Properties

Label 1058.4.a.i.1.1
Level $1058$
Weight $4$
Character 1058.1
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{26}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-5.09902\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -4.00000 q^{3} +4.00000 q^{4} -10.1980 q^{5} -8.00000 q^{6} -20.3961 q^{7} +8.00000 q^{8} -11.0000 q^{9} -20.3961 q^{10} -71.3863 q^{11} -16.0000 q^{12} -42.0000 q^{13} -40.7922 q^{14} +40.7922 q^{15} +16.0000 q^{16} -20.3961 q^{17} -22.0000 q^{18} -91.7824 q^{19} -40.7922 q^{20} +81.5843 q^{21} -142.773 q^{22} -32.0000 q^{24} -21.0000 q^{25} -84.0000 q^{26} +152.000 q^{27} -81.5843 q^{28} -22.0000 q^{29} +81.5843 q^{30} +296.000 q^{31} +32.0000 q^{32} +285.545 q^{33} -40.7922 q^{34} +208.000 q^{35} -44.0000 q^{36} +275.347 q^{37} -183.565 q^{38} +168.000 q^{39} -81.5843 q^{40} -318.000 q^{41} +163.169 q^{42} -316.139 q^{43} -285.545 q^{44} +112.178 q^{45} -184.000 q^{47} -64.0000 q^{48} +73.0000 q^{49} -42.0000 q^{50} +81.5843 q^{51} -168.000 q^{52} -91.7824 q^{53} +304.000 q^{54} +728.000 q^{55} -163.169 q^{56} +367.129 q^{57} -44.0000 q^{58} -500.000 q^{59} +163.169 q^{60} -30.5941 q^{61} +592.000 q^{62} +224.357 q^{63} +64.0000 q^{64} +428.318 q^{65} +571.090 q^{66} +642.476 q^{67} -81.5843 q^{68} +416.000 q^{70} +224.000 q^{71} -88.0000 q^{72} -210.000 q^{73} +550.694 q^{74} +84.0000 q^{75} -367.129 q^{76} +1456.00 q^{77} +336.000 q^{78} -1080.99 q^{79} -163.169 q^{80} -311.000 q^{81} -636.000 q^{82} -1152.38 q^{83} +326.337 q^{84} +208.000 q^{85} -632.278 q^{86} +88.0000 q^{87} -571.090 q^{88} +815.843 q^{89} +224.357 q^{90} +856.635 q^{91} -1184.00 q^{93} -368.000 q^{94} +936.000 q^{95} -128.000 q^{96} -1244.16 q^{97} +146.000 q^{98} +785.249 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 8 q^{3} + 8 q^{4} - 16 q^{6} + 16 q^{8} - 22 q^{9} - 32 q^{12} - 84 q^{13} + 32 q^{16} - 44 q^{18} - 64 q^{24} - 42 q^{25} - 168 q^{26} + 304 q^{27} - 44 q^{29} + 592 q^{31} + 64 q^{32}+ \cdots + 292 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −4.00000 −0.769800 −0.384900 0.922958i \(-0.625764\pi\)
−0.384900 + 0.922958i \(0.625764\pi\)
\(4\) 4.00000 0.500000
\(5\) −10.1980 −0.912140 −0.456070 0.889944i \(-0.650743\pi\)
−0.456070 + 0.889944i \(0.650743\pi\)
\(6\) −8.00000 −0.544331
\(7\) −20.3961 −1.10128 −0.550642 0.834741i \(-0.685617\pi\)
−0.550642 + 0.834741i \(0.685617\pi\)
\(8\) 8.00000 0.353553
\(9\) −11.0000 −0.407407
\(10\) −20.3961 −0.644981
\(11\) −71.3863 −1.95671 −0.978353 0.206942i \(-0.933649\pi\)
−0.978353 + 0.206942i \(0.933649\pi\)
\(12\) −16.0000 −0.384900
\(13\) −42.0000 −0.896054 −0.448027 0.894020i \(-0.647873\pi\)
−0.448027 + 0.894020i \(0.647873\pi\)
\(14\) −40.7922 −0.778726
\(15\) 40.7922 0.702166
\(16\) 16.0000 0.250000
\(17\) −20.3961 −0.290987 −0.145493 0.989359i \(-0.546477\pi\)
−0.145493 + 0.989359i \(0.546477\pi\)
\(18\) −22.0000 −0.288081
\(19\) −91.7824 −1.10823 −0.554114 0.832441i \(-0.686943\pi\)
−0.554114 + 0.832441i \(0.686943\pi\)
\(20\) −40.7922 −0.456070
\(21\) 81.5843 0.847769
\(22\) −142.773 −1.38360
\(23\) 0 0
\(24\) −32.0000 −0.272166
\(25\) −21.0000 −0.168000
\(26\) −84.0000 −0.633606
\(27\) 152.000 1.08342
\(28\) −81.5843 −0.550642
\(29\) −22.0000 −0.140872 −0.0704362 0.997516i \(-0.522439\pi\)
−0.0704362 + 0.997516i \(0.522439\pi\)
\(30\) 81.5843 0.496506
\(31\) 296.000 1.71494 0.857470 0.514533i \(-0.172035\pi\)
0.857470 + 0.514533i \(0.172035\pi\)
\(32\) 32.0000 0.176777
\(33\) 285.545 1.50627
\(34\) −40.7922 −0.205759
\(35\) 208.000 1.00453
\(36\) −44.0000 −0.203704
\(37\) 275.347 1.22343 0.611713 0.791080i \(-0.290481\pi\)
0.611713 + 0.791080i \(0.290481\pi\)
\(38\) −183.565 −0.783635
\(39\) 168.000 0.689783
\(40\) −81.5843 −0.322490
\(41\) −318.000 −1.21130 −0.605649 0.795732i \(-0.707087\pi\)
−0.605649 + 0.795732i \(0.707087\pi\)
\(42\) 163.169 0.599463
\(43\) −316.139 −1.12118 −0.560590 0.828093i \(-0.689426\pi\)
−0.560590 + 0.828093i \(0.689426\pi\)
\(44\) −285.545 −0.978353
\(45\) 112.178 0.371613
\(46\) 0 0
\(47\) −184.000 −0.571046 −0.285523 0.958372i \(-0.592167\pi\)
−0.285523 + 0.958372i \(0.592167\pi\)
\(48\) −64.0000 −0.192450
\(49\) 73.0000 0.212828
\(50\) −42.0000 −0.118794
\(51\) 81.5843 0.224002
\(52\) −168.000 −0.448027
\(53\) −91.7824 −0.237873 −0.118937 0.992902i \(-0.537949\pi\)
−0.118937 + 0.992902i \(0.537949\pi\)
\(54\) 304.000 0.766096
\(55\) 728.000 1.78479
\(56\) −163.169 −0.389363
\(57\) 367.129 0.853114
\(58\) −44.0000 −0.0996118
\(59\) −500.000 −1.10330 −0.551648 0.834077i \(-0.686001\pi\)
−0.551648 + 0.834077i \(0.686001\pi\)
\(60\) 163.169 0.351083
\(61\) −30.5941 −0.0642160 −0.0321080 0.999484i \(-0.510222\pi\)
−0.0321080 + 0.999484i \(0.510222\pi\)
\(62\) 592.000 1.21265
\(63\) 224.357 0.448672
\(64\) 64.0000 0.125000
\(65\) 428.318 0.817327
\(66\) 571.090 1.06510
\(67\) 642.476 1.17151 0.585754 0.810489i \(-0.300799\pi\)
0.585754 + 0.810489i \(0.300799\pi\)
\(68\) −81.5843 −0.145493
\(69\) 0 0
\(70\) 416.000 0.710307
