Properties

Label 1058.4.a.c.1.1
Level $1058$
Weight $4$
Character 1058.1
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1058.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +7.00000 q^{3} +4.00000 q^{4} -18.0000 q^{5} +14.0000 q^{6} +30.0000 q^{7} +8.00000 q^{8} +22.0000 q^{9} -36.0000 q^{10} +6.00000 q^{11} +28.0000 q^{12} +79.0000 q^{13} +60.0000 q^{14} -126.000 q^{15} +16.0000 q^{16} -102.000 q^{17} +44.0000 q^{18} +36.0000 q^{19} -72.0000 q^{20} +210.000 q^{21} +12.0000 q^{22} +56.0000 q^{24} +199.000 q^{25} +158.000 q^{26} -35.0000 q^{27} +120.000 q^{28} +33.0000 q^{29} -252.000 q^{30} +43.0000 q^{31} +32.0000 q^{32} +42.0000 q^{33} -204.000 q^{34} -540.000 q^{35} +88.0000 q^{36} +354.000 q^{37} +72.0000 q^{38} +553.000 q^{39} -144.000 q^{40} +375.000 q^{41} +420.000 q^{42} -96.0000 q^{43} +24.0000 q^{44} -396.000 q^{45} -129.000 q^{47} +112.000 q^{48} +557.000 q^{49} +398.000 q^{50} -714.000 q^{51} +316.000 q^{52} +300.000 q^{53} -70.0000 q^{54} -108.000 q^{55} +240.000 q^{56} +252.000 q^{57} +66.0000 q^{58} -324.000 q^{59} -504.000 q^{60} -120.000 q^{61} +86.0000 q^{62} +660.000 q^{63} +64.0000 q^{64} -1422.00 q^{65} +84.0000 q^{66} -582.000 q^{67} -408.000 q^{68} -1080.00 q^{70} +147.000 q^{71} +176.000 q^{72} +637.000 q^{73} +708.000 q^{74} +1393.00 q^{75} +144.000 q^{76} +180.000 q^{77} +1106.00 q^{78} +468.000 q^{79} -288.000 q^{80} -839.000 q^{81} +750.000 q^{82} -978.000 q^{83} +840.000 q^{84} +1836.00 q^{85} -192.000 q^{86} +231.000 q^{87} +48.0000 q^{88} +252.000 q^{89} -792.000 q^{90} +2370.00 q^{91} +301.000 q^{93} -258.000 q^{94} -648.000 q^{95} +224.000 q^{96} +1170.00 q^{97} +1114.00 q^{98} +132.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 7.00000 1.34715 0.673575 0.739119i \(-0.264758\pi\)
0.673575 + 0.739119i \(0.264758\pi\)
\(4\) 4.00000 0.500000
\(5\) −18.0000 −1.60997 −0.804984 0.593296i \(-0.797826\pi\)
−0.804984 + 0.593296i \(0.797826\pi\)
\(6\) 14.0000 0.952579
\(7\) 30.0000 1.61985 0.809924 0.586535i \(-0.199508\pi\)
0.809924 + 0.586535i \(0.199508\pi\)
\(8\) 8.00000 0.353553
\(9\) 22.0000 0.814815
\(10\) −36.0000 −1.13842
\(11\) 6.00000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) 28.0000 0.673575
\(13\) 79.0000 1.68544 0.842718 0.538356i \(-0.180954\pi\)
0.842718 + 0.538356i \(0.180954\pi\)
\(14\) 60.0000 1.14541
\(15\) −126.000 −2.16887
\(16\) 16.0000 0.250000
\(17\) −102.000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 44.0000 0.576161
\(19\) 36.0000 0.434682 0.217341 0.976096i \(-0.430262\pi\)
0.217341 + 0.976096i \(0.430262\pi\)
\(20\) −72.0000 −0.804984
\(21\) 210.000 2.18218
\(22\) 12.0000 0.116291
\(23\) 0 0
\(24\) 56.0000 0.476290
\(25\) 199.000 1.59200
\(26\) 158.000 1.19178
\(27\) −35.0000 −0.249472
\(28\) 120.000 0.809924
\(29\) 33.0000 0.211308 0.105654 0.994403i \(-0.466306\pi\)
0.105654 + 0.994403i \(0.466306\pi\)
\(30\) −252.000 −1.53362
\(31\) 43.0000 0.249130 0.124565 0.992211i \(-0.460246\pi\)
0.124565 + 0.992211i \(0.460246\pi\)
\(32\) 32.0000 0.176777
\(33\) 42.0000 0.221553
\(34\) −204.000 −1.02899
\(35\) −540.000 −2.60790
\(36\) 88.0000 0.407407
\(37\) 354.000 1.57290 0.786449 0.617655i \(-0.211917\pi\)
0.786449 + 0.617655i \(0.211917\pi\)
\(38\) 72.0000 0.307367
\(39\) 553.000 2.27054
\(40\) −144.000 −0.569210
\(41\) 375.000 1.42842 0.714209 0.699932i \(-0.246786\pi\)
0.714209 + 0.699932i \(0.246786\pi\)
\(42\) 420.000 1.54303
\(43\) −96.0000 −0.340462 −0.170231 0.985404i \(-0.554451\pi\)
−0.170231 + 0.985404i \(0.554451\pi\)
\(44\) 24.0000 0.0822304
\(45\) −396.000 −1.31183
\(46\) 0 0
\(47\) −129.000 −0.400353 −0.200176 0.979760i \(-0.564152\pi\)
−0.200176 + 0.979760i \(0.564152\pi\)
\(48\) 112.000 0.336788
\(49\) 557.000 1.62391
\(50\) 398.000 1.12571
\(51\) −714.000 −1.96039
\(52\) 316.000 0.842718
\(53\) 300.000 0.777513 0.388756 0.921341i \(-0.372905\pi\)
0.388756 + 0.921341i \(0.372905\pi\)
\(54\) −70.0000 −0.176404
\(55\) −108.000 −0.264777
\(56\) 240.000 0.572703
\(57\) 252.000 0.585583
\(58\) 66.0000 0.149418
\(59\) −324.000 −0.714936 −0.357468 0.933925i \(-0.616360\pi\)
−0.357468 + 0.933925i \(0.616360\pi\)
\(60\) −504.000 −1.08444
\(61\) −120.000 −0.251876 −0.125938 0.992038i \(-0.540194\pi\)
−0.125938 + 0.992038i \(0.540194\pi\)
\(62\) 86.0000 0.176161
\(63\) 660.000 1.31988
\(64\) 64.0000 0.125000
\(65\) −1422.00 −2.71350
\(66\) 84.0000 0.156662
\(67\) −582.000 −1.06123 −0.530617 0.847612i \(-0.678040\pi\)
−0.530617 + 0.847612i \(0.678040\pi\)
\(68\) −408.000 −0.727607
\(69\) 0 0
\(70\) −1080.00 −1.84407
\(71\) 147.000 0.245714 0.122857 0.992424i \(-0.460794\pi\)
0.122857 + 0.992424i \(0.460794\pi\)
\(72\) 176.000 0.288081
\(73\) 637.000 1.02130 0.510652 0.859787i \(-0.329404\pi\)
0.510652 + 0.859787i \(0.329404\pi\)
\(74\) 708.000 1.11221
\(75\) 1393.00 2.14466
\(76\) 144.000 0.217341
\(77\) 180.000 0.266401
\(78\) 1106.00 1.60551
\(79\) 468.000 0.666508 0.333254 0.942837i \(-0.391853\pi\)
