Properties

Label 1058.4.a.k
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.6584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 17x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_1 - 1) q^{3} + 4 q^{4} + ( - 2 \beta_{2} - 2 \beta_1 - 3) q^{5} + ( - 2 \beta_1 + 2) q^{6} + (\beta_{2} - 2 \beta_1 + 11) q^{7} - 8 q^{8} + (3 \beta_{2} - 3 \beta_1 + 7) q^{9} + (4 \beta_{2} + 4 \beta_1 + 6) q^{10}+ \cdots + ( - 34 \beta_{2} - 217 \beta_1 + 1363) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} - 2 q^{3} + 12 q^{4} - 9 q^{5} + 4 q^{6} + 30 q^{7} - 24 q^{8} + 15 q^{9} + 18 q^{10} + 66 q^{11} - 8 q^{12} - 23 q^{13} - 60 q^{14} - 122 q^{15} + 48 q^{16} - 30 q^{17} - 30 q^{18} + 118 q^{19}+ \cdots + 3906 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 17x - 22 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu - 11 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 3\nu + 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 3\beta _1 + 22 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48787
−3.17266
4.66053
−2.00000 −8.29838 4.00000 2.95148 16.5968 29.9194 −8.00000 41.8630 −5.90295
1.2 −2.00000 1.23840 4.00000 9.69062 −2.47681 −2.06052 −8.00000 −25.4664 −19.3812
1.3 −2.00000 5.05997 4.00000 −21.6421 −10.1199 2.14113 −8.00000 −1.39668 43.2842
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.k 3
23.b odd 2 1 1058.4.a.l yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.4.a.k 3 1.a even 1 1 trivial
1058.4.a.l yes 3 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{3} + 2T_{3}^{2} - 46T_{3} + 52 \) Copy content Toggle raw display
\( T_{5}^{3} + 9T_{5}^{2} - 245T_{5} + 619 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 2 T^{2} + \cdots + 52 \) Copy content Toggle raw display
$5$ \( T^{3} + 9 T^{2} + \cdots + 619 \) Copy content Toggle raw display
$7$ \( T^{3} - 30 T^{2} + \cdots + 132 \) Copy content Toggle raw display
$11$ \( T^{3} - 66 T^{2} + \cdots + 138252 \) Copy content Toggle raw display
$13$ \( T^{3} + 23 T^{2} + \cdots - 23167 \) Copy content Toggle raw display
$17$ \( T^{3} + 30 T^{2} + \cdots - 59152 \) Copy content Toggle raw display
$19$ \( T^{3} - 118 T^{2} + \cdots + 119908 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 35 T^{2} + \cdots - 1758487 \) Copy content Toggle raw display
$31$ \( T^{3} + 124 T^{2} + \cdots + 2073184 \) Copy content Toggle raw display
$37$ \( T^{3} - 22 T^{2} + \cdots - 1320448 \) Copy content Toggle raw display
$41$ \( T^{3} - 597 T^{2} + \cdots - 5532607 \) Copy content Toggle raw display
$43$ \( T^{3} + 180 T^{2} + \cdots - 8948096 \) Copy content Toggle raw display
$47$ \( T^{3} + 554 T^{2} + \cdots - 42508556 \) Copy content Toggle raw display
$53$ \( T^{3} - 595 T^{2} + \cdots + 15335051 \) Copy content Toggle raw display
$59$ \( T^{3} + 298 T^{2} + \cdots - 141250652 \) Copy content Toggle raw display
$61$ \( T^{3} + 2189 T^{2} + \cdots + 359486903 \) Copy content Toggle raw display
$67$ \( T^{3} - 64 T^{2} + \cdots + 52274304 \) Copy content Toggle raw display
$71$ \( T^{3} + 42 T^{2} + \cdots + 8310756 \) Copy content Toggle raw display
$73$ \( T^{3} + 735 T^{2} + \cdots + 33811125 \) Copy content Toggle raw display
$79$ \( T^{3} + 2504 T^{2} + \cdots + 92731136 \) Copy content Toggle raw display
$83$ \( T^{3} + 240 T^{2} + \cdots - 217015856 \) Copy content Toggle raw display
$89$ \( T^{3} + 1041 T^{2} + \cdots - 180081297 \) Copy content Toggle raw display
$97$ \( T^{3} + 1097 T^{2} + \cdots - 29907553 \) Copy content Toggle raw display
show more
show less