\(71\) 224.000 0.374421 0.187211 0.982320i \(-0.440055\pi\)
0.187211 + 0.982320i \(0.440055\pi\)
\(72\) −88.0000 −0.144040
\(73\) −210.000 −0.336694 −0.168347 0.985728i \(-0.553843\pi\)
−0.168347 + 0.985728i \(0.553843\pi\)
\(74\) 550.694 0.865093
\(75\) 84.0000 0.129326
\(76\) −367.129 −0.554114
\(77\) 1456.00 2.15489
\(78\) 336.000 0.487750
\(79\) −1080.99 −1.53951 −0.769754 0.638341i \(-0.779621\pi\)
−0.769754 + 0.638341i \(0.779621\pi\)
\(80\) −163.169 −0.228035
\(81\) −311.000 −0.426612
\(82\) −636.000 −0.856518
\(83\) −1152.38 −1.52398 −0.761988 0.647591i \(-0.775776\pi\)
−0.761988 + 0.647591i \(0.775776\pi\)
\(84\) 326.337 0.423885
\(85\) 208.000 0.265421
\(86\) −632.278 −0.792795
\(87\) 88.0000 0.108444
\(88\) −571.090 −0.691800
\(89\) 815.843 0.971676 0.485838 0.874049i \(-0.338514\pi\)
0.485838 + 0.874049i \(0.338514\pi\)
\(90\) 224.357 0.262770
\(91\) 856.635 0.986811
\(92\) 0 0
\(93\) −1184.00 −1.32016
\(94\) −368.000 −0.403790
\(95\) 936.000 1.01086
\(96\) −128.000 −0.136083
\(97\) −1244.16 −1.30232 −0.651162 0.758939i \(-0.725718\pi\)
−0.651162 + 0.758939i \(0.725718\pi\)
\(98\) 146.000 0.150492
\(99\) 785.249 0.797177
\(100\) −84.0000 −0.0840000
\(101\) 1934.00 1.90535 0.952674 0.303993i \(-0.0983200\pi\)
0.952674 + 0.303993i \(0.0983200\pi\)
\(102\) 163.169 0.158393
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −336.000 −0.316803
\(105\) −832.000 −0.773285
\(106\) −183.565 −0.168202
\(107\) −132.575 −0.119780 −0.0598900 0.998205i \(-0.519075\pi\)
−0.0598900 + 0.998205i \(0.519075\pi\)
\(108\) 608.000 0.541711
\(109\) 1193.17 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(110\) 1456.00 1.26204
\(111\) −1101.39 −0.941794
\(112\) −326.337 −0.275321
\(113\) −2080.40 −1.73193 −0.865963 0.500109i \(-0.833293\pi\)
−0.865963 + 0.500109i \(0.833293\pi\)
\(114\) 734.259 0.603242
\(115\) 0 0
\(116\) −88.0000 −0.0704362
\(117\) 462.000 0.365059
\(118\) −1000.00 −0.780148
\(119\) 416.000 0.320459
\(120\) 326.337 0.248253
\(121\) 3765.00 2.82870
\(122\) −61.1882 −0.0454076
\(123\) 1272.00 0.932458
\(124\) 1184.00 0.857470
\(125\) 1488.91 1.06538
\(126\) 448.714 0.317259
\(127\) −408.000 −0.285072 −0.142536 0.989790i \(-0.545526\pi\)
−0.142536 + 0.989790i \(0.545526\pi\)
\(128\) 128.000 0.0883883
\(129\) 1264.56 0.863085
\(130\) 856.635 0.577938
\(131\) 196.000 0.130722 0.0653611 0.997862i \(-0.479180\pi\)
0.0653611 + 0.997862i \(0.479180\pi\)
\(132\) 1142.18 0.753137
\(133\) 1872.00 1.22047
\(134\) 1284.95 0.828381
\(135\) −1550.10 −0.988234
\(136\) −163.169 −0.102879
\(137\) −2467.93 −1.53904 −0.769522 0.638620i \(-0.779506\pi\)
−0.769522 + 0.638620i \(0.779506\pi\)
\(138\) 0 0
\(139\) −2292.00 −1.39860 −0.699298 0.714830i \(-0.746504\pi\)
−0.699298 + 0.714830i \(0.746504\pi\)
\(140\) 832.000 0.502263
\(141\) 736.000 0.439591
\(142\) 448.000 0.264756
\(143\) 2998.22 1.75331
\(144\) −176.000 −0.101852
\(145\) 224.357 0.128495
\(146\) −420.000 −0.238078
\(147\) −292.000 −0.163835
\(148\) 1101.39 0.611713
\(149\) −132.575 −0.0728921 −0.0364461 0.999336i \(-0.511604\pi\)
−0.0364461 + 0.999336i \(0.511604\pi\)
\(150\) 168.000 0.0914476
\(151\) −3072.00 −1.65560 −0.827801 0.561022i \(-0.810408\pi\)
−0.827801 + 0.561022i \(0.810408\pi\)
\(152\) −734.259 −0.391817
\(153\) 224.357 0.118550
\(154\) 2912.00 1.52374
\(155\) −3018.62 −1.56427
\(156\) 672.000 0.344891
\(157\) 30.5941 0.0155521 0.00777604 0.999970i \(-0.497525\pi\)
0.00777604 + 0.999970i \(0.497525\pi\)
\(158\) −2161.98 −1.08860
\(159\) 367.129 0.183115
\(160\) −326.337 −0.161245
\(161\) 0 0
\(162\) −622.000 −0.301660
\(163\) 3116.00 1.49732 0.748662 0.662951i \(-0.230696\pi\)
0.748662 + 0.662951i \(0.230696\pi\)
\(164\) −1272.00 −0.605649
\(165\) −2912.00 −1.37393
\(166\) −2304.76 −1.07761
\(167\) 2112.00 0.978632 0.489316 0.872107i \(-0.337247\pi\)
0.489316 + 0.872107i \(0.337247\pi\)
\(168\) 652.674 0.299732
\(169\) −433.000 −0.197087
\(170\) 416.000 0.187681
\(171\) 1009.61 0.451500
\(172\) −1264.56 −0.560590
\(173\) 442.000 0.194246 0.0971232 0.995272i \(-0.469036\pi\)
0.0971232 + 0.995272i \(0.469036\pi\)
\(174\) 176.000 0.0766812
\(175\) 428.318 0.185016
\(176\) −1142.18 −0.489177
\(177\) 2000.00 0.849318
\(178\) 1631.69 0.687079
\(179\) 2764.00 1.15414 0.577070 0.816695i \(-0.304196\pi\)
0.577070 + 0.816695i \(0.304196\pi\)
\(180\) 448.714 0.185806
\(181\) 4456.54 1.83012 0.915061 0.403314i \(-0.132142\pi\)
0.915061 + 0.403314i \(0.132142\pi\)
\(182\) 1713.27 0.697781
\(183\) 122.376 0.0494335
\(184\) 0 0
\(185\) −2808.00 −1.11594
\(186\) −2368.00 −0.933496
\(187\) 1456.00 0.569376
\(188\) −736.000 −0.285523
\(189\) −3100.20 −1.19316
\(190\) 1872.00 0.714785
\(191\) −4018.03 −1.52217 −0.761084 0.648653i \(-0.775333\pi\)
−0.761084 + 0.648653i \(0.775333\pi\)
\(192\) −256.000 −0.0962250
\(193\) −1666.00 −0.621354 −0.310677 0.950516i \(-0.600556\pi\)
−0.310677 + 0.950516i \(0.600556\pi\)
\(194\) −2488.32 −0.920882
\(195\) −1713.27 −0.629179
\(196\) 292.000 0.106414
