Properties

Label 1058.2.a.n.1.6
Level $1058$
Weight $2$
Character 1058.1
Self dual yes
Analytic conductor $8.448$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1058,2,Mod(1,1058)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1058.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1058, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,4,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.44817253385\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.8.819879542784.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 22x^{6} + 80x^{5} + 151x^{4} - 440x^{3} - 298x^{2} + 532x - 146 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(4.30747\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +2.37562 q^{3} +1.00000 q^{4} +4.07171 q^{5} +2.37562 q^{6} -1.94542 q^{7} +1.00000 q^{8} +2.64357 q^{9} +4.07171 q^{10} -2.44949 q^{11} +2.37562 q^{12} +1.35643 q^{13} -1.94542 q^{14} +9.67283 q^{15} +1.00000 q^{16} -5.09341 q^{17} +2.64357 q^{18} -3.55407 q^{19} +4.07171 q^{20} -4.62158 q^{21} -2.44949 q^{22} +2.37562 q^{24} +11.5788 q^{25} +1.35643 q^{26} -0.846745 q^{27} -1.94542 q^{28} -4.40183 q^{29} +9.67283 q^{30} +3.46410 q^{31} +1.00000 q^{32} -5.81906 q^{33} -5.09341 q^{34} -7.92118 q^{35} +2.64357 q^{36} +1.94542 q^{37} -3.55407 q^{38} +3.22236 q^{39} +4.07171 q^{40} -5.57177 q^{41} -4.62158 q^{42} -1.63579 q^{43} -2.44949 q^{44} +10.7638 q^{45} -2.29416 q^{47} +2.37562 q^{48} -3.21534 q^{49} +11.5788 q^{50} -12.1000 q^{51} +1.35643 q^{52} +8.84555 q^{53} -0.846745 q^{54} -9.97360 q^{55} -1.94542 q^{56} -8.44312 q^{57} -4.40183 q^{58} +14.3300 q^{59} +9.67283 q^{60} +5.96285 q^{61} +3.46410 q^{62} -5.14285 q^{63} +1.00000 q^{64} +5.52299 q^{65} -5.81906 q^{66} -8.83199 q^{67} -5.09341 q^{68} -7.92118 q^{70} -13.9877 q^{71} +2.64357 q^{72} -4.92118 q^{73} +1.94542 q^{74} +27.5068 q^{75} -3.55407 q^{76} +4.76529 q^{77} +3.22236 q^{78} -7.06114 q^{79} +4.07171 q^{80} -9.94225 q^{81} -5.57177 q^{82} -4.96828 q^{83} -4.62158 q^{84} -20.7389 q^{85} -1.63579 q^{86} -10.4571 q^{87} -2.44949 q^{88} +16.0689 q^{89} +10.7638 q^{90} -2.63883 q^{91} +8.22939 q^{93} -2.29416 q^{94} -14.4711 q^{95} +2.37562 q^{96} +8.59175 q^{97} -3.21534 q^{98} -6.47539 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 4 q^{3} + 8 q^{4} + 4 q^{6} + 8 q^{8} + 20 q^{9} + 4 q^{12} + 12 q^{13} + 8 q^{16} + 20 q^{18} + 4 q^{24} + 32 q^{25} + 12 q^{26} + 40 q^{27} + 8 q^{32} - 12 q^{35} + 20 q^{36} - 36 q^{39}+ \cdots + 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 2.37562 1.37156 0.685782 0.727807i \(-0.259460\pi\)
0.685782 + 0.727807i \(0.259460\pi\)
\(4\) 1.00000 0.500000
\(5\) 4.07171 1.82092 0.910461 0.413594i \(-0.135727\pi\)
0.910461 + 0.413594i \(0.135727\pi\)
\(6\) 2.37562 0.969843
\(7\) −1.94542 −0.735300 −0.367650 0.929964i \(-0.619837\pi\)
−0.367650 + 0.929964i \(0.619837\pi\)
\(8\) 1.00000 0.353553
\(9\) 2.64357 0.881190
\(10\) 4.07171 1.28759
\(11\) −2.44949 −0.738549 −0.369274 0.929320i \(-0.620394\pi\)
−0.369274 + 0.929320i \(0.620394\pi\)
\(12\) 2.37562 0.685782
\(13\) 1.35643 0.376206 0.188103 0.982149i \(-0.439766\pi\)
0.188103 + 0.982149i \(0.439766\pi\)
\(14\) −1.94542 −0.519935
\(15\) 9.67283 2.49751