0.333254 + 0.942837i \(0.391853\pi\)
\(80\) −288.000 −0.402492
\(81\) −839.000 −1.15089
\(82\) 750.000 1.01004
\(83\) −978.000 −1.29337 −0.646683 0.762759i \(-0.723844\pi\)
−0.646683 + 0.762759i \(0.723844\pi\)
\(84\) 840.000 1.09109
\(85\) 1836.00 2.34285
\(86\) −192.000 −0.240743
\(87\) 231.000 0.284664
\(88\) 48.0000 0.0581456
\(89\) 252.000 0.300134 0.150067 0.988676i \(-0.452051\pi\)
0.150067 + 0.988676i \(0.452051\pi\)
\(90\) −792.000 −0.927601
\(91\) 2370.00 2.73015
\(92\) 0 0
\(93\) 301.000 0.335616
\(94\) −258.000 −0.283092
\(95\) −648.000 −0.699825
\(96\) 224.000 0.238145
\(97\) 1170.00 1.22470 0.612348 0.790588i \(-0.290225\pi\)
0.612348 + 0.790588i \(0.290225\pi\)
\(98\) 1114.00 1.14828
\(99\) 132.000 0.134005
\(100\) 796.000 0.796000
\(101\) 1098.00 1.08173 0.540867 0.841108i \(-0.318096\pi\)
0.540867 + 0.841108i \(0.318096\pi\)
\(102\) −1428.00 −1.38621
\(103\) 66.0000 0.0631376 0.0315688 0.999502i \(-0.489950\pi\)
0.0315688 + 0.999502i \(0.489950\pi\)
\(104\) 632.000 0.595891
\(105\) −3780.00 −3.51324
\(106\) 600.000 0.549784
\(107\) 1416.00 1.27934 0.639672 0.768648i \(-0.279070\pi\)
0.639672 + 0.768648i \(0.279070\pi\)
\(108\) −140.000 −0.124736
\(109\) 192.000 0.168718 0.0843590 0.996435i \(-0.473116\pi\)
0.0843590 + 0.996435i \(0.473116\pi\)
\(110\) −216.000 −0.187225
\(111\) 2478.00 2.11893
\(112\) 480.000 0.404962
\(113\) 882.000 0.734262 0.367131 0.930169i \(-0.380340\pi\)
0.367131 + 0.930169i \(0.380340\pi\)
\(114\) 504.000 0.414070
\(115\) 0 0
\(116\) 132.000 0.105654
\(117\) 1738.00 1.37332
\(118\) −648.000 −0.505536
\(119\) −3060.00 −2.35722
\(120\) −1008.00 −0.766812
\(121\) −1295.00 −0.972953
\(122\) −240.000 −0.178103
\(123\) 2625.00 1.92429
\(124\) 172.000 0.124565
\(125\) −1332.00 −0.953102
\(126\) 1320.00 0.933293
\(127\) −551.000 −0.384987 −0.192493 0.981298i \(-0.561657\pi\)
−0.192493 + 0.981298i \(0.561657\pi\)
\(128\) 128.000 0.0883883
\(129\) −672.000 −0.458653
\(130\) −2844.00 −1.91873
\(131\) −321.000 −0.214091 −0.107045 0.994254i \(-0.534139\pi\)
−0.107045 + 0.994254i \(0.534139\pi\)
\(132\) 168.000 0.110777
\(133\) 1080.00 0.704119
\(134\) −1164.00 −0.750405
\(135\) 630.000 0.401643
\(136\) −816.000 −0.514496
\(137\) −2112.00 −1.31708 −0.658541 0.752545i \(-0.728826\pi\)
−0.658541 + 0.752545i \(0.728826\pi\)
\(138\) 0 0
\(139\) −763.000 −0.465589 −0.232794 0.972526i \(-0.574787\pi\)
−0.232794 + 0.972526i \(0.574787\pi\)
\(140\) −2160.00 −1.30395
\(141\) −903.000 −0.539336
\(142\) 294.000 0.173746
\(143\) 474.000 0.277188
\(144\) 352.000 0.203704
\(145\) −594.000 −0.340200
\(146\) 1274.00 0.722171
\(147\) 3899.00 2.18765
\(148\) 1416.00 0.786449
\(149\) 2208.00 1.21400 0.607001 0.794701i \(-0.292372\pi\)
0.607001 + 0.794701i \(0.292372\pi\)
\(150\) 2786.00 1.51651
\(151\) −3193.00 −1.72081 −0.860406 0.509609i \(-0.829790\pi\)
−0.860406 + 0.509609i \(0.829790\pi\)
\(152\) 288.000 0.153683
\(153\) −2244.00 −1.18573
\(154\) 360.000 0.188374
\(155\) −774.000 −0.401091
\(156\) 2212.00 1.13527
\(157\) 516.000 0.262301 0.131151 0.991362i \(-0.458133\pi\)
0.131151 + 0.991362i \(0.458133\pi\)
\(158\) 936.000 0.471292
\(159\) 2100.00 1.04743
\(160\) −576.000 −0.284605
\(161\) 0 0
\(162\) −1678.00 −0.813803
\(163\) 421.000 0.202302 0.101151 0.994871i \(-0.467747\pi\)
0.101151 + 0.994871i \(0.467747\pi\)
\(164\) 1500.00 0.714209
\(165\) −756.000 −0.356694
\(166\) −1956.00 −0.914548
\(167\) −1584.00 −0.733974 −0.366987 0.930226i \(-0.619611\pi\)
−0.366987 + 0.930226i \(0.619611\pi\)
\(168\) 1680.00 0.771517
\(169\) 4044.00 1.84069
\(170\) 3672.00 1.65664
\(171\) 792.000 0.354186
\(172\) −384.000 −0.170231
\(173\) 2070.00 0.909706 0.454853 0.890566i \(-0.349692\pi\)
0.454853 + 0.890566i \(0.349692\pi\)
\(174\) 462.000 0.201288
\(175\) 5970.00 2.57880
\(176\) 96.0000 0.0411152
\(177\) −2268.00 −0.963126
\(178\) 504.000 0.212227
\(179\) −591.000 −0.246779 −0.123389 0.992358i \(-0.539376\pi\)
−0.123389 + 0.992358i \(0.539376\pi\)
\(180\) −1584.00 −0.655913
\(181\) −2958.00 −1.21473 −0.607366 0.794422i \(-0.707774\pi\)
−0.607366 + 0.794422i \(0.707774\pi\)
\(182\) 4740.00 1.93051
\(183\) −840.000 −0.339315
\(184\) 0 0
\(185\) −6372.00 −2.53232
\(186\) 602.000 0.237316
\(187\) −612.000 −0.239326
\(188\) −516.000 −0.200176
\(189\) −1050.00 −0.404107
\(190\) −1296.00 −0.494851
\(191\) −4650.00 −1.76158 −0.880791 0.473505i \(-0.842989\pi\)
−0.880791 + 0.473505i \(0.842989\pi\)
\(192\) 448.000 0.168394
\(193\) −3283.00 −1.22443 −0.612216 0.790690i \(-0.709722\pi\)
−0.612216 + 0.790690i \(0.709722\pi\)
\(194\) 2340.00 0.865991
\(195\) −9954.00 −3.65549
\(196\) 2228.00 0.811953
\(197\) −1959.00 −0.708492 −0.354246 0.935152i \(-0.615262\pi\)
−0.354246 + 0.935152i \(0.615262\pi\)
\(198\) 264.000 0.0947559
\(199\) 4518.00 1.60941 0.804705 0.593675i \(-0.202324\pi\)
0.804705 + 0.593675i \(0.202324\pi\)
\(200\) 1592.00 0.562857
\(201\) −4074.00 −1.42964
\(202\) 2196.00 0.764901