\(197\) −2190.00 −0.792036 −0.396018 0.918243i \(-0.629608\pi\)
−0.396018 + 0.918243i \(0.629608\pi\)
\(198\) 1570.50 0.563689
\(199\) −917.824 −0.326949 −0.163474 0.986548i \(-0.552270\pi\)
−0.163474 + 0.986548i \(0.552270\pi\)
\(200\) −168.000 −0.0593970
\(201\) −2569.91 −0.901827
\(202\) 3868.00 1.34728
\(203\) 448.714 0.155141
\(204\) 326.337 0.112001
\(205\) 3242.98 1.10487
\(206\) 0 0
\(207\) 0 0
\(208\) −672.000 −0.224014
\(209\) 6552.00 2.16848
\(210\) −1664.00 −0.546795
\(211\) −1324.00 −0.431981 −0.215990 0.976396i \(-0.569298\pi\)
−0.215990 + 0.976396i \(0.569298\pi\)
\(212\) −367.129 −0.118937
\(213\) −896.000 −0.288230
\(214\) −265.149 −0.0846973
\(215\) 3224.00 1.02267
\(216\) 1216.00 0.383048
\(217\) −6037.24 −1.88864
\(218\) 2386.34 0.741392
\(219\) 840.000 0.259187
\(220\) 2912.00 0.892395
\(221\) 856.635 0.260740
\(222\) −2202.78 −0.665949
\(223\) −1928.00 −0.578962 −0.289481 0.957184i \(-0.593483\pi\)
−0.289481 + 0.957184i \(0.593483\pi\)
\(224\) −652.674 −0.194681
\(225\) 231.000 0.0684444
\(226\) −4160.80 −1.22466
\(227\) −3905.85 −1.14203 −0.571014 0.820940i \(-0.693450\pi\)
−0.571014 + 0.820940i \(0.693450\pi\)
\(228\) 1468.52 0.426557
\(229\) 1070.79 0.308996 0.154498 0.987993i \(-0.450624\pi\)
0.154498 + 0.987993i \(0.450624\pi\)
\(230\) 0 0
\(231\) −5824.00 −1.65884
\(232\) −176.000 −0.0498059
\(233\) 762.000 0.214250 0.107125 0.994246i \(-0.465835\pi\)
0.107125 + 0.994246i \(0.465835\pi\)
\(234\) 924.000 0.258136
\(235\) 1876.44 0.520874
\(236\) −2000.00 −0.551648
\(237\) 4323.97 1.18511
\(238\) 832.000 0.226599
\(239\) −136.000 −0.0368080 −0.0184040 0.999831i \(-0.505859\pi\)
−0.0184040 + 0.999831i \(0.505859\pi\)
\(240\) 652.674 0.175541
\(241\) −1448.12 −0.387061 −0.193531 0.981094i \(-0.561994\pi\)
−0.193531 + 0.981094i \(0.561994\pi\)
\(242\) 7530.00 2.00019
\(243\) −2860.00 −0.755017
\(244\) −122.376 −0.0321080
\(245\) −744.457 −0.194129
\(246\) 2544.00 0.659348
\(247\) 3854.86 0.993032
\(248\) 2368.00 0.606323
\(249\) 4609.51 1.17316
\(250\) 2977.83 0.753337
\(251\) −10.1980 −0.00256452 −0.00128226 0.999999i \(-0.500408\pi\)
−0.00128226 + 0.999999i \(0.500408\pi\)
\(252\) 897.427 0.224336
\(253\) 0 0
\(254\) −816.000 −0.201576
\(255\) −832.000 −0.204321
\(256\) 256.000 0.0625000
\(257\) −2918.00 −0.708248 −0.354124 0.935198i \(-0.615221\pi\)
−0.354124 + 0.935198i \(0.615221\pi\)
\(258\) 2529.11 0.610294
\(259\) −5616.00 −1.34734
\(260\) 1713.27 0.408664
\(261\) 242.000 0.0573924
\(262\) 392.000 0.0924345
\(263\) 5262.19 1.23377 0.616883 0.787055i \(-0.288395\pi\)
0.616883 + 0.787055i \(0.288395\pi\)
\(264\) 2284.36 0.532548
\(265\) 936.000 0.216974
\(266\) 3744.00 0.863005
\(267\) −3263.37 −0.747997
\(268\) 2569.91 0.585754
\(269\) −5238.00 −1.18724 −0.593618 0.804747i \(-0.702301\pi\)
−0.593618 + 0.804747i \(0.702301\pi\)
\(270\) −3100.20 −0.698787
\(271\) 3048.00 0.683221 0.341610 0.939842i \(-0.389028\pi\)
0.341610 + 0.939842i \(0.389028\pi\)
\(272\) −326.337 −0.0727467
\(273\) −3426.54 −0.759647
\(274\) −4935.85 −1.08827
\(275\) 1499.11 0.328727
\(276\) 0 0
\(277\) 5650.00 1.22554 0.612772 0.790260i \(-0.290054\pi\)
0.612772 + 0.790260i \(0.290054\pi\)
\(278\) −4584.00 −0.988957
\(279\) −3256.00 −0.698680
\(280\) 1664.00 0.355154
\(281\) 4283.18 0.909299 0.454649 0.890671i \(-0.349765\pi\)
0.454649 + 0.890671i \(0.349765\pi\)
\(282\) 1472.00 0.310838
\(283\) −3253.17 −0.683326 −0.341663 0.939823i \(-0.610990\pi\)
−0.341663 + 0.939823i \(0.610990\pi\)
\(284\) 896.000 0.187211
\(285\) −3744.00 −0.778159
\(286\) 5996.45 1.23978
\(287\) 6485.95 1.33398
\(288\) −352.000 −0.0720201
\(289\) −4497.00 −0.915327
\(290\) 448.714 0.0908599
\(291\) 4976.64 1.00253
\(292\) −840.000 −0.168347
\(293\) 4069.02 0.811312 0.405656 0.914026i \(-0.367043\pi\)
0.405656 + 0.914026i \(0.367043\pi\)
\(294\) −584.000 −0.115849
\(295\) 5099.02 1.00636
\(296\) 2202.78 0.432547
\(297\) −10850.7 −2.11994
\(298\) −265.149 −0.0515425
\(299\) 0 0
\(300\) 336.000 0.0646632
\(301\) 6448.00 1.23474
\(302\) −6144.00 −1.17069
\(303\) −7736.00 −1.46674
\(304\) −1468.52 −0.277057
\(305\) 312.000 0.0585740
\(306\) 448.714 0.0838276
\(307\) 4492.00 0.835088 0.417544 0.908657i \(-0.362891\pi\)
0.417544 + 0.908657i \(0.362891\pi\)
\(308\) 5824.00 1.07745
\(309\) 0 0
\(310\) −6037.24 −1.10610
\(311\) −2880.00 −0.525112 −0.262556 0.964917i \(-0.584565\pi\)
−0.262556 + 0.964917i \(0.584565\pi\)
\(312\) 1344.00 0.243875
\(313\) −2263.96 −0.408840 −0.204420 0.978883i \(-0.565531\pi\)
−0.204420 + 0.978883i \(0.565531\pi\)
\(314\) 61.1882 0.0109970
\(315\) −2288.00 −0.409251
\(316\) −4323.97 −0.769754
\(317\) −8454.00 −1.49787 −0.748934 0.662645i \(-0.769434\pi\)
−0.748934 + 0.662645i \(0.769434\pi\)
\(318\) 734.259 0.129482
\(319\) 1570.50 0.275646
\(320\) −652.674 −0.114018
\(321\) 530.298 0.0922067
\(322\) 0 0
\(323\) 1872.00 0.322479
\(324\) −1244.00 −0.213306
\(325\) 882.000 0.150537
\(326\) 6232.00 1.05877
\(327\) −4772.68 −0.807125
