Properties

Label 1058.4.a.i
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{26}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{26}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} - 4 q^{3} + 4 q^{4} + \beta q^{5} - 8 q^{6} + 2 \beta q^{7} + 8 q^{8} - 11 q^{9} + 2 \beta q^{10} + 7 \beta q^{11} - 16 q^{12} - 42 q^{13} + 4 \beta q^{14} - 4 \beta q^{15} + 16 q^{16} + 2 \beta q^{17} + \cdots - 77 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 8 q^{3} + 8 q^{4} - 16 q^{6} + 16 q^{8} - 22 q^{9} - 32 q^{12} - 84 q^{13} + 32 q^{16} - 44 q^{18} - 64 q^{24} - 42 q^{25} - 168 q^{26} + 304 q^{27} - 44 q^{29} + 592 q^{31} + 64 q^{32}+ \cdots + 292 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.09902
5.09902
2.00000 −4.00000 4.00000 −10.1980 −8.00000 −20.3961 8.00000 −11.0000 −20.3961
1.2 2.00000 −4.00000 4.00000 10.1980 −8.00000 20.3961 8.00000 −11.0000 20.3961
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(23\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.i 2
23.b odd 2 1 inner 1058.4.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.4.a.i 2 1.a even 1 1 trivial
1058.4.a.i 2 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 104 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T + 4)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 104 \) Copy content Toggle raw display
$7$ \( T^{2} - 416 \) Copy content Toggle raw display
$11$ \( T^{2} - 5096 \) Copy content Toggle raw display
$13$ \( (T + 42)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 416 \) Copy content Toggle raw display
$19$ \( T^{2} - 8424 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 22)^{2} \) Copy content Toggle raw display
$31$ \( (T - 296)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} - 75816 \) Copy content Toggle raw display
$41$ \( (T + 318)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 99944 \) Copy content Toggle raw display
$47$ \( (T + 184)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8424 \) Copy content Toggle raw display
$59$ \( (T + 500)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 936 \) Copy content Toggle raw display
$67$ \( T^{2} - 412776 \) Copy content Toggle raw display
$71$ \( (T - 224)^{2} \) Copy content Toggle raw display
$73$ \( (T + 210)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 1168544 \) Copy content Toggle raw display
$83$ \( T^{2} - 1327976 \) Copy content Toggle raw display
$89$ \( T^{2} - 665600 \) Copy content Toggle raw display
$97$ \( T^{2} - 1547936 \) Copy content Toggle raw display
show more
show less