\(203\) 990.000 0.342288
\(204\) −2856.00 −0.980196
\(205\) −6750.00 −2.29971
\(206\) 132.000 0.0446450
\(207\) 0 0
\(208\) 1264.00 0.421359
\(209\) 216.000 0.0714882
\(210\) −7560.00 −2.48424
\(211\) −5636.00 −1.83885 −0.919427 0.393260i \(-0.871347\pi\)
−0.919427 + 0.393260i \(0.871347\pi\)
\(212\) 1200.00 0.388756
\(213\) 1029.00 0.331014
\(214\) 2832.00 0.904633
\(215\) 1728.00 0.548133
\(216\) −280.000 −0.0882018
\(217\) 1290.00 0.403553
\(218\) 384.000 0.119302
\(219\) 4459.00 1.37585
\(220\) −432.000 −0.132388
\(221\) −8058.00 −2.45267
\(222\) 4956.00 1.49831
\(223\) 3044.00 0.914087 0.457043 0.889444i \(-0.348908\pi\)
0.457043 + 0.889444i \(0.348908\pi\)
\(224\) 960.000 0.286351
\(225\) 4378.00 1.29719
\(226\) 1764.00 0.519201
\(227\) −3726.00 −1.08944 −0.544721 0.838617i \(-0.683364\pi\)
−0.544721 + 0.838617i \(0.683364\pi\)
\(228\) 1008.00 0.292791
\(229\) −4512.00 −1.30201 −0.651007 0.759071i \(-0.725653\pi\)
−0.651007 + 0.759071i \(0.725653\pi\)
\(230\) 0 0
\(231\) 1260.00 0.358883
\(232\) 264.000 0.0747088
\(233\) 3039.00 0.854470 0.427235 0.904141i \(-0.359488\pi\)
0.427235 + 0.904141i \(0.359488\pi\)
\(234\) 3476.00 0.971082
\(235\) 2322.00 0.644556
\(236\) −1296.00 −0.357468
\(237\) 3276.00 0.897886
\(238\) −6120.00 −1.66681
\(239\) −5361.00 −1.45094 −0.725469 0.688255i \(-0.758377\pi\)
−0.725469 + 0.688255i \(0.758377\pi\)
\(240\) −2016.00 −0.542218
\(241\) 2130.00 0.569317 0.284658 0.958629i \(-0.408120\pi\)
0.284658 + 0.958629i \(0.408120\pi\)
\(242\) −2590.00 −0.687981
\(243\) −4928.00 −1.30095
\(244\) −480.000 −0.125938
\(245\) −10026.0 −2.61444
\(246\) 5250.00 1.36068
\(247\) 2844.00 0.732629
\(248\) 344.000 0.0880807
\(249\) −6846.00 −1.74236
\(250\) −2664.00 −0.673945
\(251\) 1038.00 0.261028 0.130514 0.991446i \(-0.458337\pi\)
0.130514 + 0.991446i \(0.458337\pi\)
\(252\) 2640.00 0.659938
\(253\) 0 0
\(254\) −1102.00 −0.272227
\(255\) 12852.0 3.15617
\(256\) 256.000 0.0625000
\(257\) 723.000 0.175484 0.0877422 0.996143i \(-0.472035\pi\)
0.0877422 + 0.996143i \(0.472035\pi\)
\(258\) −1344.00 −0.324317
\(259\) 10620.0 2.54786
\(260\) −5688.00 −1.35675
\(261\) 726.000 0.172177
\(262\) −642.000 −0.151385
\(263\) −3252.00 −0.762460 −0.381230 0.924480i \(-0.624499\pi\)
−0.381230 + 0.924480i \(0.624499\pi\)
\(264\) 336.000 0.0783309
\(265\) −5400.00 −1.25177
\(266\) 2160.00 0.497888
\(267\) 1764.00 0.404326
\(268\) −2328.00 −0.530617
\(269\) −4215.00 −0.955365 −0.477682 0.878533i \(-0.658523\pi\)
−0.477682 + 0.878533i \(0.658523\pi\)
\(270\) 1260.00 0.284004
\(271\) −3728.00 −0.835645 −0.417823 0.908529i \(-0.637207\pi\)
−0.417823 + 0.908529i \(0.637207\pi\)
\(272\) −1632.00 −0.363803
\(273\) 16590.0 3.67792
\(274\) −4224.00 −0.931318
\(275\) 1194.00 0.261821
\(276\) 0 0
\(277\) −8507.00 −1.84526 −0.922628 0.385690i \(-0.873963\pi\)
−0.922628 + 0.385690i \(0.873963\pi\)
\(278\) −1526.00 −0.329221
\(279\) 946.000 0.202995
\(280\) −4320.00 −0.922033
\(281\) −2010.00 −0.426714 −0.213357 0.976974i \(-0.568440\pi\)
−0.213357 + 0.976974i \(0.568440\pi\)
\(282\) −1806.00 −0.381368
\(283\) 9438.00 1.98244 0.991221 0.132218i \(-0.0422100\pi\)
0.991221 + 0.132218i \(0.0422100\pi\)
\(284\) 588.000 0.122857
\(285\) −4536.00 −0.942770
\(286\) 948.000 0.196001
\(287\) 11250.0 2.31382
\(288\) 704.000 0.144040
\(289\) 5491.00 1.11765
\(290\) −1188.00 −0.240558
\(291\) 8190.00 1.64985
\(292\) 2548.00 0.510652
\(293\) −12.0000 −0.00239265 −0.00119633 0.999999i \(-0.500381\pi\)
−0.00119633 + 0.999999i \(0.500381\pi\)
\(294\) 7798.00 1.54690
\(295\) 5832.00 1.15102
\(296\) 2832.00 0.556104
\(297\) −210.000 −0.0410284
\(298\) 4416.00 0.858430
\(299\) 0 0
\(300\) 5572.00 1.07233
\(301\) −2880.00 −0.551496
\(302\) −6386.00 −1.21680
\(303\) 7686.00 1.45726
\(304\) 576.000 0.108671
\(305\) 2160.00 0.405512
\(306\) −4488.00 −0.838438
\(307\) −10028.0 −1.86426 −0.932131 0.362122i \(-0.882052\pi\)
−0.932131 + 0.362122i \(0.882052\pi\)
\(308\) 720.000 0.133201
\(309\) 462.000 0.0850559
\(310\) −1548.00 −0.283614
\(311\) 7251.00 1.32208 0.661039 0.750351i \(-0.270116\pi\)
0.661039 + 0.750351i \(0.270116\pi\)
\(312\) 4424.00 0.802755
\(313\) 4452.00 0.803968 0.401984 0.915647i \(-0.368321\pi\)
0.401984 + 0.915647i \(0.368321\pi\)
\(314\) 1032.00 0.185475
\(315\) −11880.0 −2.12496
\(316\) 1872.00 0.333254
\(317\) 3294.00 0.583626 0.291813 0.956475i \(-0.405741\pi\)
0.291813 + 0.956475i \(0.405741\pi\)
\(318\) 4200.00 0.740642
\(319\) 198.000 0.0347519
\(320\) −1152.00 −0.201246
\(321\) 9912.00 1.72347
\(322\) 0 0
\(323\) −3672.00 −0.632556
\(324\) −3356.00 −0.575446
\(325\) 15721.0 2.68321
\(326\) 842.000 0.143049
\(327\) 1344.00 0.227289
\(328\) 3000.00 0.505022
\(329\) −3870.00 −0.648511
\(330\) −1512.00 −0.252221
\(331\) 3445.00 0.572067 0.286034 0.958220i \(-0.407663\pi\)
0.286034 + 0.958220i \(0.407663\pi\)
\(332\) −3912.00 −0.646683
\(333\) 7788.00 1.28162
\(334\) −3168.00 −0.518998