\(328\) −2544.00 −0.428259
\(329\) 3752.88 0.628884
\(330\) −5824.00 −0.971517
\(331\) −10052.0 −1.66921 −0.834604 0.550850i \(-0.814304\pi\)
−0.834604 + 0.550850i \(0.814304\pi\)
\(332\) −4609.51 −0.761988
\(333\) −3028.82 −0.498433
\(334\) 4224.00 0.691997
\(335\) −6552.00 −1.06858
\(336\) 1305.35 0.211942
\(337\) 489.506 0.0791249 0.0395624 0.999217i \(-0.487404\pi\)
0.0395624 + 0.999217i \(0.487404\pi\)
\(338\) −866.000 −0.139362
\(339\) 8321.60 1.33324
\(340\) 832.000 0.132710
\(341\) −21130.3 −3.35564
\(342\) 2019.21 0.319259
\(343\) 5506.94 0.866900
\(344\) −2529.11 −0.396397
\(345\) 0 0
\(346\) 884.000 0.137353
\(347\) −8604.00 −1.33109 −0.665543 0.746359i \(-0.731800\pi\)
−0.665543 + 0.746359i \(0.731800\pi\)
\(348\) 352.000 0.0542218
\(349\) −1174.00 −0.180065 −0.0900326 0.995939i \(-0.528697\pi\)
−0.0900326 + 0.995939i \(0.528697\pi\)
\(350\) 856.635 0.130826
\(351\) −6384.00 −0.970805
\(352\) −2284.36 −0.345900
\(353\) −2818.00 −0.424892 −0.212446 0.977173i \(-0.568143\pi\)
−0.212446 + 0.977173i \(0.568143\pi\)
\(354\) 4000.00 0.600558
\(355\) −2284.36 −0.341525
\(356\) 3263.37 0.485838
\(357\) −1664.00 −0.246690
\(358\) 5528.00 0.816100
\(359\) −1366.54 −0.200900 −0.100450 0.994942i \(-0.532028\pi\)
−0.100450 + 0.994942i \(0.532028\pi\)
\(360\) 897.427 0.131385
\(361\) 1565.00 0.228167
\(362\) 8913.09 1.29409
\(363\) −15060.0 −2.17753
\(364\) 3426.54 0.493405
\(365\) 2141.59 0.307112
\(366\) 244.753 0.0349548
\(367\) −3079.81 −0.438051 −0.219025 0.975719i \(-0.570288\pi\)
−0.219025 + 0.975719i \(0.570288\pi\)
\(368\) 0 0
\(369\) 3498.00 0.493492
\(370\) −5616.00 −0.789086
\(371\) 1872.00 0.261966
\(372\) −4736.00 −0.660081
\(373\) −4415.75 −0.612973 −0.306486 0.951875i \(-0.599153\pi\)
−0.306486 + 0.951875i \(0.599153\pi\)
\(374\) 2912.00 0.402609
\(375\) −5955.65 −0.820130
\(376\) −1472.00 −0.201895
\(377\) 924.000 0.126229
\(378\) −6200.41 −0.843689
\(379\) −10.1980 −0.00138216 −0.000691079 1.00000i \(-0.500220\pi\)
−0.000691079 1.00000i \(0.500220\pi\)
\(380\) 3744.00 0.505429
\(381\) 1632.00 0.219449
\(382\) −8036.05 −1.07634
\(383\) 40.7922 0.00544225 0.00272113 0.999996i \(-0.499134\pi\)
0.00272113 + 0.999996i \(0.499134\pi\)
\(384\) −512.000 −0.0680414
\(385\) −14848.3 −1.96556
\(386\) −3332.00 −0.439364
\(387\) 3477.53 0.456777
\(388\) −4976.64 −0.651162
\(389\) 14328.2 1.86753 0.933767 0.357881i \(-0.116501\pi\)
0.933767 + 0.357881i \(0.116501\pi\)
\(390\) −3426.54 −0.444897
\(391\) 0 0
\(392\) 584.000 0.0752461
\(393\) −784.000 −0.100630
\(394\) −4380.00 −0.560054
\(395\) 11024.0 1.40425
\(396\) 3141.00 0.398588
\(397\) 11046.0 1.39643 0.698215 0.715888i \(-0.253978\pi\)
0.698215 + 0.715888i \(0.253978\pi\)
\(398\) −1835.65 −0.231188
\(399\) −7488.00 −0.939521
\(400\) −336.000 −0.0420000
\(401\) 4425.95 0.551175 0.275588 0.961276i \(-0.411128\pi\)
0.275588 + 0.961276i \(0.411128\pi\)
\(402\) −5139.81 −0.637688
\(403\) −12432.0 −1.53668
\(404\) 7736.00 0.952674
\(405\) 3171.59 0.389130
\(406\) 897.427 0.109701
\(407\) −19656.0 −2.39389
\(408\) 652.674 0.0791966
\(409\) −5194.00 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(410\) 6485.95 0.781264
\(411\) 9871.70 1.18476
\(412\) 0 0
\(413\) 10198.0 1.21504
\(414\) 0 0
\(415\) 11752.0 1.39008
\(416\) −1344.00 −0.158401
\(417\) 9168.00 1.07664
\(418\) 13104.0 1.53334
\(419\) −5272.39 −0.614733 −0.307366 0.951591i \(-0.599448\pi\)
−0.307366 + 0.951591i \(0.599448\pi\)
\(420\) −3328.00 −0.386642
\(421\) 9616.75 1.11328 0.556641 0.830753i \(-0.312090\pi\)
0.556641 + 0.830753i \(0.312090\pi\)
\(422\) −2648.00 −0.305456
\(423\) 2024.00 0.232648
\(424\) −734.259 −0.0841008
\(425\) 428.318 0.0488858
\(426\) −1792.00 −0.203809
\(427\) 624.000 0.0707201
\(428\) −530.298 −0.0598900
\(429\) −11992.9 −1.34970
\(430\) 6448.00 0.723140
\(431\) −7607.74 −0.850236 −0.425118 0.905138i \(-0.639767\pi\)
−0.425118 + 0.905138i \(0.639767\pi\)
\(432\) 2432.00 0.270856
\(433\) 9932.89 1.10241 0.551206 0.834369i \(-0.314168\pi\)
0.551206 + 0.834369i \(0.314168\pi\)
\(434\) −12074.5 −1.33547
\(435\) −897.427 −0.0989158
\(436\) 4772.68 0.524243
\(437\) 0 0
\(438\) 1680.00 0.183273
\(439\) −6768.00 −0.735806 −0.367903 0.929864i \(-0.619924\pi\)
−0.367903 + 0.929864i \(0.619924\pi\)
\(440\) 5824.00 0.631019
\(441\) −803.000 −0.0867077
\(442\) 1713.27 0.184371
\(443\) −7292.00 −0.782062 −0.391031 0.920378i \(-0.627881\pi\)
−0.391031 + 0.920378i \(0.627881\pi\)
\(444\) −4405.55 −0.470897
\(445\) −8320.00 −0.886305
\(446\) −3856.00 −0.409388
\(447\) 530.298 0.0561124
\(448\) −1305.35 −0.137661
\(449\) −10198.0 −1.07188 −0.535939 0.844257i \(-0.680042\pi\)
−0.535939 + 0.844257i \(0.680042\pi\)
\(450\) 462.000 0.0483975
\(451\) 22700.8 2.37016
\(452\) −8321.60 −0.865963
\(453\) 12288.0 1.27448
\(454\) −7811.70 −0.807536
\(455\) −8736.00 −0.900110
\(456\) 2937.04 0.301621
\(457\) −10707.9 −1.09605 −0.548027 0.836461i \(-0.684621\pi\)
−0.548027 + 0.836461i \(0.684621\pi\)
\(458\) 2141.59 0.218493