\(16\) 1.00000 0.250000
\(17\) −5.09341 −1.23533 −0.617667 0.786440i \(-0.711922\pi\)
−0.617667 + 0.786440i \(0.711922\pi\)
\(18\) 2.64357 0.623095
\(19\) −3.55407 −0.815359 −0.407680 0.913125i \(-0.633662\pi\)
−0.407680 + 0.913125i \(0.633662\pi\)
\(20\) 4.07171 0.910461
\(21\) −4.62158 −1.00851
\(22\) −2.44949 −0.522233
\(23\) 0 0
\(24\) 2.37562 0.484921
\(25\) 11.5788 2.31576
\(26\) 1.35643 0.266018
\(27\) −0.846745 −0.162956
\(28\) −1.94542 −0.367650
\(29\) −4.40183 −0.817400 −0.408700 0.912669i \(-0.634018\pi\)
−0.408700 + 0.912669i \(0.634018\pi\)
\(30\) 9.67283 1.76601
\(31\) 3.46410 0.622171 0.311086 0.950382i \(-0.399307\pi\)
0.311086 + 0.950382i \(0.399307\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.81906 −1.01297
\(34\) −5.09341 −0.873513
\(35\) −7.92118 −1.33892
\(36\) 2.64357 0.440595
\(37\) 1.94542 0.319825 0.159913 0.987131i \(-0.448879\pi\)
0.159913 + 0.987131i \(0.448879\pi\)
\(38\) −3.55407 −0.576546
\(39\) 3.22236 0.515991
\(40\) 4.07171 0.643793
\(41\) −5.57177 −0.870165 −0.435082 0.900391i \(-0.643281\pi\)
−0.435082 + 0.900391i \(0.643281\pi\)
\(42\) −4.62158 −0.713125
\(43\) −1.63579 −0.249455 −0.124727 0.992191i \(-0.539806\pi\)
−0.124727 + 0.992191i \(0.539806\pi\)
\(44\) −2.44949 −0.369274
\(45\) 10.7638 1.60458
\(46\) 0 0
\(47\) −2.29416 −0.334638 −0.167319 0.985903i \(-0.553511\pi\)
−0.167319 + 0.985903i \(0.553511\pi\)
\(48\) 2.37562 0.342891
\(49\) −3.21534 −0.459334
\(50\) 11.5788 1.63749
\(51\) −12.1000 −1.69434
\(52\) 1.35643 0.188103
\(53\) 8.84555 1.21503 0.607515 0.794308i \(-0.292166\pi\)
0.607515 + 0.794308i \(0.292166\pi\)
\(54\) −0.846745 −0.115227
\(55\) −9.97360 −1.34484
\(56\) −1.94542 −0.259968
\(57\) −8.44312 −1.11832
\(58\) −4.40183 −0.577989
\(59\) 14.3300 1.86561 0.932806 0.360379i \(-0.117353\pi\)
0.932806 + 0.360379i \(0.117353\pi\)
\(60\) 9.67283 1.24876
\(61\) 5.96285 0.763465 0.381733 0.924273i \(-0.375328\pi\)
0.381733 + 0.924273i \(0.375328\pi\)
\(62\) 3.46410 0.439941
\(63\) −5.14285 −0.647938
\(64\) 1.00000 0.125000
\(65\) 5.52299 0.685043
\(66\) −5.81906 −0.716276
\(67\) −8.83199 −1.07900 −0.539499 0.841986i \(-0.681386\pi\)
−0.539499 + 0.841986i \(0.681386\pi\)
\(68\) −5.09341 −0.617667
\(69\) 0 0
\(70\) −7.92118 −0.946762
\(71\) −13.9877 −1.66003 −0.830014 0.557742i \(-0.811668\pi\)
−0.830014 + 0.557742i \(0.811668\pi\)
\(72\) 2.64357 0.311548
\(73\) −4.92118 −0.575981 −0.287990 0.957633i \(-0.592987\pi\)
−0.287990 + 0.957633i \(0.592987\pi\)
\(74\) 1.94542 0.226150
\(75\) 27.5068 3.17621
\(76\) −3.55407 −0.407680
\(77\) 4.76529 0.543055
\(78\) 3.22236 0.364861
\(79\) −7.06114 −0.794440 −0.397220 0.917723i \(-0.630025\pi\)
−0.397220 + 0.917723i \(0.630025\pi\)
\(80\) 4.07171 0.455231
\(81\) −9.94225 −1.10469
\(82\) −5.57177 −0.615299
\(83\) −4.96828 −0.545340 −0.272670 0.962108i \(-0.587907\pi\)
−0.272670 + 0.962108i \(0.587907\pi\)
\(84\) −4.62158 −0.504256
\(85\) −20.7389 −2.24945
\(86\) −1.63579 −0.176391
\(87\) −10.4571 −1.12112
\(88\) −2.44949 −0.261116
\(89\) 16.0689 1.70330 0.851650 0.524112i \(-0.175603\pi\)
0.851650 + 0.524112i \(0.175603\pi\)
\(90\) 10.7638 1.13461
\(91\) −2.63883 −0.276624
\(92\) 0 0
\(93\) 8.22939 0.853348
\(94\) −2.29416 −0.236625