\(335\) 10476.0 1.70855
\(336\) 3360.00 0.545545
\(337\) 3900.00 0.630405 0.315203 0.949024i \(-0.397928\pi\)
0.315203 + 0.949024i \(0.397928\pi\)
\(338\) 8088.00 1.30157
\(339\) 6174.00 0.989161
\(340\) 7344.00 1.17142
\(341\) 258.000 0.0409721
\(342\) 1584.00 0.250447
\(343\) 6420.00 1.01063
\(344\) −768.000 −0.120371
\(345\) 0 0
\(346\) 4140.00 0.643259
\(347\) 5256.00 0.813132 0.406566 0.913621i \(-0.366726\pi\)
0.406566 + 0.913621i \(0.366726\pi\)
\(348\) 924.000 0.142332
\(349\) −547.000 −0.0838975 −0.0419488 0.999120i \(-0.513357\pi\)
−0.0419488 + 0.999120i \(0.513357\pi\)
\(350\) 11940.0 1.82349
\(351\) −2765.00 −0.420469
\(352\) 192.000 0.0290728
\(353\) −6591.00 −0.993778 −0.496889 0.867814i \(-0.665524\pi\)
−0.496889 + 0.867814i \(0.665524\pi\)
\(354\) −4536.00 −0.681033
\(355\) −2646.00 −0.395592
\(356\) 1008.00 0.150067
\(357\) −21420.0 −3.17554
\(358\) −1182.00 −0.174499
\(359\) −12180.0 −1.79063 −0.895315 0.445435i \(-0.853049\pi\)
−0.895315 + 0.445435i \(0.853049\pi\)
\(360\) −3168.00 −0.463801
\(361\) −5563.00 −0.811051
\(362\) −5916.00 −0.858945
\(363\) −9065.00 −1.31071
\(364\) 9480.00 1.36507
\(365\) −11466.0 −1.64427
\(366\) −1680.00 −0.239932
\(367\) 6114.00 0.869614 0.434807 0.900524i \(-0.356817\pi\)
0.434807 + 0.900524i \(0.356817\pi\)
\(368\) 0 0
\(369\) 8250.00 1.16390
\(370\) −12744.0 −1.79062
\(371\) 9000.00 1.25945
\(372\) 1204.00 0.167808
\(373\) −4230.00 −0.587188 −0.293594 0.955930i \(-0.594851\pi\)
−0.293594 + 0.955930i \(0.594851\pi\)
\(374\) −1224.00 −0.169229
\(375\) −9324.00 −1.28397
\(376\) −1032.00 −0.141546
\(377\) 2607.00 0.356147
\(378\) −2100.00 −0.285747
\(379\) −6684.00 −0.905895 −0.452947 0.891537i \(-0.649627\pi\)
−0.452947 + 0.891537i \(0.649627\pi\)
\(380\) −2592.00 −0.349913
\(381\) −3857.00 −0.518635
\(382\) −9300.00 −1.24563
\(383\) −12336.0 −1.64580 −0.822898 0.568189i \(-0.807644\pi\)
−0.822898 + 0.568189i \(0.807644\pi\)
\(384\) 896.000 0.119072
\(385\) −3240.00 −0.428898
\(386\) −6566.00 −0.865805
\(387\) −2112.00 −0.277413
\(388\) 4680.00 0.612348
\(389\) −516.000 −0.0672551 −0.0336276 0.999434i \(-0.510706\pi\)
−0.0336276 + 0.999434i \(0.510706\pi\)
\(390\) −19908.0 −2.58482
\(391\) 0 0
\(392\) 4456.00 0.574138
\(393\) −2247.00 −0.288413
\(394\) −3918.00 −0.500980
\(395\) −8424.00 −1.07306
\(396\) 528.000 0.0670025
\(397\) −4453.00 −0.562946 −0.281473 0.959569i \(-0.590823\pi\)
−0.281473 + 0.959569i \(0.590823\pi\)
\(398\) 9036.00 1.13802
\(399\) 7560.00 0.948555
\(400\) 3184.00 0.398000
\(401\) 3522.00 0.438604 0.219302 0.975657i \(-0.429622\pi\)
0.219302 + 0.975657i \(0.429622\pi\)
\(402\) −8148.00 −1.01091
\(403\) 3397.00 0.419892
\(404\) 4392.00 0.540867
\(405\) 15102.0 1.85290
\(406\) 1980.00 0.242034
\(407\) 2124.00 0.258680
\(408\) −5712.00 −0.693103
\(409\) −3247.00 −0.392552 −0.196276 0.980549i \(-0.562885\pi\)
−0.196276 + 0.980549i \(0.562885\pi\)
\(410\) −13500.0 −1.62614
\(411\) −14784.0 −1.77431
\(412\) 264.000 0.0315688
\(413\) −9720.00 −1.15809
\(414\) 0 0
\(415\) 17604.0 2.08228
\(416\) 2528.00 0.297946
\(417\) −5341.00 −0.627218
\(418\) 432.000 0.0505498
\(419\) −5940.00 −0.692573 −0.346286 0.938129i \(-0.612557\pi\)
−0.346286 + 0.938129i \(0.612557\pi\)
\(420\) −15120.0 −1.75662
\(421\) 11562.0 1.33847 0.669237 0.743049i \(-0.266621\pi\)
0.669237 + 0.743049i \(0.266621\pi\)
\(422\) −11272.0 −1.30027
\(423\) −2838.00 −0.326213
\(424\) 2400.00 0.274892
\(425\) −20298.0 −2.31670
\(426\) 2058.00 0.234062
\(427\) −3600.00 −0.408000
\(428\) 5664.00 0.639672
\(429\) 3318.00 0.373414
\(430\) 3456.00 0.387589
\(431\) 3204.00 0.358077 0.179039 0.983842i \(-0.442701\pi\)
0.179039 + 0.983842i \(0.442701\pi\)
\(432\) −560.000 −0.0623681
\(433\) −14478.0 −1.60686 −0.803428 0.595402i \(-0.796993\pi\)
−0.803428 + 0.595402i \(0.796993\pi\)
\(434\) 2580.00 0.285355
\(435\) −4158.00 −0.458301
\(436\) 768.000 0.0843590
\(437\) 0 0
\(438\) 8918.00 0.972873
\(439\) −4579.00 −0.497822 −0.248911 0.968526i \(-0.580073\pi\)
−0.248911 + 0.968526i \(0.580073\pi\)
\(440\) −864.000 −0.0936127
\(441\) 12254.0 1.32318
\(442\) −16116.0 −1.73430
\(443\) −3057.00 −0.327861 −0.163931 0.986472i \(-0.552417\pi\)
−0.163931 + 0.986472i \(0.552417\pi\)
\(444\) 9912.00 1.05947
\(445\) −4536.00 −0.483207
\(446\) 6088.00 0.646357
\(447\) 15456.0 1.63544
\(448\) 1920.00 0.202481
\(449\) 2034.00 0.213787 0.106894 0.994270i \(-0.465910\pi\)
0.106894 + 0.994270i \(0.465910\pi\)
\(450\) 8756.00 0.917248
\(451\) 2250.00 0.234919
\(452\) 3528.00 0.367131
\(453\) −22351.0 −2.31819
\(454\) −7452.00 −0.770352
\(455\) −42660.0 −4.39545
\(456\) 2016.00 0.207035
\(457\) 3210.00 0.328572 0.164286 0.986413i \(-0.447468\pi\)
0.164286 + 0.986413i \(0.447468\pi\)
\(458\) −9024.00 −0.920663
\(459\) 3570.00 0.363036
\(460\) 0 0
\(461\) −8835.00 −0.892596 −0.446298 0.894884i \(-0.647258\pi\)
−0.446298 + 0.894884i \(0.647258\pi\)
\(462\) 2520.00 0.253768
\(463\) 1532.00 0.153776 0.0768878 0.997040i \(-0.475502\pi\)
