Newspace parameters
Level: | \( N \) | \(=\) | \( 1075 = 5^{2} \cdot 43 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1075.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(172.412606299\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) |
Defining polynomial: |
\( x^{8} - 4x^{7} - 173x^{6} + 462x^{5} + 9118x^{4} - 14192x^{3} - 167688x^{2} + 106368x + 681984 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 43) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 4x^{7} - 173x^{6} + 462x^{5} + 9118x^{4} - 14192x^{3} - 167688x^{2} + 106368x + 681984 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( 8125 \nu^{7} + 510320 \nu^{6} - 2147429 \nu^{5} - 76756386 \nu^{4} + 85006462 \nu^{3} + 2758106176 \nu^{2} - 206135304 \nu - 20471935488 ) / 547265856 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 12949 \nu^{7} - 681148 \nu^{6} + 2601727 \nu^{5} + 80176782 \nu^{4} - 378607946 \nu^{3} - 1837549088 \nu^{2} + 7674423864 \nu + 1709840448 ) / 547265856 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 17485 \nu^{7} + 269956 \nu^{6} + 1611305 \nu^{5} - 37491046 \nu^{4} + 6237658 \nu^{3} + 1274965584 \nu^{2} - 1052986520 \nu - 6710235008 ) / 364843904 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 38033 \nu^{7} - 126518 \nu^{6} - 5886547 \nu^{5} + 8711358 \nu^{4} + 252968474 \nu^{3} + 152252096 \nu^{2} - 3214801896 \nu - 7712512416 ) / 273632928 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 83131 \nu^{7} + 19780 \nu^{6} + 13177295 \nu^{5} + 14631678 \nu^{4} - 470063386 \nu^{3} - 1263726976 \nu^{2} + 1067316504 \nu + 17642049216 ) / 547265856 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 128521 \nu^{7} + 1062904 \nu^{6} + 16607009 \nu^{5} - 129895854 \nu^{4} - 487223974 \nu^{3} + 4067658416 \nu^{2} + 2176112520 \nu - 28238112000 ) / 547265856 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{7} + \beta_{5} - 2\beta_{4} + 2\beta _1 + 43 \)
|
\(\nu^{3}\) | \(=\) |
\( 8\beta_{6} + 7\beta_{5} - 4\beta_{4} - \beta_{3} + 5\beta_{2} + 71\beta _1 + 56 \)
|
\(\nu^{4}\) | \(=\) |
\( 94\beta_{7} + 28\beta_{6} + 99\beta_{5} - 264\beta_{4} - 23\beta_{3} + 31\beta_{2} + 307\beta _1 + 3114 \)
|
\(\nu^{5}\) | \(=\) |
\( 48\beta_{7} + 1092\beta_{6} + 869\beta_{5} - 924\beta_{4} - 71\beta_{3} + 927\beta_{2} + 6567\beta _1 + 9672 \)
|
\(\nu^{6}\) | \(=\) |
\( 8760 \beta_{7} + 5444 \beta_{6} + 10339 \beta_{5} - 29780 \beta_{4} - 3425 \beta_{3} + 6801 \beta_{2} + 40661 \beta _1 + 285312 \)
|
\(\nu^{7}\) | \(=\) |
\( 11036 \beta_{7} + 127500 \beta_{6} + 102849 \beta_{5} - 146996 \beta_{4} - 10463 \beta_{3} + 125743 \beta_{2} + 685627 \beta _1 + 1391004 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−8.95911 | 25.1057 | 48.2657 | 0 | −224.924 | 166.001 | −145.726 | 387.294 | 0 | ||||||||||||||||||||||||||||||||||||||||||
