Properties

Label 1058.4.a.n
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.123880.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 37x - 54 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta_1 + 3) q^{3} + 4 q^{4} + ( - \beta_{2} + 1) q^{5} + (2 \beta_1 + 6) q^{6} + ( - \beta_{2} - \beta_1 + 3) q^{7} + 8 q^{8} + (\beta_{2} + 8 \beta_1 + 7) q^{9} + ( - 2 \beta_{2} + 2) q^{10}+ \cdots + ( - 15 \beta_{2} - 231 \beta_1 - 1257) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} + 9 q^{3} + 12 q^{4} + 4 q^{5} + 18 q^{6} + 10 q^{7} + 24 q^{8} + 20 q^{9} + 8 q^{10} - 8 q^{11} + 36 q^{12} + 46 q^{13} + 20 q^{14} - 2 q^{15} + 48 q^{16} + 95 q^{17} + 40 q^{18} - 9 q^{19}+ \cdots - 3756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 37x - 54 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 25 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 25 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.14904
−1.56257
6.71161
2.00000 −2.14904 4.00000 −10.8107 −4.29808 −3.66165 8.00000 −22.3816 −21.6214
1.2 2.00000 1.43743 4.00000 20.4332 2.87485 23.9958 8.00000 −24.9338 40.8664
1.3 2.00000 9.71161 4.00000 −5.62253 19.4232 −10.3341 8.00000 67.3154 −11.2451
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.n yes 3
23.b odd 2 1 1058.4.a.m 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.4.a.m 3 23.b odd 2 1
1058.4.a.n yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{3} - 9T_{3}^{2} - 10T_{3} + 30 \) Copy content Toggle raw display
\( T_{5}^{3} - 4T_{5}^{2} - 275T_{5} - 1242 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 9 T^{2} + \cdots + 30 \) Copy content Toggle raw display
$5$ \( T^{3} - 4 T^{2} + \cdots - 1242 \) Copy content Toggle raw display
$7$ \( T^{3} - 10 T^{2} + \cdots - 908 \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots + 11448 \) Copy content Toggle raw display
$13$ \( T^{3} - 46 T^{2} + \cdots + 33772 \) Copy content Toggle raw display
$17$ \( T^{3} - 95 T^{2} + \cdots + 967464 \) Copy content Toggle raw display
$19$ \( T^{3} + 9 T^{2} + \cdots + 200646 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 22 T^{2} + \cdots - 3768588 \) Copy content Toggle raw display
$31$ \( T^{3} - 454 T^{2} + \cdots - 2812440 \) Copy content Toggle raw display
$37$ \( T^{3} - 710 T^{2} + \cdots - 6473664 \) Copy content Toggle raw display
$41$ \( T^{3} + 380 T^{2} + \cdots - 714150 \) Copy content Toggle raw display
$43$ \( T^{3} + 459 T^{2} + \cdots - 33905148 \) Copy content Toggle raw display
$47$ \( T^{3} - 262 T^{2} + \cdots + 32736636 \) Copy content Toggle raw display
$53$ \( T^{3} + 610 T^{2} + \cdots + 4339824 \) Copy content Toggle raw display
$59$ \( T^{3} - 9 T^{2} + \cdots - 3034422 \) Copy content Toggle raw display
$61$ \( T^{3} - 158 T^{2} + \cdots + 5550140 \) Copy content Toggle raw display
$67$ \( T^{3} + 487 T^{2} + \cdots - 7065456 \) Copy content Toggle raw display
$71$ \( T^{3} - 738 T^{2} + \cdots + 34449300 \) Copy content Toggle raw display
$73$ \( T^{3} - 1141 T^{2} + \cdots + 75160161 \) Copy content Toggle raw display
$79$ \( T^{3} + 212 T^{2} + \cdots - 355703616 \) Copy content Toggle raw display
$83$ \( T^{3} - 1049 T^{2} + \cdots + 82133364 \) Copy content Toggle raw display
$89$ \( T^{3} + 2328 T^{2} + \cdots + 246647430 \) Copy content Toggle raw display
$97$ \( T^{3} - 2548 T^{2} + \cdots - 475476966 \) Copy content Toggle raw display
show more
show less