0.0768878 + 0.997040i \(0.475502\pi\)
\(464\) 528.000 0.0528271
\(465\) −5418.00 −0.540331
\(466\) 6078.00 0.604202
\(467\) −10356.0 −1.02616 −0.513082 0.858340i \(-0.671496\pi\)
−0.513082 + 0.858340i \(0.671496\pi\)
\(468\) 6952.00 0.686659
\(469\) −17460.0 −1.71904
\(470\) 4644.00 0.455770
\(471\) 3612.00 0.353359
\(472\) −2592.00 −0.252768
\(473\) −576.000 −0.0559926
\(474\) 6552.00 0.634902
\(475\) 7164.00 0.692014
\(476\) −12240.0 −1.17861
\(477\) 6600.00 0.633529
\(478\) −10722.0 −1.02597
\(479\) −4614.00 −0.440123 −0.220062 0.975486i \(-0.570626\pi\)
−0.220062 + 0.975486i \(0.570626\pi\)
\(480\) −4032.00 −0.383406
\(481\) 27966.0 2.65102
\(482\) 4260.00 0.402568
\(483\) 0 0
\(484\) −5180.00 −0.486476
\(485\) −21060.0 −1.97172
\(486\) −9856.00 −0.919912
\(487\) −5731.00 −0.533257 −0.266629 0.963799i \(-0.585910\pi\)
−0.266629 + 0.963799i \(0.585910\pi\)
\(488\) −960.000 −0.0890516
\(489\) 2947.00 0.272532
\(490\) −20052.0 −1.84869
\(491\) 18129.0 1.66629 0.833147 0.553052i \(-0.186537\pi\)
0.833147 + 0.553052i \(0.186537\pi\)
\(492\) 10500.0 0.962147
\(493\) −3366.00 −0.307499
\(494\) 5688.00 0.518047
\(495\) −2376.00 −0.215744
\(496\) 688.000 0.0622825
\(497\) 4410.00 0.398019
\(498\) −13692.0 −1.23203
\(499\) 15307.0 1.37322 0.686609 0.727027i \(-0.259099\pi\)
0.686609 + 0.727027i \(0.259099\pi\)
\(500\) −5328.00 −0.476551
\(501\) −11088.0 −0.988773
\(502\) 2076.00 0.184575
\(503\) −2868.00 −0.254230 −0.127115 0.991888i \(-0.540572\pi\)
−0.127115 + 0.991888i \(0.540572\pi\)
\(504\) 5280.00 0.466647
\(505\) −19764.0 −1.74156
\(506\) 0 0
\(507\) 28308.0 2.47969
\(508\) −2204.00 −0.192493
\(509\) 9093.00 0.791827 0.395914 0.918288i \(-0.370428\pi\)
0.395914 + 0.918288i \(0.370428\pi\)
\(510\) 25704.0 2.23175
\(511\) 19110.0 1.65436
\(512\) 512.000 0.0441942
\(513\) −1260.00 −0.108441
\(514\) 1446.00 0.124086
\(515\) −1188.00 −0.101650
\(516\) −2688.00 −0.229327
\(517\) −774.000 −0.0658423
\(518\) 21240.0 1.80161
\(519\) 14490.0 1.22551
\(520\) −11376.0 −0.959367
\(521\) 14700.0 1.23612 0.618060 0.786131i \(-0.287919\pi\)
0.618060 + 0.786131i \(0.287919\pi\)
\(522\) 1452.00 0.121748
\(523\) −10626.0 −0.888418 −0.444209 0.895923i \(-0.646515\pi\)
−0.444209 + 0.895923i \(0.646515\pi\)
\(524\) −1284.00 −0.107045
\(525\) 41790.0 3.47403
\(526\) −6504.00 −0.539140
\(527\) −4386.00 −0.362537
\(528\) 672.000 0.0553883
\(529\) 0 0
\(530\) −10800.0 −0.885136
\(531\) −7128.00 −0.582540
\(532\) 4320.00 0.352060
\(533\) 29625.0 2.40751
\(534\) 3528.00 0.285902
\(535\) −25488.0 −2.05971
\(536\) −4656.00 −0.375203
\(537\) −4137.00 −0.332448
\(538\) −8430.00 −0.675545
\(539\) 3342.00 0.267069
\(540\) 2520.00 0.200821
\(541\) 1901.00 0.151073 0.0755364 0.997143i \(-0.475933\pi\)
0.0755364 + 0.997143i \(0.475933\pi\)
\(542\) −7456.00 −0.590890
\(543\) −20706.0 −1.63643
\(544\) −3264.00 −0.257248
\(545\) −3456.00 −0.271631
\(546\) 33180.0 2.60068
\(547\) −5483.00 −0.428585 −0.214293 0.976770i \(-0.568745\pi\)
−0.214293 + 0.976770i \(0.568745\pi\)
\(548\) −8448.00 −0.658541
\(549\) −2640.00 −0.205232
\(550\) 2388.00 0.185136
\(551\) 1188.00 0.0918521
\(552\) 0 0
\(553\) 14040.0 1.07964
\(554\) −17014.0 −1.30479
\(555\) −44604.0 −3.41141
\(556\) −3052.00 −0.232794
\(557\) 10308.0 0.784136 0.392068 0.919936i \(-0.371760\pi\)
0.392068 + 0.919936i \(0.371760\pi\)
\(558\) 1892.00 0.143539
\(559\) −7584.00 −0.573827
\(560\) −8640.00 −0.651976
\(561\) −4284.00 −0.322408
\(562\) −4020.00 −0.301732
\(563\) 18288.0 1.36900 0.684500 0.729013i \(-0.260020\pi\)
0.684500 + 0.729013i \(0.260020\pi\)
\(564\) −3612.00 −0.269668
\(565\) −15876.0 −1.18214
\(566\) 18876.0 1.40180
\(567\) −25170.0 −1.86427
\(568\) 1176.00 0.0868730
\(569\) 4962.00 0.365585 0.182792 0.983152i \(-0.441486\pi\)
0.182792 + 0.983152i \(0.441486\pi\)
\(570\) −9072.00 −0.666639
\(571\) −3126.00 −0.229105 −0.114553 0.993417i \(-0.536543\pi\)
−0.114553 + 0.993417i \(0.536543\pi\)
\(572\) 1896.00 0.138594
\(573\) −32550.0 −2.37312
\(574\) 22500.0 1.63612
\(575\) 0 0
\(576\) 1408.00 0.101852
\(577\) 5537.00 0.399494 0.199747 0.979847i \(-0.435988\pi\)
0.199747 + 0.979847i \(0.435988\pi\)
\(578\) 10982.0 0.790296
\(579\) −22981.0 −1.64950
\(580\) −2376.00 −0.170100
\(581\) −29340.0 −2.09506
\(582\) 16380.0 1.16662
\(583\) 1800.00 0.127870
\(584\) 5096.00 0.361086
\(585\) −31284.0 −2.21100
\(586\) −24.0000 −0.00169186
\(587\) −8709.00 −0.612366 −0.306183 0.951973i \(-0.599052\pi\)
−0.306183 + 0.951973i \(0.599052\pi\)
\(588\) 15596.0 1.09382
\(589\) 1548.00 0.108292
\(590\) 11664.0 0.813897
\(591\) −13713.0 −0.954446
\(592\) 5664.00 0.393225
\(593\) 9198.00 0.636959 0.318479 0.947930i \(-0.396828\pi\)
0.318479 + 0.947930i \(0.396828\pi\)
\(594\) −420.000 −0.0290115
\(595\) 55080.0 3.79506
\(596\) 8832.00 0.607001
\(597\) 31626.0 2.16812
\(598\) 0 0
\(599\) −20448.0 −1.39480 −0.697398 0.716684i \(-0.745659\pi\)