\(95\) −14.4711 −1.48471
\(96\) 2.37562 0.242461
\(97\) 8.59175 0.872360 0.436180 0.899859i \(-0.356331\pi\)
0.436180 + 0.899859i \(0.356331\pi\)
\(98\) −3.21534 −0.324798
\(99\) −6.47539 −0.650802
\(100\) 11.5788 1.15788
\(101\) 15.5858 1.55085 0.775423 0.631442i \(-0.217536\pi\)
0.775423 + 0.631442i \(0.217536\pi\)
\(102\) −12.1000 −1.19808
\(103\) 9.82510 0.968095 0.484048 0.875042i \(-0.339166\pi\)
0.484048 + 0.875042i \(0.339166\pi\)
\(104\) 1.35643 0.133009
\(105\) −18.8177 −1.83642
\(106\) 8.84555 0.859156
\(107\) 2.10762 0.203751 0.101876 0.994797i \(-0.467516\pi\)
0.101876 + 0.994797i \(0.467516\pi\)
\(108\) −0.846745 −0.0814781
\(109\) 11.1328 1.06633 0.533166 0.846010i \(-0.321002\pi\)
0.533166 + 0.846010i \(0.321002\pi\)
\(110\) −9.97360 −0.950946
\(111\) 4.62158 0.438661
\(112\) −1.94542 −0.183825
\(113\) 11.6146 1.09261 0.546305 0.837586i \(-0.316034\pi\)
0.546305 + 0.837586i \(0.316034\pi\)
\(114\) −8.44312 −0.790770
\(115\) 0 0
\(116\) −4.40183 −0.408700
\(117\) 3.58582 0.331509
\(118\) 14.3300 1.31919
\(119\) 9.90883 0.908341
\(120\) 9.67283 0.883004
\(121\) −5.00000 −0.454545
\(122\) 5.96285 0.539851
\(123\) −13.2364 −1.19349
\(124\) 3.46410 0.311086
\(125\) 26.7869 2.39590
\(126\) −5.14285 −0.458162
\(127\) 8.22939 0.730240 0.365120 0.930960i \(-0.381028\pi\)
0.365120 + 0.930960i \(0.381028\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.88600 −0.342144
\(130\) 5.52299 0.484398
\(131\) −8.81351 −0.770040 −0.385020 0.922908i \(-0.625805\pi\)
−0.385020 + 0.922908i \(0.625805\pi\)
\(132\) −5.81906 −0.506484
\(133\) 6.91416 0.599533
\(134\) −8.83199 −0.762967
\(135\) −3.44770 −0.296730
\(136\) −5.09341 −0.436757
\(137\) 3.87727 0.331258 0.165629 0.986188i \(-0.447035\pi\)
0.165629 + 0.986188i \(0.447035\pi\)
\(138\) 0 0
\(139\) −0.533395 −0.0452420 −0.0226210 0.999744i \(-0.507201\pi\)
−0.0226210 + 0.999744i \(0.507201\pi\)
\(140\) −7.92118 −0.669462
\(141\) −5.45005 −0.458977
\(142\) −13.9877 −1.17382
\(143\) −3.32256 −0.277847
\(144\) 2.64357 0.220297
\(145\) −17.9230 −1.48842
\(146\) −4.92118 −0.407280
\(147\) −7.63843 −0.630007
\(148\) 1.94542 0.159913
\(149\) −2.79256 −0.228775 −0.114388 0.993436i \(-0.536491\pi\)
−0.114388 + 0.993436i \(0.536491\pi\)
\(150\) 27.5068 2.24592
\(151\) 22.2030 1.80685 0.903427 0.428742i \(-0.141043\pi\)
0.903427 + 0.428742i \(0.141043\pi\)
\(152\) −3.55407 −0.288273
\(153\) −13.4648 −1.08856
\(154\) 4.76529 0.383998
\(155\) 14.1048 1.13293
\(156\) 3.22236 0.257996
\(157\) −12.4925 −0.997012 −0.498506 0.866886i \(-0.666118\pi\)
−0.498506 + 0.866886i \(0.666118\pi\)
\(158\) −7.06114 −0.561754
\(159\) 21.0137 1.66649
\(160\) 4.07171 0.321897
\(161\) 0 0
\(162\) −9.94225 −0.781137
\(163\) 6.33254 0.496003 0.248001 0.968760i \(-0.420226\pi\)
0.248001 + 0.968760i \(0.420226\pi\)
\(164\) −5.57177 −0.435082
\(165\) −23.6935 −1.84454
\(166\) −4.96828 −0.385613
\(167\) −20.6741 −1.59981 −0.799906 0.600126i \(-0.795117\pi\)
−0.799906 + 0.600126i \(0.795117\pi\)
\(168\) −4.62158 −0.356562
\(169\) −11.1601 −0.858469
\(170\) −20.7389 −1.59060
\(171\) −9.39543 −0.718486
\(172\) −1.63579 −0.124727
\(173\) 1.59817 0.121506 0.0607532 0.998153i \(-0.480650\pi\)
0.0607532 + 0.998153i \(0.480650\pi\)