\(459\) −3100.20 −0.315262
\(460\) 0 0
\(461\) 4794.00 0.484336 0.242168 0.970234i \(-0.422142\pi\)
0.242168 + 0.970234i \(0.422142\pi\)
\(462\) −11648.0 −1.17297
\(463\) 9848.00 0.988500 0.494250 0.869320i \(-0.335443\pi\)
0.494250 + 0.869320i \(0.335443\pi\)
\(464\) −352.000 −0.0352181
\(465\) 12074.5 1.20417
\(466\) 1524.00 0.151498
\(467\) 5986.25 0.593170 0.296585 0.955006i \(-0.404152\pi\)
0.296585 + 0.955006i \(0.404152\pi\)
\(468\) 1848.00 0.182530
\(469\) −13104.0 −1.29016
\(470\) 3752.88 0.368314
\(471\) −122.376 −0.0119720
\(472\) −4000.00 −0.390074
\(473\) 22568.0 2.19382
\(474\) 8647.94 0.838002
\(475\) 1927.43 0.186182
\(476\) 1664.00 0.160230
\(477\) 1009.61 0.0969113
\(478\) −272.000 −0.0260272
\(479\) −2651.49 −0.252922 −0.126461 0.991972i \(-0.540362\pi\)
−0.126461 + 0.991972i \(0.540362\pi\)
\(480\) 1305.35 0.124127
\(481\) −11564.6 −1.09626
\(482\) −2896.24 −0.273693
\(483\) 0 0
\(484\) 15060.0 1.41435
\(485\) 12688.0 1.18790
\(486\) −5720.00 −0.533878
\(487\) 9328.00 0.867951 0.433975 0.900925i \(-0.357110\pi\)
0.433975 + 0.900925i \(0.357110\pi\)
\(488\) −244.753 −0.0227038
\(489\) −12464.0 −1.15264
\(490\) −1488.91 −0.137270
\(491\) 1332.00 0.122428 0.0612142 0.998125i \(-0.480503\pi\)
0.0612142 + 0.998125i \(0.480503\pi\)
\(492\) 5088.00 0.466229
\(493\) 448.714 0.0409920
\(494\) 7709.72 0.702179
\(495\) −8008.00 −0.727137
\(496\) 4736.00 0.428735
\(497\) −4568.72 −0.412344
\(498\) 9219.03 0.829547
\(499\) −6308.00 −0.565902 −0.282951 0.959134i \(-0.591313\pi\)
−0.282951 + 0.959134i \(0.591313\pi\)
\(500\) 5955.65 0.532690
\(501\) −8448.00 −0.753351
\(502\) −20.3961 −0.00181339
\(503\) −1325.75 −0.117519 −0.0587595 0.998272i \(-0.518715\pi\)
−0.0587595 + 0.998272i \(0.518715\pi\)
\(504\) 1794.85 0.158629
\(505\) −19723.0 −1.73795
\(506\) 0 0
\(507\) 1732.00 0.151718
\(508\) −1632.00 −0.142536
\(509\) 5034.00 0.438366 0.219183 0.975684i \(-0.429661\pi\)
0.219183 + 0.975684i \(0.429661\pi\)
\(510\) −1664.00 −0.144477
\(511\) 4283.18 0.370796
\(512\) 512.000 0.0441942
\(513\) −13950.9 −1.20068
\(514\) −5836.00 −0.500807
\(515\) 0 0
\(516\) 5058.23 0.431543
\(517\) 13135.1 1.11737
\(518\) −11232.0 −0.952714
\(519\) −1768.00 −0.149531
\(520\) 3426.54 0.288969
\(521\) −7077.44 −0.595141 −0.297570 0.954700i \(-0.596176\pi\)
−0.297570 + 0.954700i \(0.596176\pi\)
\(522\) 484.000 0.0405826
\(523\) 13573.6 1.13486 0.567430 0.823422i \(-0.307938\pi\)
0.567430 + 0.823422i \(0.307938\pi\)
\(524\) 784.000 0.0653611
\(525\) −1713.27 −0.142425
\(526\) 10524.4 0.872404
\(527\) −6037.24 −0.499025
\(528\) 4568.72 0.376568
\(529\) 0 0
\(530\) 1872.00 0.153424
\(531\) 5500.00 0.449491
\(532\) 7488.00 0.610237
\(533\) 13356.0 1.08539
\(534\) −6526.74 −0.528914
\(535\) 1352.00 0.109256
\(536\) 5139.81 0.414190
\(537\) −11056.0 −0.888457
\(538\) −10476.0 −0.839503
\(539\) −5211.20 −0.416442
\(540\) −6200.41 −0.494117
\(541\) −13334.0 −1.05966 −0.529828 0.848105i \(-0.677743\pi\)
−0.529828 + 0.848105i \(0.677743\pi\)
\(542\) 6096.00 0.483110
\(543\) −17826.2 −1.40883
\(544\) −652.674 −0.0514397
\(545\) −12168.0 −0.956367
\(546\) −6853.08 −0.537152
\(547\) −1468.00 −0.114748 −0.0573740 0.998353i \(-0.518273\pi\)
−0.0573740 + 0.998353i \(0.518273\pi\)
\(548\) −9871.70 −0.769522
\(549\) 336.535 0.0261621
\(550\) 2998.22 0.232445
\(551\) 2019.21 0.156119
\(552\) 0 0
\(553\) 22048.0 1.69544
\(554\) 11300.0 0.866590
\(555\) 11232.0 0.859048
\(556\) −9168.00 −0.699298
\(557\) −18427.9 −1.40182 −0.700910 0.713250i \(-0.747222\pi\)
−0.700910 + 0.713250i \(0.747222\pi\)
\(558\) −6512.00 −0.494041
\(559\) 13277.8 1.00464
\(560\) 3328.00 0.251132
\(561\) −5824.00 −0.438306
\(562\) 8566.35 0.642971
\(563\) −22507.1 −1.68483 −0.842416 0.538828i \(-0.818867\pi\)
−0.842416 + 0.538828i \(0.818867\pi\)
\(564\) 2944.00 0.219796
\(565\) 21216.0 1.57976
\(566\) −6506.35 −0.483184
\(567\) 6343.18 0.469821
\(568\) 1792.00 0.132378
\(569\) 8382.79 0.617618 0.308809 0.951124i \(-0.400070\pi\)
0.308809 + 0.951124i \(0.400070\pi\)
\(570\) −7488.00 −0.550242
\(571\) −4089.41 −0.299714 −0.149857 0.988708i \(-0.547881\pi\)
−0.149857 + 0.988708i \(0.547881\pi\)
\(572\) 11992.9 0.876657
\(573\) 16072.1 1.17177
\(574\) 12971.9 0.943270
\(575\) 0 0
\(576\) −704.000 −0.0509259
\(577\) −8378.00 −0.604473 −0.302236 0.953233i \(-0.597733\pi\)
−0.302236 + 0.953233i \(0.597733\pi\)
\(578\) −8994.00 −0.647234
\(579\) 6664.00 0.478318
\(580\) 897.427 0.0642477
\(581\) 23504.0 1.67833
\(582\) 9953.29 0.708895
\(583\) 6552.00 0.465448
\(584\) −1680.00 −0.119039
\(585\) −4711.49 −0.332985
\(586\) 8138.04 0.573685
\(587\) 27228.0 1.91451 0.957257 0.289238i \(-0.0934020\pi\)
0.957257 + 0.289238i \(0.0934020\pi\)
\(588\) −1168.00 −0.0819175
\(589\) −27167.6 −1.90054
\(590\) 10198.0 0.711604
\(591\) 8760.00 0.609709
\(592\) 4405.55 0.305857
\(593\) −13462.0 −0.932240 −0.466120 0.884722i \(-0.654348\pi\)
−0.466120 + 0.884722i \(0.654348\pi\)
\(594\) −21701.4 −1.49902
\(595\) −4242.38 −0.292304
