Properties

Label 1058.4.a.f
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 46)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + ( - 3 \beta + 1) q^{3} + 4 q^{4} + ( - 2 \beta - 4) q^{5} + (6 \beta - 2) q^{6} + ( - 2 \beta - 2) q^{7} - 8 q^{8} + (3 \beta + 64) q^{9} + (4 \beta + 8) q^{10} + (8 \beta - 40) q^{11} + ( - 12 \beta + 4) q^{12}+ \cdots + (416 \beta - 2320) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} - q^{3} + 8 q^{4} - 10 q^{5} + 2 q^{6} - 6 q^{7} - 16 q^{8} + 131 q^{9} + 20 q^{10} - 72 q^{11} - 4 q^{12} - 111 q^{13} + 12 q^{14} + 128 q^{15} + 32 q^{16} - 124 q^{17} - 262 q^{18} - 22 q^{19}+ \cdots - 4224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.70156
−2.70156
−2.00000 −10.1047 4.00000 −11.4031 20.2094 −9.40312 −8.00000 75.1047 22.8062
1.2 −2.00000 9.10469 4.00000 1.40312 −18.2094 3.40312 −8.00000 55.8953 −2.80625
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.f 2
23.b odd 2 1 46.4.a.c 2
69.c even 2 1 414.4.a.j 2
92.b even 2 1 368.4.a.g 2
115.c odd 2 1 1150.4.a.k 2
115.e even 4 2 1150.4.b.i 4
161.c even 2 1 2254.4.a.d 2
184.e odd 2 1 1472.4.a.m 2
184.h even 2 1 1472.4.a.l 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
46.4.a.c 2 23.b odd 2 1
368.4.a.g 2 92.b even 2 1
414.4.a.j 2 69.c even 2 1
1058.4.a.f 2 1.a even 1 1 trivial
1150.4.a.k 2 115.c odd 2 1
1150.4.b.i 4 115.e even 4 2
1472.4.a.l 2 184.h even 2 1
1472.4.a.m 2 184.e odd 2 1
2254.4.a.d 2 161.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{2} + T_{3} - 92 \) Copy content Toggle raw display
\( T_{5}^{2} + 10T_{5} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 92 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T - 16 \) Copy content Toggle raw display
$7$ \( T^{2} + 6T - 32 \) Copy content Toggle raw display
$11$ \( T^{2} + 72T + 640 \) Copy content Toggle raw display
$13$ \( T^{2} + 111T + 2578 \) Copy content Toggle raw display
$17$ \( T^{2} + 124T - 2060 \) Copy content Toggle raw display
$19$ \( T^{2} + 22T - 3200 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 15T - 43250 \) Copy content Toggle raw display
$31$ \( T^{2} - 67T - 1840 \) Copy content Toggle raw display
$37$ \( T^{2} + 18T - 50144 \) Copy content Toggle raw display
$41$ \( T^{2} - 485T + 54286 \) Copy content Toggle raw display
$43$ \( T^{2} - 440T + 16256 \) Copy content Toggle raw display
$47$ \( T^{2} - 215T - 77096 \) Copy content Toggle raw display
$53$ \( T^{2} + 240T - 143204 \) Copy content Toggle raw display
$59$ \( T^{2} - 792T + 146320 \) Copy content Toggle raw display
$61$ \( T^{2} + 456T - 408692 \) Copy content Toggle raw display
$67$ \( T^{2} + 240T - 9216 \) Copy content Toggle raw display
$71$ \( T^{2} + 705T + 39376 \) Copy content Toggle raw display
$73$ \( T^{2} - 27T - 8438 \) Copy content Toggle raw display
$79$ \( T^{2} + 594T + 32080 \) Copy content Toggle raw display
$83$ \( T^{2} + 394T - 285952 \) Copy content Toggle raw display
$89$ \( T^{2} - 486T - 31520 \) Copy content Toggle raw display
$97$ \( T^{2} + 2152 T + 882092 \) Copy content Toggle raw display
show more
show less