\(174\) −10.4571 −0.792749
\(175\) −22.5256 −1.70278
\(176\) −2.44949 −0.184637
\(177\) 34.0427 2.55881
\(178\) 16.0689 1.20441
\(179\) 8.87107 0.663055 0.331528 0.943446i \(-0.392436\pi\)
0.331528 + 0.943446i \(0.392436\pi\)
\(180\) 10.7638 0.802289
\(181\) 4.26624 0.317107 0.158553 0.987350i \(-0.449317\pi\)
0.158553 + 0.987350i \(0.449317\pi\)
\(182\) −2.63883 −0.195603
\(183\) 14.1655 1.04714
\(184\) 0 0
\(185\) 7.92118 0.582377
\(186\) 8.22939 0.603408
\(187\) 12.4763 0.912355
\(188\) −2.29416 −0.167319
\(189\) 1.64727 0.119822
\(190\) −14.4711 −1.04985
\(191\) 3.58630 0.259496 0.129748 0.991547i \(-0.458583\pi\)
0.129748 + 0.991547i \(0.458583\pi\)
\(192\) 2.37562 0.171446
\(193\) 15.2870 1.10038 0.550190 0.835040i \(-0.314555\pi\)
0.550190 + 0.835040i \(0.314555\pi\)
\(194\) 8.59175 0.616852
\(195\) 13.1205 0.939580
\(196\) −3.21534 −0.229667
\(197\) −7.79946 −0.555689 −0.277844 0.960626i \(-0.589620\pi\)
−0.277844 + 0.960626i \(0.589620\pi\)
\(198\) −6.47539 −0.460186
\(199\) −24.1394 −1.71119 −0.855597 0.517642i \(-0.826810\pi\)
−0.855597 + 0.517642i \(0.826810\pi\)
\(200\) 11.5788 0.818744
\(201\) −20.9814 −1.47992
\(202\) 15.5858 1.09661
\(203\) 8.56341 0.601034
\(204\) −12.1000 −0.847171
\(205\) −22.6866 −1.58450
\(206\) 9.82510 0.684547
\(207\) 0 0
\(208\) 1.35643 0.0940516
\(209\) 8.70565 0.602183
\(210\) −18.8177 −1.29855
\(211\) −0.100647 −0.00692882 −0.00346441 0.999994i \(-0.501103\pi\)
−0.00346441 + 0.999994i \(0.501103\pi\)
\(212\) 8.84555 0.607515
\(213\) −33.2293 −2.27684
\(214\) 2.10762 0.144074
\(215\) −6.66044 −0.454238
\(216\) −0.846745 −0.0576137
\(217\) −6.73913 −0.457482
\(218\) 11.1328 0.754011
\(219\) −11.6909 −0.789995
\(220\) −9.97360 −0.672420
\(221\) −6.90887 −0.464741
\(222\) 4.62158 0.310180
\(223\) 6.11720 0.409638 0.204819 0.978800i \(-0.434339\pi\)
0.204819 + 0.978800i \(0.434339\pi\)
\(224\) −1.94542 −0.129984
\(225\) 30.6093 2.04062
\(226\) 11.6146 0.772592
\(227\) −24.5033 −1.62634 −0.813170 0.582027i \(-0.802260\pi\)
−0.813170 + 0.582027i \(0.802260\pi\)
\(228\) −8.44312 −0.559159
\(229\) −13.9724 −0.923322 −0.461661 0.887056i \(-0.652746\pi\)
−0.461661 + 0.887056i \(0.652746\pi\)
\(230\) 0 0
\(231\) 11.3205 0.744835
\(232\) −4.40183 −0.288994
\(233\) 4.85641 0.318154 0.159077 0.987266i \(-0.449148\pi\)
0.159077 + 0.987266i \(0.449148\pi\)
\(234\) 3.58582 0.234412
\(235\) −9.34115 −0.609350
\(236\) 14.3300 0.932806
\(237\) −16.7746 −1.08963
\(238\) 9.90883 0.642294
\(239\) 10.6601 0.689543 0.344771 0.938687i \(-0.387956\pi\)
0.344771 + 0.938687i \(0.387956\pi\)
\(240\) 9.67283 0.624378
\(241\) 13.3806 0.861922 0.430961 0.902371i \(-0.358175\pi\)
0.430961 + 0.902371i \(0.358175\pi\)
\(242\) −5.00000 −0.321412
\(243\) −21.0788 −1.35220
\(244\) 5.96285 0.381733
\(245\) −13.0919 −0.836412
\(246\) −13.2364 −0.843923
\(247\) −4.82085 −0.306743
\(248\) 3.46410 0.219971
\(249\) −11.8027 −0.747969
\(250\) 26.7869 1.69415
\(251\) 3.44260 0.217295 0.108647 0.994080i \(-0.465348\pi\)
0.108647 + 0.994080i \(0.465348\pi\)
\(252\) −5.14285 −0.323969
\(253\) 0 0
\(254\) 8.22939 0.516358
\(255\) −49.2677 −3.08526
\(256\) 1.00000 0.0625000
\(257\) −8.79150 −0.548399 −0.274199 0.961673i \(-0.588413\pi\)
