Properties

Label 106.2.b
Level $106$
Weight $2$
Character orbit 106.b
Rep. character $\chi_{106}(105,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $27$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 106 = 2 \cdot 53 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 106.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 53 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(27\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(106, [\chi])\).

Total New Old
Modular forms 16 4 12
Cusp forms 12 4 8
Eisenstein series 4 0 4

Trace form

\( 4 q - 4 q^{4} + 2 q^{6} + 4 q^{7} + 2 q^{9} - 2 q^{10} + 2 q^{11} - 10 q^{13} - 8 q^{15} + 4 q^{16} - 2 q^{24} + 10 q^{25} - 4 q^{28} + 2 q^{29} - 2 q^{36} - 22 q^{37} - 14 q^{38} + 2 q^{40} + 20 q^{42}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(106, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
106.2.b.a 106.b 53.b $2$ $0.846$ \(\Q(\sqrt{-1}) \) None 106.2.b.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+i q^{3}-q^{4}+2 i q^{5}-q^{6}+\cdots\)
106.2.b.b 106.b 53.b $2$ $0.846$ \(\Q(\sqrt{-1}) \) None 106.2.b.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-2 i q^{3}-q^{4}-i q^{5}+2 q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(106, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(106, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(53, [\chi])\)\(^{\oplus 2}\)