-2q^{9}+\cdots\)
1078.2.a.j 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.a.c \(1\) \(0\) \(-2\) \(0\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}-2q^{5}+q^{8}-3q^{9}-2q^{10}+\cdots\)
1078.2.a.k 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.b \(1\) \(1\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+q^{6}+q^{8}-2q^{9}+\cdots\)
1078.2.a.l 1078.a 1.a $1$ $8.608$ \(\Q\) None 1078.2.a.h \(1\) \(2\) \(2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+2q^{5}+2q^{6}+q^{8}+\cdots\)
1078.2.a.m 1078.a 1.a $1$ $8.608$ \(\Q\) None 154.2.e.a \(1\) \(3\) \(2\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+3q^{3}+q^{4}+2q^{5}+3q^{6}+q^{8}+\cdots\)
1078.2.a.n 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{7}) \) None 154.2.e.f \(-2\) \(0\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}+(-1-\beta )q^{5}-\beta q^{6}+\cdots\)
1078.2.a.o 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.o \(-2\) \(0\) \(0\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+\beta q^{5}-q^{8}-3q^{9}-\beta q^{10}+\cdots\)
1078.2.a.p 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.p \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2\beta q^{5}-q^{8}-3q^{9}+2\beta q^{10}+\cdots\)
1078.2.a.q 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.q \(-2\) \(0\) \(0\) \(0\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{5}-\beta q^{6}-q^{8}+\cdots\)
1078.2.a.r 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.r \(-2\) \(0\) \(0\) \(0\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}-q^{8}+5q^{9}+\cdots\)
1078.2.a.s 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{7}) \) None 154.2.e.f \(-2\) \(0\) \(2\) \(0\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}+(1-\beta )q^{5}-\beta q^{6}+\cdots\)
1078.2.a.t 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 154.2.e.e \(2\) \(-2\) \(-4\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}+(-2-\beta )q^{5}+\cdots\)
1078.2.a.u 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.u \(2\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+3\beta q^{5}+\beta q^{6}+\cdots\)
1078.2.a.v 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 1078.2.a.v \(2\) \(0\) \(0\) \(0\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2\beta q^{3}+q^{4}+2\beta q^{6}+q^{8}+\cdots\)
1078.2.a.w 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{5}) \) None 154.2.a.d \(2\) \(2\) \(-2\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(-1-\beta )q^{5}+\cdots\)
1078.2.a.x 1078.a 1.a $2$ $8.608$ \(\Q(\sqrt{2}) \) None 154.2.e.e \(2\) \(2\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+(2-\beta )q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1078))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(1078)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(77))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(154))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(539))\)\(^{\oplus 2}\)