−0.274199 + 0.961673i \(0.588413\pi\)
\(258\) −3.88600 −0.241932
\(259\) −3.78466 −0.235167
\(260\) 5.52299 0.342521
\(261\) −11.6365 −0.720284
\(262\) −8.81351 −0.544500
\(263\) 17.0957 1.05417 0.527083 0.849814i \(-0.323286\pi\)
0.527083 + 0.849814i \(0.323286\pi\)
\(264\) −5.81906 −0.358138
\(265\) 36.0165 2.21248
\(266\) 6.91416 0.423934
\(267\) 38.1736 2.33618
\(268\) −8.83199 −0.539499
\(269\) −4.28181 −0.261067 −0.130533 0.991444i \(-0.541669\pi\)
−0.130533 + 0.991444i \(0.541669\pi\)
\(270\) −3.44770 −0.209820
\(271\) −13.6337 −0.828190 −0.414095 0.910234i \(-0.635902\pi\)
−0.414095 + 0.910234i \(0.635902\pi\)
\(272\) −5.09341 −0.308834
\(273\) −6.26885 −0.379408
\(274\) 3.87727 0.234235
\(275\) −28.3621 −1.71030
\(276\) 0 0
\(277\) −30.3395 −1.82292 −0.911462 0.411384i \(-0.865046\pi\)
−0.911462 + 0.411384i \(0.865046\pi\)
\(278\) −0.533395 −0.0319909
\(279\) 9.15759 0.548251
\(280\) −7.92118 −0.473381
\(281\) −9.25793 −0.552282 −0.276141 0.961117i \(-0.589056\pi\)
−0.276141 + 0.961117i \(0.589056\pi\)
\(282\) −5.45005 −0.324546
\(283\) −14.7391 −0.876149 −0.438074 0.898939i \(-0.644339\pi\)
−0.438074 + 0.898939i \(0.644339\pi\)
\(284\) −13.9877 −0.830014
\(285\) −34.3779 −2.03637
\(286\) −3.32256 −0.196467
\(287\) 10.8394 0.639832
\(288\) 2.64357 0.155774
\(289\) 8.94287 0.526051
\(290\) −17.9230 −1.05247
\(291\) 20.4107 1.19650
\(292\) −4.92118 −0.287990
\(293\) −15.7879 −0.922342 −0.461171 0.887311i \(-0.652571\pi\)
−0.461171 + 0.887311i \(0.652571\pi\)
\(294\) −7.63843 −0.445482
\(295\) 58.3477 3.39713
\(296\) 1.94542 0.113075
\(297\) 2.07409 0.120351
\(298\) −2.79256 −0.161769
\(299\) 0 0
\(300\) 27.5068 1.58811
\(301\) 3.18229 0.183424
\(302\) 22.2030 1.27764
\(303\) 37.0260 2.12709
\(304\) −3.55407 −0.203840
\(305\) 24.2790 1.39021
\(306\) −13.4648 −0.769731
\(307\) 32.9589 1.88107 0.940533 0.339703i \(-0.110326\pi\)
0.940533 + 0.339703i \(0.110326\pi\)
\(308\) 4.76529 0.271527
\(309\) 23.3407 1.32781
\(310\) 14.1048 0.801099
\(311\) −19.9212 −1.12963 −0.564813 0.825219i \(-0.691052\pi\)
−0.564813 + 0.825219i \(0.691052\pi\)
\(312\) 3.22236 0.182430
\(313\) 9.67273 0.546735 0.273368 0.961910i \(-0.411862\pi\)
0.273368 + 0.961910i \(0.411862\pi\)
\(314\) −12.4925 −0.704994
\(315\) −20.9402 −1.17985
\(316\) −7.06114 −0.397220
\(317\) −18.3490 −1.03058 −0.515292 0.857014i \(-0.672317\pi\)
−0.515292 + 0.857014i \(0.672317\pi\)
\(318\) 21.0137 1.17839
\(319\) 10.7822 0.603690
\(320\) 4.07171 0.227615
\(321\) 5.00691 0.279458
\(322\) 0 0
\(323\) 18.1023 1.00724
\(324\) −9.94225 −0.552347
\(325\) 15.7058 0.871203
\(326\) 6.33254 0.350727
\(327\) 26.4474 1.46254
\(328\) −5.57177 −0.307650
\(329\) 4.46311 0.246059
\(330\) −23.6935 −1.30428
\(331\) −25.5384 −1.40371 −0.701857 0.712317i \(-0.747646\pi\)
−0.701857 + 0.712317i \(0.747646\pi\)
\(332\) −4.96828 −0.272670
\(333\) 5.14285 0.281827
\(334\) −20.6741 −1.13124
\(335\) −35.9613 −1.96477
\(336\) −4.62158 −0.252128
\(337\) 32.6280 1.77736 0.888681 0.458526i \(-0.151623\pi\)
0.888681 + 0.458526i \(0.151623\pi\)
\(338\) −11.1601 −0.607029
\(339\) 27.5919 1.49859
\(340\) −20.7389 −1.12472
\(341\) −8.48528 −0.459504
\(342\) −9.39543 −0.508046
\(343\) 19.8731 1.07305
