Properties

Label 1058.4.a.g
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (3 \beta + 1) q^{3} + 4 q^{4} + ( - \beta - 6) q^{5} + ( - 6 \beta - 2) q^{6} + (7 \beta + 9) q^{7} - 8 q^{8} + (6 \beta + 1) q^{9} + (2 \beta + 12) q^{10} + ( - 9 \beta - 33) q^{11} + (12 \beta + 4) q^{12}+ \cdots + ( - 207 \beta - 195) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 2 q^{3} + 8 q^{4} - 12 q^{5} - 4 q^{6} + 18 q^{7} - 16 q^{8} + 2 q^{9} + 24 q^{10} - 66 q^{11} + 8 q^{12} - 10 q^{13} - 36 q^{14} - 30 q^{15} + 32 q^{16} + 168 q^{17} - 4 q^{18} - 42 q^{19}+ \cdots - 390 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−2.00000 −4.19615 4.00000 −4.26795 8.39230 −3.12436 −8.00000 −9.39230 8.53590
1.2 −2.00000 6.19615 4.00000 −7.73205 −12.3923 21.1244 −8.00000 11.3923 15.4641
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.g 2
23.b odd 2 1 1058.4.a.h yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.4.a.g 2 1.a even 1 1 trivial
1058.4.a.h yes 2 23.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{2} - 2T_{3} - 26 \) Copy content Toggle raw display
\( T_{5}^{2} + 12T_{5} + 33 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$5$ \( T^{2} + 12T + 33 \) Copy content Toggle raw display
$7$ \( T^{2} - 18T - 66 \) Copy content Toggle raw display
$11$ \( T^{2} + 66T + 846 \) Copy content Toggle raw display
$13$ \( T^{2} + 10T - 947 \) Copy content Toggle raw display
$17$ \( T^{2} - 168T + 6084 \) Copy content Toggle raw display
$19$ \( T^{2} + 42T + 438 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 210T - 10143 \) Copy content Toggle raw display
$31$ \( T^{2} - 32T - 5036 \) Copy content Toggle raw display
$37$ \( T^{2} - 396T - 23004 \) Copy content Toggle raw display
$41$ \( T^{2} + 30T - 90603 \) Copy content Toggle raw display
$43$ \( T^{2} + 696T + 120804 \) Copy content Toggle raw display
$47$ \( T^{2} + 78T - 31554 \) Copy content Toggle raw display
$53$ \( T^{2} - 720T + 73293 \) Copy content Toggle raw display
$59$ \( T^{2} + 774T + 141966 \) Copy content Toggle raw display
$61$ \( T^{2} - 528T - 150627 \) Copy content Toggle raw display
$67$ \( T^{2} + 924T + 177144 \) Copy content Toggle raw display
$71$ \( T^{2} + 786T - 397674 \) Copy content Toggle raw display
$73$ \( T^{2} - 422T - 384131 \) Copy content Toggle raw display
$79$ \( T^{2} + 204T - 221448 \) Copy content Toggle raw display
$83$ \( T^{2} - 888T - 805116 \) Copy content Toggle raw display
$89$ \( T^{2} + 132T - 256719 \) Copy content Toggle raw display
$97$ \( T^{2} + 192T - 768027 \) Copy content Toggle raw display
show more
show less