\(596\) −530.298 −0.0364461
\(597\) 3671.29 0.251685
\(598\) 0 0
\(599\) −16224.0 −1.10667 −0.553334 0.832959i \(-0.686645\pi\)
−0.553334 + 0.832959i \(0.686645\pi\)
\(600\) 672.000 0.0457238
\(601\) 13118.0 0.890340 0.445170 0.895446i \(-0.353143\pi\)
0.445170 + 0.895446i \(0.353143\pi\)
\(602\) 12896.0 0.873093
\(603\) −7067.24 −0.477281
\(604\) −12288.0 −0.827801
\(605\) −38395.6 −2.58017
\(606\) −15472.0 −1.03714
\(607\) 1144.00 0.0764968 0.0382484 0.999268i \(-0.487822\pi\)
0.0382484 + 0.999268i \(0.487822\pi\)
\(608\) −2937.04 −0.195909
\(609\) −1794.85 −0.119427
\(610\) 624.000 0.0414181
\(611\) 7728.00 0.511688
\(612\) 897.427 0.0592751
\(613\) 27259.4 1.79608 0.898038 0.439917i \(-0.144992\pi\)
0.898038 + 0.439917i \(0.144992\pi\)
\(614\) 8984.00 0.590496
\(615\) −12971.9 −0.850533
\(616\) 11648.0 0.761869
\(617\) 21334.3 1.39204 0.696018 0.718024i \(-0.254953\pi\)
0.696018 + 0.718024i \(0.254953\pi\)
\(618\) 0 0
\(619\) −19692.4 −1.27868 −0.639342 0.768923i \(-0.720793\pi\)
−0.639342 + 0.768923i \(0.720793\pi\)
\(620\) −12074.5 −0.782133
\(621\) 0 0
\(622\) −5760.00 −0.371310
\(623\) −16640.0 −1.07009
\(624\) 2688.00 0.172446
\(625\) −12559.0 −0.803776
\(626\) −4527.93 −0.289093
\(627\) −26208.0 −1.66929
\(628\) 122.376 0.00777604
\(629\) −5616.00 −0.356001
\(630\) −4576.00 −0.289384
\(631\) −5384.56 −0.339709 −0.169854 0.985469i \(-0.554330\pi\)
−0.169854 + 0.985469i \(0.554330\pi\)
\(632\) −8647.94 −0.544298
\(633\) 5296.00 0.332539
\(634\) −16908.0 −1.05915
\(635\) 4160.80 0.260026
\(636\) 1468.52 0.0915574
\(637\) −3066.00 −0.190705
\(638\) 3141.00 0.194911
\(639\) −2464.00 −0.152542
\(640\) −1305.35 −0.0806226
\(641\) 10422.4 0.642215 0.321108 0.947043i \(-0.395945\pi\)
0.321108 + 0.947043i \(0.395945\pi\)
\(642\) 1060.60 0.0652000
\(643\) 18162.7 1.11395 0.556973 0.830531i \(-0.311963\pi\)
0.556973 + 0.830531i \(0.311963\pi\)
\(644\) 0 0
\(645\) −12896.0 −0.787255
\(646\) 3744.00 0.228027
\(647\) −23824.0 −1.44763 −0.723816 0.689993i \(-0.757614\pi\)
−0.723816 + 0.689993i \(0.757614\pi\)
\(648\) −2488.00 −0.150830
\(649\) 35693.1 2.15883
\(650\) 1764.00 0.106446
\(651\) 24149.0 1.45387
\(652\) 12464.0 0.748662
\(653\) −5690.00 −0.340991 −0.170495 0.985358i \(-0.554537\pi\)
−0.170495 + 0.985358i \(0.554537\pi\)
\(654\) −9545.36 −0.570724
\(655\) −1998.82 −0.119237
\(656\) −5088.00 −0.302825
\(657\) 2310.00 0.137172
\(658\) 7505.76 0.444688
\(659\) 4109.81 0.242937 0.121468 0.992595i \(-0.461240\pi\)
0.121468 + 0.992595i \(0.461240\pi\)
\(660\) −11648.0 −0.686966
\(661\) 20936.6 1.23198 0.615990 0.787754i \(-0.288756\pi\)
0.615990 + 0.787754i \(0.288756\pi\)
\(662\) −20104.0 −1.18031
\(663\) −3426.54 −0.200718
\(664\) −9219.03 −0.538807
\(665\) −19090.7 −1.11324
\(666\) −6057.64 −0.352445
\(667\) 0 0
\(668\) 8448.00 0.489316
\(669\) 7712.00 0.445685
\(670\) −13104.0 −0.755600
\(671\) 2184.00 0.125652
\(672\) 2610.70 0.149866
\(673\) 18986.0 1.08745 0.543727 0.839262i \(-0.317013\pi\)
0.543727 + 0.839262i \(0.317013\pi\)
\(674\) 979.012 0.0559497
\(675\) −3192.00 −0.182015
\(676\) −1732.00 −0.0985435
\(677\) 1091.19 0.0619466 0.0309733 0.999520i \(-0.490139\pi\)
0.0309733 + 0.999520i \(0.490139\pi\)
\(678\) 16643.2 0.942741
\(679\) 25376.0 1.43423
\(680\) 1664.00 0.0938404
\(681\) 15623.4 0.879133
\(682\) −42260.7 −2.37279
\(683\) −21396.0 −1.19868 −0.599338 0.800496i \(-0.704569\pi\)
−0.599338 + 0.800496i \(0.704569\pi\)
\(684\) 4038.42 0.225750
\(685\) 25168.0 1.40382
\(686\) 11013.9 0.612991
\(687\) −4283.18 −0.237865
\(688\) −5058.23 −0.280295
\(689\) 3854.86 0.213147
\(690\) 0 0
\(691\) 15700.0 0.864336 0.432168 0.901793i \(-0.357749\pi\)
0.432168 + 0.901793i \(0.357749\pi\)
\(692\) 1768.00 0.0971232
\(693\) −16016.0 −0.877919
\(694\) −17208.0 −0.941220
\(695\) 23373.9 1.27572
\(696\) 704.000 0.0383406
\(697\) 6485.95 0.352472
\(698\) −2348.00 −0.127325
\(699\) −3048.00 −0.164930
\(700\) 1713.27 0.0925079
\(701\) 10657.0 0.574190 0.287095 0.957902i \(-0.407310\pi\)
0.287095 + 0.957902i \(0.407310\pi\)
\(702\) −12768.0 −0.686463
\(703\) −25272.0 −1.35583
\(704\) −4568.72 −0.244588
\(705\) −7505.76 −0.400969
\(706\) −5636.00 −0.300444
\(707\) −39446.0 −2.09833
\(708\) 8000.00 0.424659
\(709\) −9188.43 −0.486712 −0.243356 0.969937i \(-0.578248\pi\)
−0.243356 + 0.969937i \(0.578248\pi\)
\(710\) −4568.72 −0.241494
\(711\) 11890.9 0.627207
\(712\) 6526.74 0.343539
\(713\) 0 0
\(714\) −3328.00 −0.174436
\(715\) −30576.0 −1.59927
\(716\) 11056.0 0.577070
\(717\) 544.000 0.0283348
\(718\) −2733.07 −0.142058
\(719\) −18600.0 −0.964761 −0.482380 0.875962i \(-0.660228\pi\)
−0.482380 + 0.875962i \(0.660228\pi\)
\(720\) 1794.85 0.0929032
\(721\) 0 0
\(722\) 3130.00 0.161339
\(723\) 5792.49 0.297960
\(724\) 17826.2 0.915061
\(725\) 462.000 0.0236666
\(726\) −30120.0 −1.53975
\(727\) 16786.0 0.856337 0.428169 0.903699i \(-0.359159\pi\)
0.428169 + 0.903699i \(0.359159\pi\)
\(728\) 6853.08 0.348890
\(729\) 19837.0 1.00782
\(730\) 4283.18 0.217161