\(344\) −1.63579 −0.0881956
\(345\) 0 0
\(346\) 1.59817 0.0859181
\(347\) 11.6909 0.627598 0.313799 0.949489i \(-0.398398\pi\)
0.313799 + 0.949489i \(0.398398\pi\)
\(348\) −10.4571 −0.560558
\(349\) 11.3012 0.604939 0.302469 0.953159i \(-0.402189\pi\)
0.302469 + 0.953159i \(0.402189\pi\)
\(350\) −22.5256 −1.20405
\(351\) −1.14855 −0.0613051
\(352\) −2.44949 −0.130558
\(353\) −25.1190 −1.33695 −0.668476 0.743734i \(-0.733053\pi\)
−0.668476 + 0.743734i \(0.733053\pi\)
\(354\) 34.0427 1.80935
\(355\) −56.9536 −3.02278
\(356\) 16.0689 0.851650
\(357\) 23.5396 1.24585
\(358\) 8.87107 0.468851
\(359\) 15.9761 0.843186 0.421593 0.906785i \(-0.361471\pi\)
0.421593 + 0.906785i \(0.361471\pi\)
\(360\) 10.7638 0.567304
\(361\) −6.36860 −0.335189
\(362\) 4.26624 0.224228
\(363\) −11.8781 −0.623438
\(364\) −2.63883 −0.138312
\(365\) −20.0376 −1.04882
\(366\) 14.1655 0.740441
\(367\) 0.337877 0.0176370 0.00881851 0.999961i \(-0.497193\pi\)
0.00881851 + 0.999961i \(0.497193\pi\)
\(368\) 0 0
\(369\) −14.7294 −0.766780
\(370\) 7.92118 0.411803
\(371\) −17.2083 −0.893411
\(372\) 8.22939 0.426674
\(373\) 2.17582 0.112660 0.0563298 0.998412i \(-0.482060\pi\)
0.0563298 + 0.998412i \(0.482060\pi\)
\(374\) 12.4763 0.645132
\(375\) 63.6355 3.28613
\(376\) −2.29416 −0.118312
\(377\) −5.97078 −0.307511
\(378\) 1.64727 0.0847266
\(379\) 3.99367 0.205141 0.102571 0.994726i \(-0.467293\pi\)
0.102571 + 0.994726i \(0.467293\pi\)
\(380\) −14.4711 −0.742353
\(381\) 19.5499 1.00157
\(382\) 3.58630 0.183491
\(383\) −16.2398 −0.829816 −0.414908 0.909863i \(-0.636186\pi\)
−0.414908 + 0.909863i \(0.636186\pi\)
\(384\) 2.37562 0.121230
\(385\) 19.4028 0.988861
\(386\) 15.2870 0.778085
\(387\) −4.32431 −0.219817
\(388\) 8.59175 0.436180
\(389\) 3.96170 0.200866 0.100433 0.994944i \(-0.467977\pi\)
0.100433 + 0.994944i \(0.467977\pi\)
\(390\) 13.1205 0.664384
\(391\) 0 0
\(392\) −3.21534 −0.162399
\(393\) −20.9375 −1.05616
\(394\) −7.79946 −0.392931
\(395\) −28.7509 −1.44661
\(396\) −6.47539 −0.325401
\(397\) 9.53339 0.478467 0.239234 0.970962i \(-0.423104\pi\)
0.239234 + 0.970962i \(0.423104\pi\)
\(398\) −24.1394 −1.21000
\(399\) 16.4254 0.822299
\(400\) 11.5788 0.578940
\(401\) −3.05120 −0.152370 −0.0761848 0.997094i \(-0.524274\pi\)
−0.0761848 + 0.997094i \(0.524274\pi\)
\(402\) −20.9814 −1.04646
\(403\) 4.69882 0.234065
\(404\) 15.5858 0.775423
\(405\) −40.4819 −2.01156
\(406\) 8.56341 0.424995
\(407\) −4.76529 −0.236206
\(408\) −12.1000 −0.599040
\(409\) 39.7028 1.96318 0.981589 0.191003i \(-0.0611742\pi\)
0.981589 + 0.191003i \(0.0611742\pi\)
\(410\) −22.6866 −1.12041
\(411\) 9.21092 0.454341
\(412\) 9.82510 0.484048
\(413\) −27.8779 −1.37178
\(414\) 0 0
\(415\) −20.2294 −0.993022
\(416\) 1.35643 0.0665045
\(417\) −1.26714 −0.0620523
\(418\) 8.70565 0.425807
\(419\) −30.8981 −1.50947 −0.754736 0.656028i \(-0.772235\pi\)
−0.754736 + 0.656028i \(0.772235\pi\)
\(420\) −18.8177 −0.918210
\(421\) −2.14868 −0.104720 −0.0523602 0.998628i \(-0.516674\pi\)
−0.0523602 + 0.998628i \(0.516674\pi\)
\(422\) −0.100647 −0.00489942
\(423\) −6.06477 −0.294879
\(424\) 8.84555 0.429578
\(425\) −58.9756 −2.86074
\(426\) −33.2293 −1.60997
\(427\) −11.6003 −0.561376
\(428\) 2.10762 0.101876