−0.697398 + 0.716684i \(0.745659\pi\)
\(600\) 11144.0 0.758253
\(601\) 14933.0 1.01353 0.506764 0.862085i \(-0.330842\pi\)
0.506764 + 0.862085i \(0.330842\pi\)
\(602\) −5760.00 −0.389967
\(603\) −12804.0 −0.864708
\(604\) −12772.0 −0.860406
\(605\) 23310.0 1.56642
\(606\) 15372.0 1.03044
\(607\) −23056.0 −1.54170 −0.770852 0.637014i \(-0.780169\pi\)
−0.770852 + 0.637014i \(0.780169\pi\)
\(608\) 1152.00 0.0768417
\(609\) 6930.00 0.461113
\(610\) 4320.00 0.286740
\(611\) −10191.0 −0.674769
\(612\) −8976.00 −0.592865
\(613\) 2442.00 0.160900 0.0804498 0.996759i \(-0.474364\pi\)
0.0804498 + 0.996759i \(0.474364\pi\)
\(614\) −20056.0 −1.31823
\(615\) −47250.0 −3.09806
\(616\) 1440.00 0.0941871
\(617\) 12180.0 0.794730 0.397365 0.917661i \(-0.369925\pi\)
0.397365 + 0.917661i \(0.369925\pi\)
\(618\) 924.000 0.0601436
\(619\) −12516.0 −0.812699 −0.406349 0.913718i \(-0.633198\pi\)
−0.406349 + 0.913718i \(0.633198\pi\)
\(620\) −3096.00 −0.200546
\(621\) 0 0
\(622\) 14502.0 0.934851
\(623\) 7560.00 0.486172
\(624\) 8848.00 0.567634
\(625\) −899.000 −0.0575360
\(626\) 8904.00 0.568491
\(627\) 1512.00 0.0963054
\(628\) 2064.00 0.131151
\(629\) −36108.0 −2.28890
\(630\) −23760.0 −1.50257
\(631\) −22308.0 −1.40740 −0.703698 0.710499i \(-0.748469\pi\)
−0.703698 + 0.710499i \(0.748469\pi\)
\(632\) 3744.00 0.235646
\(633\) −39452.0 −2.47721
\(634\) 6588.00 0.412686
\(635\) 9918.00 0.619817
\(636\) 8400.00 0.523713
\(637\) 44003.0 2.73699
\(638\) 396.000 0.0245733
\(639\) 3234.00 0.200211
\(640\) −2304.00 −0.142302
\(641\) 7572.00 0.466577 0.233289 0.972408i \(-0.425051\pi\)
0.233289 + 0.972408i \(0.425051\pi\)
\(642\) 19824.0 1.21868
\(643\) −16254.0 −0.996882 −0.498441 0.866924i \(-0.666094\pi\)
−0.498441 + 0.866924i \(0.666094\pi\)
\(644\) 0 0
\(645\) 12096.0 0.738418
\(646\) −7344.00 −0.447285
\(647\) 2895.00 0.175911 0.0879553 0.996124i \(-0.471967\pi\)
0.0879553 + 0.996124i \(0.471967\pi\)
\(648\) −6712.00 −0.406902
\(649\) −1944.00 −0.117579
\(650\) 31442.0 1.89732
\(651\) 9030.00 0.543646
\(652\) 1684.00 0.101151
\(653\) 22107.0 1.32483 0.662415 0.749137i \(-0.269532\pi\)
0.662415 + 0.749137i \(0.269532\pi\)
\(654\) 2688.00 0.160717
\(655\) 5778.00 0.344680
\(656\) 6000.00 0.357105
\(657\) 14014.0 0.832174
\(658\) −7740.00 −0.458566
\(659\) −9906.00 −0.585558 −0.292779 0.956180i \(-0.594580\pi\)
−0.292779 + 0.956180i \(0.594580\pi\)
\(660\) −3024.00 −0.178347
\(661\) 19992.0 1.17640 0.588199 0.808716i \(-0.299837\pi\)
0.588199 + 0.808716i \(0.299837\pi\)
\(662\) 6890.00 0.404513
\(663\) −56406.0 −3.30411
\(664\) −7824.00 −0.457274
\(665\) −19440.0 −1.13361
\(666\) 15576.0 0.906243
\(667\) 0 0
\(668\) −6336.00 −0.366987
\(669\) 21308.0 1.23141
\(670\) 20952.0 1.20813
\(671\) −720.000 −0.0414237
\(672\) 6720.00 0.385758
\(673\) 1771.00 0.101437 0.0507184 0.998713i \(-0.483849\pi\)
0.0507184 + 0.998713i \(0.483849\pi\)
\(674\) 7800.00 0.445764
\(675\) −6965.00 −0.397160
\(676\) 16176.0 0.920346
\(677\) 23112.0 1.31206 0.656031 0.754734i \(-0.272234\pi\)
0.656031 + 0.754734i \(0.272234\pi\)
\(678\) 12348.0 0.699443
\(679\) 35100.0 1.98382
\(680\) 14688.0 0.828322
\(681\) −26082.0 −1.46764
\(682\) 516.000 0.0289716
\(683\) −9219.00 −0.516479 −0.258240 0.966081i \(-0.583142\pi\)
−0.258240 + 0.966081i \(0.583142\pi\)
\(684\) 3168.00 0.177093
\(685\) 38016.0 2.12046
\(686\) 12840.0 0.714626
\(687\) −31584.0 −1.75401
\(688\) −1536.00 −0.0851155
\(689\) 23700.0 1.31045
\(690\) 0 0
\(691\) 8836.00 0.486450 0.243225 0.969970i \(-0.421795\pi\)
0.243225 + 0.969970i \(0.421795\pi\)
\(692\) 8280.00 0.454853
\(693\) 3960.00 0.217068
\(694\) 10512.0 0.574971
\(695\) 13734.0 0.749583
\(696\) 1848.00 0.100644
\(697\) −38250.0 −2.07865
\(698\) −1094.00 −0.0593245
\(699\) 21273.0 1.15110
\(700\) 23880.0 1.28940
\(701\) −25146.0 −1.35485 −0.677426 0.735591i \(-0.736905\pi\)
−0.677426 + 0.735591i \(0.736905\pi\)
\(702\) −5530.00 −0.297317
\(703\) 12744.0 0.683711
\(704\) 384.000 0.0205576
\(705\) 16254.0 0.868314
\(706\) −13182.0 −0.702707
\(707\) 32940.0 1.75224
\(708\) −9072.00 −0.481563
\(709\) −13446.0 −0.712236 −0.356118 0.934441i \(-0.615900\pi\)
−0.356118 + 0.934441i \(0.615900\pi\)
\(710\) −5292.00 −0.279726
\(711\) 10296.0 0.543080
\(712\) 2016.00 0.106113
\(713\) 0 0
\(714\) −42840.0 −2.24544
\(715\) −8532.00 −0.446264
\(716\) −2364.00 −0.123389
\(717\) −37527.0 −1.95463
\(718\) −24360.0 −1.26617
\(719\) 20736.0 1.07555 0.537776 0.843088i \(-0.319265\pi\)
0.537776 + 0.843088i \(0.319265\pi\)
\(720\) −6336.00 −0.327957
\(721\) 1980.00 0.102273
\(722\) −11126.0 −0.573500
\(723\) 14910.0 0.766956
\(724\) −11832.0 −0.607366
\(725\) 6567.00 0.336403
\(726\) −18130.0 −0.926815
\(727\) −3438.00 −0.175390 −0.0876949 0.996147i \(-0.527950\pi\)
−0.0876949 + 0.996147i \(0.527950\pi\)
\(728\) 18960.0 0.965253
\(729\) −11843.0 −0.601687
\(730\) −22932.0 −1.16267
\(731\) 9792.00 0.495445
\(732\) −3360.00 −0.169657