1.2 | −5.21373 | 11.2683 | −4.81697 | 0 | −58.7500 | 11.1041 | 191.954 | −116.025 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.3 | −3.65705 | −7.84314 | −18.6260 | 0 | 28.6827 | 25.5214 | 185.142 | −181.485 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.4 | −0.582753 | −3.05838 | −31.6604 | 0 | 1.78228 | 103.690 | 37.0983 | −233.646 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.5 | 4.08717 | −25.6605 | −15.2950 | 0 | −104.879 | 184.774 | −193.303 | 415.460 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.6 | 7.06235 | 9.19190 | 17.8767 | 0 | 64.9164 | 4.24720 | −99.7434 | −158.509 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.7 | 8.09504 | −11.1803 | 33.5297 | 0 | −90.5052 | −223.489 | 12.3830 | −118.000 | 0 | |||||||||||||||||||||||||||||||||||||||||||
1.8 | 11.1681 | 28.1764 | 92.7262 | 0 | 314.677 | −135.849 | 678.196 | 550.912 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(43\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1075.6.a.a | 8 | |
5.b | even | 2 | 1 | 43.6.a.a | ✓ | 8 | |
15.d | odd | 2 | 1 | 387.6.a.c | 8 | ||
20.d | odd | 2 | 1 | 688.6.a.e | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
43.6.a.a | ✓ | 8 | 5.b | even | 2 | 1 | |
387.6.a.c | 8 | 15.d | odd | 2 | 1 | ||
688.6.a.e | 8 | 20.d | odd | 2 | 1 | ||
1075.6.a.a | 8 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - 12T_{2}^{7} - 117T_{2}^{6} + 1502T_{2}^{5} + 3358T_{2}^{4} - 49104T_{2}^{3} - 39464T_{2}^{2} + 439936T_{2} + 259776 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1075))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - 12 T^{7} - 117 T^{6} + \cdots + 259776 \)
$3$
\( T^{8} - 26 T^{7} + \cdots + 504223128 \)
$5$
\( T^{8} \)
$7$
\( T^{8} + \cdots + 116222354316288 \)
$11$
\( T^{8} + 532 T^{7} + \cdots + 16\!\cdots\!76 \)
$13$
\( T^{8} - 2492 T^{7} + \cdots - 20\!\cdots\!44 \)
$17$
\( T^{8} - 2534 T^{7} + \cdots + 37\!\cdots\!33 \)
$19$
\( T^{8} + 1678 T^{7} + \cdots + 20\!\cdots\!68 \)
$23$
\( T^{8} - 2488 T^{7} + \cdots - 18\!\cdots\!83 \)
$29$
\( T^{8} + 4360 T^{7} + \cdots - 39\!\cdots\!36 \)
$31$
\( T^{8} - 5704 T^{7} + \cdots + 10\!\cdots\!13 \)
$37$
\( T^{8} - 3772 T^{7} + \cdots - 10\!\cdots\!04 \)
$41$
\( T^{8} + 10698 T^{7} + \cdots + 17\!\cdots\!57 \)
$43$
\( (T - 1849)^{8} \)
$47$
\( T^{8} - 77864 T^{7} + \cdots - 19\!\cdots\!04 \)
$53$
\( T^{8} - 62352 T^{7} + \cdots + 55\!\cdots\!84 \)
$59$
\( T^{8} + 26224 T^{7} + \cdots - 68\!\cdots\!68 \)
$61$
\( T^{8} + 82540 T^{7} + \cdots + 23\!\cdots\!84 \)
$67$
\( T^{8} + 27784 T^{7} + \cdots + 69\!\cdots\!48 \)
$71$
\( T^{8} + 9504 T^{7} + \cdots - 15\!\cdots\!64 \)
$73$
\( T^{8} + 14260 T^{7} + \cdots + 80\!\cdots\!92 \)
$79$
\( T^{8} - 160248 T^{7} + \cdots + 19\!\cdots\!12 \)
$83$
\( T^{8} - 77176 T^{7} + \cdots - 19\!\cdots\!08 \)
$89$
\( T^{8} + 265692 T^{7} + \cdots - 13\!\cdots\!64 \)
$97$
\( T^{8} + 144742 T^{7} + \cdots + 38\!\cdots\!17 \)
show more
show less