\(731\) 6448.00 0.326249
\(732\) 489.506 0.0247167
\(733\) −7108.03 −0.358174 −0.179087 0.983833i \(-0.557314\pi\)
−0.179087 + 0.983833i \(0.557314\pi\)
\(734\) −6159.62 −0.309749
\(735\) 2977.83 0.149441
\(736\) 0 0
\(737\) −45864.0 −2.29230
\(738\) 6996.00 0.348952
\(739\) −35364.0 −1.76033 −0.880166 0.474665i \(-0.842569\pi\)
−0.880166 + 0.474665i \(0.842569\pi\)
\(740\) −11232.0 −0.557968
\(741\) −15419.4 −0.764436
\(742\) 3744.00 0.185238
\(743\) 7505.76 0.370605 0.185302 0.982682i \(-0.440674\pi\)
0.185302 + 0.982682i \(0.440674\pi\)
\(744\) −9472.00 −0.466748
\(745\) 1352.00 0.0664878
\(746\) −8831.50 −0.433437
\(747\) 12676.2 0.620879
\(748\) 5824.00 0.284688
\(749\) 2704.00 0.131912
\(750\) −11911.3 −0.579919
\(751\) −37936.7 −1.84332 −0.921658 0.388004i \(-0.873165\pi\)
−0.921658 + 0.388004i \(0.873165\pi\)
\(752\) −2944.00 −0.142761
\(753\) 40.7922 0.00197417
\(754\) 1848.00 0.0892575
\(755\) 31328.4 1.51014
\(756\) −12400.8 −0.596578
\(757\) 32440.0 1.55753 0.778765 0.627316i \(-0.215846\pi\)
0.778765 + 0.627316i \(0.215846\pi\)
\(758\) −20.3961 −0.000977334 0
\(759\) 0 0
\(760\) 7488.00 0.357393
\(761\) 9046.00 0.430903 0.215452 0.976515i \(-0.430878\pi\)
0.215452 + 0.976515i \(0.430878\pi\)
\(762\) 3264.00 0.155174
\(763\) −24336.0 −1.15468
\(764\) −16072.1 −0.761084
\(765\) −2288.00 −0.108134
\(766\) 81.5843 0.00384825
\(767\) 21000.0 0.988613
\(768\) −1024.00 −0.0481125
\(769\) 40690.2 1.90810 0.954048 0.299655i \(-0.0968716\pi\)
0.954048 + 0.299655i \(0.0968716\pi\)
\(770\) −29696.7 −1.38986
\(771\) 11672.0 0.545210
\(772\) −6664.00 −0.310677
\(773\) 26076.4 1.21333 0.606664 0.794958i \(-0.292507\pi\)
0.606664 + 0.794958i \(0.292507\pi\)
\(774\) 6955.06 0.322990
\(775\) −6216.00 −0.288110
\(776\) −9953.29 −0.460441
\(777\) 22464.0 1.03718
\(778\) 28656.5 1.32055
\(779\) 29186.8 1.34239
\(780\) −6853.08 −0.314589
\(781\) −15990.5 −0.732632
\(782\) 0 0
\(783\) −3344.00 −0.152624
\(784\) 1168.00 0.0532070
\(785\) −312.000 −0.0141857
\(786\) −1568.00 −0.0711561
\(787\) −28870.6 −1.30766 −0.653829 0.756642i \(-0.726839\pi\)
−0.653829 + 0.756642i \(0.726839\pi\)
\(788\) −8760.00 −0.396018
\(789\) −21048.8 −0.949753
\(790\) 22048.0 0.992953
\(791\) 42432.0 1.90734
\(792\) 6281.99 0.281845
\(793\) 1284.95 0.0575410
\(794\) 22092.0 0.987425
\(795\) −3744.00 −0.167026
\(796\) −3671.29 −0.163474
\(797\) 24607.9 1.09367 0.546835 0.837240i \(-0.315832\pi\)
0.546835 + 0.837240i \(0.315832\pi\)
\(798\) −14976.0 −0.664342
\(799\) 3752.88 0.166167
\(800\) −672.000 −0.0296985
\(801\) −8974.27 −0.395868
\(802\) 8851.90 0.389740
\(803\) 14991.1 0.658811
\(804\) −10279.6 −0.450913
\(805\) 0 0
\(806\) −24864.0 −1.08660
\(807\) 20952.0 0.913935
\(808\) 15472.0 0.673642
\(809\) −9594.00 −0.416943 −0.208472 0.978028i \(-0.566849\pi\)
−0.208472 + 0.978028i \(0.566849\pi\)
\(810\) 6343.18 0.275156
\(811\) 14060.0 0.608771 0.304386 0.952549i \(-0.401549\pi\)
0.304386 + 0.952549i \(0.401549\pi\)
\(812\) 1794.85 0.0775703
\(813\) −12192.0 −0.525944
\(814\) −39312.0 −1.69273
\(815\) −31777.1 −1.36577
\(816\) 1305.35 0.0560004
\(817\) 29016.0 1.24252
\(818\) −10388.0 −0.444019
\(819\) −9422.99 −0.402034
\(820\) 12971.9 0.552437
\(821\) −14850.0 −0.631265 −0.315633 0.948882i \(-0.602217\pi\)
−0.315633 + 0.948882i \(0.602217\pi\)
\(822\) 19743.4 0.837750
\(823\) 944.000 0.0399827 0.0199914 0.999800i \(-0.493636\pi\)
0.0199914 + 0.999800i \(0.493636\pi\)
\(824\) 0 0
\(825\) −5996.45 −0.253054
\(826\) 20396.1 0.859165
\(827\) −15959.9 −0.671078 −0.335539 0.942026i \(-0.608918\pi\)
−0.335539 + 0.942026i \(0.608918\pi\)
\(828\) 0 0
\(829\) 27482.0 1.15137 0.575687 0.817670i \(-0.304735\pi\)
0.575687 + 0.817670i \(0.304735\pi\)
\(830\) 23504.0 0.982935
\(831\) −22600.0 −0.943424
\(832\) −2688.00 −0.112007
\(833\) −1488.91 −0.0619301
\(834\) 18336.0 0.761299
\(835\) −21538.3 −0.892649
\(836\) 26208.0 1.08424
\(837\) 44992.0 1.85801
\(838\) −10544.8 −0.434682
\(839\) −11748.1 −0.483422 −0.241711 0.970348i \(-0.577709\pi\)
−0.241711 + 0.970348i \(0.577709\pi\)
\(840\) −6656.00 −0.273397
\(841\) −23905.0 −0.980155
\(842\) 19233.5 0.787209
\(843\) −17132.7 −0.699978
\(844\) −5296.00 −0.215990
\(845\) 4415.75 0.179771
\(846\) 4048.00 0.164507
\(847\) −76791.2 −3.11520
\(848\) −1468.52 −0.0594683
\(849\) 13012.7 0.526024
\(850\) 856.635 0.0345675
\(851\) 0 0
\(852\) −3584.00 −0.144115
\(853\) −12850.0 −0.515798 −0.257899 0.966172i \(-0.583030\pi\)
−0.257899 + 0.966172i \(0.583030\pi\)
\(854\) 1248.00 0.0500067
\(855\) −10296.0 −0.411831
\(856\) −1060.60 −0.0423486
\(857\) 25098.0 1.00039 0.500193 0.865914i \(-0.333262\pi\)
0.500193 + 0.865914i \(0.333262\pi\)
\(858\) −23985.8 −0.954384
\(859\) 40052.0 1.59087 0.795435 0.606039i \(-0.207243\pi\)
0.795435 + 0.606039i \(0.207243\pi\)
\(860\) 12896.0 0.511337
\(861\) −25943.8 −1.02690
\(862\) −15215.5 −0.601208
\(863\) 11928.0 0.470491 0.235246 0.971936i \(-0.424411\pi\)
0.235246 + 0.971936i \(0.424411\pi\)
\(864\) 4864.00 0.191524