\(733\) −26934.0 −1.35720 −0.678602 0.734507i \(-0.737414\pi\)
−0.678602 + 0.734507i \(0.737414\pi\)
\(734\) 12228.0 0.614910
\(735\) −70182.0 −3.52204
\(736\) 0 0
\(737\) −3492.00 −0.174531
\(738\) 16500.0 0.822999
\(739\) 9461.00 0.470945 0.235473 0.971881i \(-0.424336\pi\)
0.235473 + 0.971881i \(0.424336\pi\)
\(740\) −25488.0 −1.26616
\(741\) 19908.0 0.986962
\(742\) 18000.0 0.890567
\(743\) 24006.0 1.18532 0.592661 0.805452i \(-0.298077\pi\)
0.592661 + 0.805452i \(0.298077\pi\)
\(744\) 2408.00 0.118658
\(745\) −39744.0 −1.95451
\(746\) −8460.00 −0.415205
\(747\) −21516.0 −1.05385
\(748\) −2448.00 −0.119663
\(749\) 42480.0 2.07234
\(750\) −18648.0 −0.907905
\(751\) 1284.00 0.0623886 0.0311943 0.999513i \(-0.490069\pi\)
0.0311943 + 0.999513i \(0.490069\pi\)
\(752\) −2064.00 −0.100088
\(753\) 7266.00 0.351644
\(754\) 5214.00 0.251834
\(755\) 57474.0 2.77045
\(756\) −4200.00 −0.202054
\(757\) 11850.0 0.568951 0.284475 0.958683i \(-0.408181\pi\)
0.284475 + 0.958683i \(0.408181\pi\)
\(758\) −13368.0 −0.640564
\(759\) 0 0
\(760\) −5184.00 −0.247426
\(761\) 24765.0 1.17967 0.589836 0.807523i \(-0.299192\pi\)
0.589836 + 0.807523i \(0.299192\pi\)
\(762\) −7714.00 −0.366731
\(763\) 5760.00 0.273298
\(764\) −18600.0 −0.880791
\(765\) 40392.0 1.90899
\(766\) −24672.0 −1.16375
\(767\) −25596.0 −1.20498
\(768\) 1792.00 0.0841969
\(769\) 3906.00 0.183165 0.0915826 0.995797i \(-0.470807\pi\)
0.0915826 + 0.995797i \(0.470807\pi\)
\(770\) −6480.00 −0.303277
\(771\) 5061.00 0.236404
\(772\) −13132.0 −0.612216
\(773\) 26820.0 1.24793 0.623964 0.781453i \(-0.285521\pi\)
0.623964 + 0.781453i \(0.285521\pi\)
\(774\) −4224.00 −0.196161
\(775\) 8557.00 0.396615
\(776\) 9360.00 0.432995
\(777\) 74340.0 3.43235
\(778\) −1032.00 −0.0475565
\(779\) 13500.0 0.620908
\(780\) −39816.0 −1.82775
\(781\) 882.000 0.0404103
\(782\) 0 0
\(783\) −1155.00 −0.0527156
\(784\) 8912.00 0.405977
\(785\) −9288.00 −0.422297
\(786\) −4494.00 −0.203939
\(787\) −25284.0 −1.14521 −0.572603 0.819833i \(-0.694066\pi\)
−0.572603 + 0.819833i \(0.694066\pi\)
\(788\) −7836.00 −0.354246
\(789\) −22764.0 −1.02715
\(790\) −16848.0 −0.758766
\(791\) 26460.0 1.18939
\(792\) 1056.00 0.0473779
\(793\) −9480.00 −0.424520
\(794\) −8906.00 −0.398063
\(795\) −37800.0 −1.68632
\(796\) 18072.0 0.804705
\(797\) 8124.00 0.361063 0.180531 0.983569i \(-0.442218\pi\)
0.180531 + 0.983569i \(0.442218\pi\)
\(798\) 15120.0 0.670730
\(799\) 13158.0 0.582599
\(800\) 6368.00 0.281428
\(801\) 5544.00 0.244554
\(802\) 7044.00 0.310140
\(803\) 3822.00 0.167964
\(804\) −16296.0 −0.714820
\(805\) 0 0
\(806\) 6794.00 0.296909
\(807\) −29505.0 −1.28702
\(808\) 8784.00 0.382451
\(809\) 37530.0 1.63101 0.815503 0.578752i \(-0.196460\pi\)
0.815503 + 0.578752i \(0.196460\pi\)
\(810\) 30204.0 1.31020
\(811\) 8395.00 0.363487 0.181744 0.983346i \(-0.441826\pi\)
0.181744 + 0.983346i \(0.441826\pi\)
\(812\) 3960.00 0.171144
\(813\) −26096.0 −1.12574
\(814\) 4248.00 0.182914
\(815\) −7578.00 −0.325700
\(816\) −11424.0 −0.490098
\(817\) −3456.00 −0.147993
\(818\) −6494.00 −0.277576
\(819\) 52140.0 2.22457
\(820\) −27000.0 −1.14985
\(821\) 40194.0 1.70862 0.854312 0.519761i \(-0.173979\pi\)
0.854312 + 0.519761i \(0.173979\pi\)
\(822\) −29568.0 −1.25463
\(823\) 19303.0 0.817570 0.408785 0.912631i \(-0.365953\pi\)
0.408785 + 0.912631i \(0.365953\pi\)
\(824\) 528.000 0.0223225
\(825\) 8358.00 0.352713
\(826\) −19440.0 −0.818891
\(827\) 6876.00 0.289120 0.144560 0.989496i \(-0.453823\pi\)
0.144560 + 0.989496i \(0.453823\pi\)
\(828\) 0 0
\(829\) −28618.0 −1.19897 −0.599484 0.800387i \(-0.704627\pi\)
−0.599484 + 0.800387i \(0.704627\pi\)
\(830\) 35208.0 1.47239
\(831\) −59549.0 −2.48584
\(832\) 5056.00 0.210679
\(833\) −56814.0 −2.36313
\(834\) −10682.0 −0.443510
\(835\) 28512.0 1.18167
\(836\) 864.000 0.0357441
\(837\) −1505.00 −0.0621510
\(838\) −11880.0 −0.489723
\(839\) 11802.0 0.485638 0.242819 0.970072i \(-0.421928\pi\)
0.242819 + 0.970072i \(0.421928\pi\)
\(840\) −30240.0 −1.24212
\(841\) −23300.0 −0.955349
\(842\) 23124.0 0.946444
\(843\) −14070.0 −0.574848
\(844\) −22544.0 −0.919427
\(845\) −72792.0 −2.96346
\(846\) −5676.00 −0.230668
\(847\) −38850.0 −1.57604
\(848\) 4800.00 0.194378
\(849\) 66066.0 2.67065
\(850\) −40596.0 −1.63815
\(851\) 0 0
\(852\) 4116.00 0.165507
\(853\) −20374.0 −0.817811 −0.408905 0.912577i \(-0.634089\pi\)
−0.408905 + 0.912577i \(0.634089\pi\)
\(854\) −7200.00 −0.288500
\(855\) −14256.0 −0.570228
\(856\) 11328.0 0.452317
\(857\) 25527.0 1.01749 0.508743 0.860918i \(-0.330110\pi\)
0.508743 + 0.860918i \(0.330110\pi\)
\(858\) 6636.00 0.264043
\(859\) 41735.0 1.65772 0.828859 0.559458i \(-0.188990\pi\)
0.828859 + 0.559458i \(0.188990\pi\)
\(860\) 6912.00 0.274067
\(861\) 78750.0 3.11706
\(862\) 6408.00 0.253199
\(863\) 3513.00 0.138568 0.0692838 0.997597i \(-0.477929\pi\)
0.0692838 + 0.997597i \(0.477929\pi\)
\(864\) −1120.00 −0.0441009
\(865\) −37260.0 −1.46460
\(866\) −28956.0 −1.13622