\(429\) −7.89315 −0.381085
\(430\) −6.66044 −0.321195
\(431\) −25.1005 −1.20905 −0.604524 0.796587i \(-0.706637\pi\)
−0.604524 + 0.796587i \(0.706637\pi\)
\(432\) −0.846745 −0.0407390
\(433\) −5.95292 −0.286079 −0.143040 0.989717i \(-0.545688\pi\)
−0.143040 + 0.989717i \(0.545688\pi\)
\(434\) −6.73913 −0.323489
\(435\) −42.5782 −2.04147
\(436\) 11.1328 0.533166
\(437\) 0 0
\(438\) −11.6909 −0.558610
\(439\) 24.1766 1.15389 0.576943 0.816784i \(-0.304245\pi\)
0.576943 + 0.816784i \(0.304245\pi\)
\(440\) −9.97360 −0.475473
\(441\) −8.49998 −0.404761
\(442\) −6.90887 −0.328621
\(443\) 6.51214 0.309401 0.154701 0.987961i \(-0.450559\pi\)
0.154701 + 0.987961i \(0.450559\pi\)
\(444\) 4.62158 0.219330
\(445\) 65.4278 3.10158
\(446\) 6.11720 0.289658
\(447\) −6.63406 −0.313780
\(448\) −1.94542 −0.0919125
\(449\) 29.7300 1.40304 0.701522 0.712647i \(-0.252504\pi\)
0.701522 + 0.712647i \(0.252504\pi\)
\(450\) 30.6093 1.44294
\(451\) 13.6480 0.642659
\(452\) 11.6146 0.546305
\(453\) 52.7459 2.47822
\(454\) −24.5033 −1.15000
\(455\) −10.7445 −0.503712
\(456\) −8.44312 −0.395385
\(457\) −4.37251 −0.204538 −0.102269 0.994757i \(-0.532610\pi\)
−0.102269 + 0.994757i \(0.532610\pi\)
\(458\) −13.9724 −0.652887
\(459\) 4.31282 0.201305
\(460\) 0 0
\(461\) 7.86593 0.366353 0.183177 0.983080i \(-0.441362\pi\)
0.183177 + 0.983080i \(0.441362\pi\)
\(462\) 11.3205 0.526678
\(463\) −21.9472 −1.01997 −0.509987 0.860182i \(-0.670350\pi\)
−0.509987 + 0.860182i \(0.670350\pi\)
\(464\) −4.40183 −0.204350
\(465\) 33.5077 1.55388
\(466\) 4.85641 0.224969
\(467\) 29.6404 1.37159 0.685797 0.727793i \(-0.259454\pi\)
0.685797 + 0.727793i \(0.259454\pi\)
\(468\) 3.58582 0.165755
\(469\) 17.1819 0.793387
\(470\) −9.34115 −0.430875
\(471\) −29.6775 −1.36747
\(472\) 14.3300 0.659593
\(473\) 4.00684 0.184235
\(474\) −16.7746 −0.770482
\(475\) −41.1518 −1.88818
\(476\) 9.90883 0.454171
\(477\) 23.3838 1.07067
\(478\) 10.6601 0.487580
\(479\) −38.7485 −1.77046 −0.885232 0.465150i \(-0.846001\pi\)
−0.885232 + 0.465150i \(0.846001\pi\)
\(480\) 9.67283 0.441502
\(481\) 2.63883 0.120320
\(482\) 13.3806 0.609471
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 34.9831 1.58850
\(486\) −21.0788 −0.956152
\(487\) 15.6777 0.710426 0.355213 0.934785i \(-0.384408\pi\)
0.355213 + 0.934785i \(0.384408\pi\)
\(488\) 5.96285 0.269926
\(489\) 15.0437 0.680300
\(490\) −13.0919 −0.591433
\(491\) −16.8561 −0.760705 −0.380352 0.924842i \(-0.624197\pi\)
−0.380352 + 0.924842i \(0.624197\pi\)
\(492\) −13.2364 −0.596744
\(493\) 22.4204 1.00976
\(494\) −4.82085 −0.216900
\(495\) −26.3659 −1.18506
\(496\) 3.46410 0.155543
\(497\) 27.2119 1.22062
\(498\) −11.8027 −0.528894
\(499\) −16.9853 −0.760368 −0.380184 0.924911i \(-0.624139\pi\)
−0.380184 + 0.924911i \(0.624139\pi\)
\(500\) 26.7869 1.19795
\(501\) −49.1138 −2.19424
\(502\) 3.44260 0.153651
\(503\) −5.66325 −0.252512 −0.126256 0.991998i \(-0.540296\pi\)
−0.126256 + 0.991998i \(0.540296\pi\)
\(504\) −5.14285 −0.229081
\(505\) 63.4609 2.82397
\(506\) 0 0
\(507\) −26.5121 −1.17745
\(508\) 8.22939 0.365120
\(509\) 10.4262 0.462131 0.231066 0.972938i \(-0.425779\pi\)
0.231066 + 0.972938i \(0.425779\pi\)
\(510\) −49.2677 −2.18161