\(865\) −4507.53 −0.177180
\(866\) 19865.8 0.779523
\(867\) 17988.0 0.704619
\(868\) −24149.0 −0.944319
\(869\) 77168.0 3.01236
\(870\) −1794.85 −0.0699440
\(871\) −26984.0 −1.04973
\(872\) 9545.36 0.370696
\(873\) 13685.8 0.530576
\(874\) 0 0
\(875\) −30368.0 −1.17329
\(876\) 3360.00 0.129593
\(877\) 3306.00 0.127293 0.0636463 0.997973i \(-0.479727\pi\)
0.0636463 + 0.997973i \(0.479727\pi\)
\(878\) −13536.0 −0.520294
\(879\) −16276.1 −0.624549
\(880\) 11648.0 0.446198
\(881\) 28065.0 1.07325 0.536625 0.843821i \(-0.319699\pi\)
0.536625 + 0.843821i \(0.319699\pi\)
\(882\) −1606.00 −0.0613116
\(883\) −6812.00 −0.259617 −0.129809 0.991539i \(-0.541436\pi\)
−0.129809 + 0.991539i \(0.541436\pi\)
\(884\) 3426.54 0.130370
\(885\) −20396.1 −0.774697
\(886\) −14584.0 −0.553001
\(887\) 25440.0 0.963012 0.481506 0.876443i \(-0.340090\pi\)
0.481506 + 0.876443i \(0.340090\pi\)
\(888\) −8811.11 −0.332974
\(889\) 8321.60 0.313945
\(890\) −16640.0 −0.626712
\(891\) 22201.1 0.834754
\(892\) −7712.00 −0.289481
\(893\) 16888.0 0.632849
\(894\) 1060.60 0.0396774
\(895\) −28187.4 −1.05274
\(896\) −2610.70 −0.0973407
\(897\) 0 0
\(898\) −20396.0 −0.757932
\(899\) −6512.00 −0.241588
\(900\) 924.000 0.0342222
\(901\) 1872.00 0.0692179
\(902\) 45401.7 1.67595
\(903\) −25792.0 −0.950503
\(904\) −16643.2 −0.612328
\(905\) −45448.0 −1.66933
\(906\) 24576.0 0.901195
\(907\) 9514.77 0.348327 0.174164 0.984717i \(-0.444278\pi\)
0.174164 + 0.984717i \(0.444278\pi\)
\(908\) −15623.4 −0.571014
\(909\) −21274.0 −0.776253
\(910\) −17472.0 −0.636474
\(911\) −41628.4 −1.51395 −0.756976 0.653443i \(-0.773324\pi\)
−0.756976 + 0.653443i \(0.773324\pi\)
\(912\) 5874.07 0.213278
\(913\) 82264.0 2.98197
\(914\) −21415.9 −0.775027
\(915\) −1248.00 −0.0450903
\(916\) 4283.18 0.154498
\(917\) −3997.63 −0.143962
\(918\) −6200.41 −0.222924
\(919\) −30043.4 −1.07839 −0.539195 0.842181i \(-0.681272\pi\)
−0.539195 + 0.842181i \(0.681272\pi\)
\(920\) 0 0
\(921\) −17968.0 −0.642851
\(922\) 9588.00 0.342477
\(923\) −9408.00 −0.335502
\(924\) −23296.0 −0.829418
\(925\) −5782.29 −0.205536
\(926\) 19696.0 0.698975
\(927\) 0 0
\(928\) −704.000 −0.0249029
\(929\) 16266.0 0.574457 0.287228 0.957862i \(-0.407266\pi\)
0.287228 + 0.957862i \(0.407266\pi\)
\(930\) 24149.0 0.851479
\(931\) −6700.11 −0.235862
\(932\) 3048.00 0.107125
\(933\) 11520.0 0.404231
\(934\) 11972.5 0.419435
\(935\) −14848.3 −0.519351
\(936\) 3696.00 0.129068
\(937\) −11013.9 −0.384000 −0.192000 0.981395i \(-0.561497\pi\)
−0.192000 + 0.981395i \(0.561497\pi\)
\(938\) −26208.0 −0.912283
\(939\) 9055.86 0.314725
\(940\) 7505.76 0.260437
\(941\) −42393.2 −1.46863 −0.734315 0.678809i \(-0.762496\pi\)
−0.734315 + 0.678809i \(0.762496\pi\)
\(942\) −244.753 −0.00846548
\(943\) 0 0
\(944\) −8000.00 −0.275824
\(945\) 31616.0 1.08833
\(946\) 45136.0 1.55127
\(947\) −3428.00 −0.117629 −0.0588147 0.998269i \(-0.518732\pi\)
−0.0588147 + 0.998269i \(0.518732\pi\)
\(948\) 17295.9 0.592557
\(949\) 8820.00 0.301696
\(950\) 3854.86 0.131651
\(951\) 33816.0 1.15306
\(952\) 3328.00 0.113299
\(953\) 21191.5 0.720316 0.360158 0.932891i \(-0.382723\pi\)
0.360158 + 0.932891i \(0.382723\pi\)
\(954\) 2019.21 0.0685266
\(955\) 40976.0 1.38843
\(956\) −544.000 −0.0184040
\(957\) −6281.99 −0.212192
\(958\) −5302.98 −0.178843
\(959\) 50336.0 1.69493
\(960\) 2610.70 0.0877707
\(961\) 57825.0 1.94102
\(962\) −23129.2 −0.775170
\(963\) 1458.32 0.0487993
\(964\) −5792.49 −0.193531
\(965\) 16989.9 0.566762
\(966\) 0 0
\(967\) −3568.00 −0.118655 −0.0593274 0.998239i \(-0.518896\pi\)
−0.0593274 + 0.998239i \(0.518896\pi\)
\(968\) 30120.0 1.00010
\(969\) −7488.00 −0.248245
\(970\) 25376.0 0.839973
\(971\) −31195.8 −1.03102 −0.515510 0.856883i \(-0.672398\pi\)
−0.515510 + 0.856883i \(0.672398\pi\)
\(972\) −11440.0 −0.377508
\(973\) 46747.8 1.54025
\(974\) 18656.0 0.613734
\(975\) −3528.00 −0.115884
\(976\) −489.506 −0.0160540
\(977\) 11401.4 0.373350 0.186675 0.982422i \(-0.440229\pi\)
0.186675 + 0.982422i \(0.440229\pi\)
\(978\) −24928.0 −0.815040
\(979\) −58240.0 −1.90129
\(980\) −2977.83 −0.0970645
\(981\) −13124.9 −0.427161
\(982\) 2664.00 0.0865699
\(983\) 34326.6 1.11378 0.556891 0.830585i \(-0.311994\pi\)
0.556891 + 0.830585i \(0.311994\pi\)
\(984\) 10176.0 0.329674
\(985\) 22333.7 0.722448
\(986\) 897.427 0.0289857
\(987\) −15011.5 −0.484115
\(988\) 15419.4 0.496516
\(989\) 0 0
\(990\) −16016.0 −0.514164
\(991\) −10376.0 −0.332598 −0.166299 0.986075i \(-0.553182\pi\)
−0.166299 + 0.986075i \(0.553182\pi\)
\(992\) 9472.00 0.303162
\(993\) 40208.0 1.28496
\(994\) −9137.44 −0.291572
\(995\) 9360.00 0.298223
\(996\) 18438.1 0.586578
\(997\) 25922.0 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −12616.0 −0.400153
\(999\) 41852.8 1.32549
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.4.a.i.1.1 2
23.22 odd 2 inner 1058.4.a.i.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.4.a.i.1.1 2 1.1 even 1 trivial
1058.4.a.i.1.2 yes 2 23.22 odd 2 inner