\(867\) 38437.0 1.50564
\(868\) 5160.00 0.201776
\(869\) 2808.00 0.109614
\(870\) −8316.00 −0.324068
\(871\) −45978.0 −1.78864
\(872\) 1536.00 0.0596508
\(873\) 25740.0 0.997900
\(874\) 0 0
\(875\) −39960.0 −1.54388
\(876\) 17836.0 0.687925
\(877\) 3526.00 0.135763 0.0678817 0.997693i \(-0.478376\pi\)
0.0678817 + 0.997693i \(0.478376\pi\)
\(878\) −9158.00 −0.352013
\(879\) −84.0000 −0.00322326
\(880\) −1728.00 −0.0661942
\(881\) −7818.00 −0.298973 −0.149486 0.988764i \(-0.547762\pi\)
−0.149486 + 0.988764i \(0.547762\pi\)
\(882\) 24508.0 0.935632
\(883\) 4804.00 0.183089 0.0915444 0.995801i \(-0.470820\pi\)
0.0915444 + 0.995801i \(0.470820\pi\)
\(884\) −32232.0 −1.22633
\(885\) 40824.0 1.55060
\(886\) −6114.00 −0.231833
\(887\) −38613.0 −1.46167 −0.730833 0.682556i \(-0.760868\pi\)
−0.730833 + 0.682556i \(0.760868\pi\)
\(888\) 19824.0 0.749155
\(889\) −16530.0 −0.623620
\(890\) −9072.00 −0.341679
\(891\) −5034.00 −0.189276
\(892\) 12176.0 0.457043
\(893\) −4644.00 −0.174026
\(894\) 30912.0 1.15643
\(895\) 10638.0 0.397306
\(896\) 3840.00 0.143176
\(897\) 0 0
\(898\) 4068.00 0.151170
\(899\) 1419.00 0.0526433
\(900\) 17512.0 0.648593
\(901\) −30600.0 −1.13145
\(902\) 4500.00 0.166113
\(903\) −20160.0 −0.742949
\(904\) 7056.00 0.259601
\(905\) 53244.0 1.95568
\(906\) −44702.0 −1.63921
\(907\) −47160.0 −1.72649 −0.863243 0.504789i \(-0.831570\pi\)
−0.863243 + 0.504789i \(0.831570\pi\)
\(908\) −14904.0 −0.544721
\(909\) 24156.0 0.881412
\(910\) −85320.0 −3.10806
\(911\) −20544.0 −0.747149 −0.373575 0.927600i \(-0.621868\pi\)
−0.373575 + 0.927600i \(0.621868\pi\)
\(912\) 4032.00 0.146396
\(913\) −5868.00 −0.212708
\(914\) 6420.00 0.232336
\(915\) 15120.0 0.546286
\(916\) −18048.0 −0.651007
\(917\) −9630.00 −0.346795
\(918\) 7140.00 0.256705
\(919\) 42606.0 1.52932 0.764658 0.644436i \(-0.222908\pi\)
0.764658 + 0.644436i \(0.222908\pi\)
\(920\) 0 0
\(921\) −70196.0 −2.51144
\(922\) −17670.0 −0.631161
\(923\) 11613.0 0.414135
\(924\) 5040.00 0.179441
\(925\) 70446.0 2.50405
\(926\) 3064.00 0.108736
\(927\) 1452.00 0.0514455
\(928\) 1056.00 0.0373544
\(929\) 23559.0 0.832019 0.416010 0.909360i \(-0.363428\pi\)
0.416010 + 0.909360i \(0.363428\pi\)
\(930\) −10836.0 −0.382071
\(931\) 20052.0 0.705884
\(932\) 12156.0 0.427235
\(933\) 50757.0 1.78104
\(934\) −20712.0 −0.725607
\(935\) 11016.0 0.385307
\(936\) 13904.0 0.485541
\(937\) 44382.0 1.54738 0.773691 0.633563i \(-0.218408\pi\)
0.773691 + 0.633563i \(0.218408\pi\)
\(938\) −34920.0 −1.21554
\(939\) 31164.0 1.08307
\(940\) 9288.00 0.322278
\(941\) 25098.0 0.869470 0.434735 0.900558i \(-0.356842\pi\)
0.434735 + 0.900558i \(0.356842\pi\)
\(942\) 7224.00 0.249863
\(943\) 0 0
\(944\) −5184.00 −0.178734
\(945\) 18900.0 0.650600
\(946\) −1152.00 −0.0395928
\(947\) 30507.0 1.04683 0.523413 0.852079i \(-0.324658\pi\)
0.523413 + 0.852079i \(0.324658\pi\)
\(948\) 13104.0 0.448943
\(949\) 50323.0 1.72134
\(950\) 14328.0 0.489328
\(951\) 23058.0 0.786232
\(952\) −24480.0 −0.833405
\(953\) −45492.0 −1.54631 −0.773153 0.634219i \(-0.781322\pi\)
−0.773153 + 0.634219i \(0.781322\pi\)
\(954\) 13200.0 0.447973
\(955\) 83700.0 2.83609
\(956\) −21444.0 −0.725469
\(957\) 1386.00 0.0468161
\(958\) −9228.00 −0.311214
\(959\) −63360.0 −2.13347
\(960\) −8064.00 −0.271109
\(961\) −27942.0 −0.937934
\(962\) 55932.0 1.87455
\(963\) 31152.0 1.04243
\(964\) 8520.00 0.284658
\(965\) 59094.0 1.97130
\(966\) 0 0
\(967\) 42181.0 1.40274 0.701370 0.712797i \(-0.252572\pi\)
0.701370 + 0.712797i \(0.252572\pi\)
\(968\) −10360.0 −0.343991
\(969\) −25704.0 −0.852148
\(970\) −42120.0 −1.39422
\(971\) −55128.0 −1.82198 −0.910990 0.412429i \(-0.864680\pi\)
−0.910990 + 0.412429i \(0.864680\pi\)
\(972\) −19712.0 −0.650476
\(973\) −22890.0 −0.754183
\(974\) −11462.0 −0.377070
\(975\) 110047. 3.61469
\(976\) −1920.00 −0.0629690
\(977\) −24294.0 −0.795531 −0.397766 0.917487i \(-0.630214\pi\)
−0.397766 + 0.917487i \(0.630214\pi\)
\(978\) 5894.00 0.192709
\(979\) 1512.00 0.0493603
\(980\) −40104.0 −1.30722
\(981\) 4224.00 0.137474
\(982\) 36258.0 1.17825
\(983\) 34320.0 1.11357 0.556784 0.830657i \(-0.312035\pi\)
0.556784 + 0.830657i \(0.312035\pi\)
\(984\) 21000.0 0.680341
\(985\) 35262.0 1.14065
\(986\) −6732.00 −0.217435
\(987\) −27090.0 −0.873642
\(988\) 11376.0 0.366315
\(989\) 0 0
\(990\) −4752.00 −0.152554
\(991\) −31232.0 −1.00113 −0.500564 0.865700i \(-0.666874\pi\)
−0.500564 + 0.865700i \(0.666874\pi\)
\(992\) 1376.00 0.0440404
\(993\) 24115.0 0.770661
\(994\) 8820.00 0.281442
\(995\) −81324.0 −2.59110
\(996\) −27384.0 −0.871180
\(997\) 17606.0 0.559265 0.279633 0.960107i \(-0.409787\pi\)
0.279633 + 0.960107i \(0.409787\pi\)
\(998\) 30614.0 0.971011
\(999\) −12390.0 −0.392395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.4.a.c.1.1 1
23.22 odd 2 1058.4.a.d.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.4.a.c.1.1 1 1.1 even 1 trivial
1058.4.a.d.1.1 yes 1 23.22 odd 2