\(511\) 9.57376 0.423518
\(512\) 1.00000 0.0441942
\(513\) 3.00939 0.132868
\(514\) −8.79150 −0.387776
\(515\) 40.0049 1.76283
\(516\) −3.88600 −0.171072
\(517\) 5.61952 0.247146
\(518\) −3.78466 −0.166288
\(519\) 3.79664 0.166654
\(520\) 5.52299 0.242199
\(521\) 27.8011 1.21799 0.608995 0.793174i \(-0.291573\pi\)
0.608995 + 0.793174i \(0.291573\pi\)
\(522\) −11.6365 −0.509318
\(523\) 21.1154 0.923312 0.461656 0.887059i \(-0.347255\pi\)
0.461656 + 0.887059i \(0.347255\pi\)
\(524\) −8.81351 −0.385020
\(525\) −53.5123 −2.33547
\(526\) 17.0957 0.745408
\(527\) −17.6441 −0.768589
\(528\) −5.81906 −0.253242
\(529\) 0 0
\(530\) 36.0165 1.56446
\(531\) 37.8824 1.64396
\(532\) 6.91416 0.299767
\(533\) −7.55773 −0.327361
\(534\) 38.1736 1.65193
\(535\) 8.58162 0.371016
\(536\) −8.83199 −0.381484
\(537\) 21.0743 0.909423
\(538\) −4.28181 −0.184602
\(539\) 7.87594 0.339241
\(540\) −3.44770 −0.148365
\(541\) −31.1340 −1.33856 −0.669278 0.743012i \(-0.733396\pi\)
−0.669278 + 0.743012i \(0.733396\pi\)
\(542\) −13.6337 −0.585619
\(543\) 10.1350 0.434933
\(544\) −5.09341 −0.218378
\(545\) 45.3297 1.94171
\(546\) −6.26885 −0.268282
\(547\) 23.8705 1.02063 0.510313 0.859988i \(-0.329529\pi\)
0.510313 + 0.859988i \(0.329529\pi\)
\(548\) 3.87727 0.165629
\(549\) 15.7632 0.672758
\(550\) −28.3621 −1.20937
\(551\) 15.6444 0.666474
\(552\) 0 0
\(553\) 13.7369 0.584151
\(554\) −30.3395 −1.28900
\(555\) 18.8177 0.798767
\(556\) −0.533395 −0.0226210
\(557\) 46.8977 1.98712 0.993560 0.113305i \(-0.0361439\pi\)
0.993560 + 0.113305i \(0.0361439\pi\)
\(558\) 9.15759 0.387672
\(559\) −2.21883 −0.0938465
\(560\) −7.92118 −0.334731
\(561\) 29.6389 1.25135
\(562\) −9.25793 −0.390522
\(563\) 6.76143 0.284960 0.142480 0.989798i \(-0.454492\pi\)
0.142480 + 0.989798i \(0.454492\pi\)
\(564\) −5.45005 −0.229489
\(565\) 47.2913 1.98956
\(566\) −14.7391 −0.619531
\(567\) 19.3419 0.812281
\(568\) −13.9877 −0.586909
\(569\) 2.06692 0.0866497 0.0433248 0.999061i \(-0.486205\pi\)
0.0433248 + 0.999061i \(0.486205\pi\)
\(570\) −34.3779 −1.43993
\(571\) −17.8482 −0.746924 −0.373462 0.927645i \(-0.621829\pi\)
−0.373462 + 0.927645i \(0.621829\pi\)
\(572\) −3.32256 −0.138923
\(573\) 8.51969 0.355915
\(574\) 10.8394 0.452429
\(575\) 0 0
\(576\) 2.64357 0.110149
\(577\) −14.8779 −0.619376 −0.309688 0.950838i \(-0.600225\pi\)
−0.309688 + 0.950838i \(0.600225\pi\)
\(578\) 8.94287 0.371974
\(579\) 36.3160 1.50924
\(580\) −17.9230 −0.744211
\(581\) 9.66540 0.400988
\(582\) 20.4107 0.846052
\(583\) −21.6671 −0.897359
\(584\) −4.92118 −0.203640
\(585\) 14.6004 0.603652
\(586\) −15.7879 −0.652194
\(587\) 29.5524 1.21976 0.609879 0.792495i \(-0.291218\pi\)
0.609879 + 0.792495i \(0.291218\pi\)
\(588\) −7.63843 −0.315003
\(589\) −12.3117 −0.507293
\(590\) 58.3477 2.40214
\(591\) −18.5286 −0.762163
\(592\) 1.94542 0.0799563
\(593\) 24.1392 0.991276 0.495638 0.868529i \(-0.334934\pi\)
0.495638 + 0.868529i \(0.334934\pi\)
\(594\) 2.07409 0.0851011
\(595\) 40.3459 1.65402
\(596\) −2.79256 −0.114388
\(597\) −57.3460 −2.34701
\(598\) 0 0
\(599\) −12.0404 −0.491959 −0.245980 0.969275i \(-0.579110\pi\)
−0.245980 + 0.969275i \(0.579110\pi\)
\(600\) 27.5068 1.12296
\(601\) 32.6696 1.33262 0.666310 0.745675i \(-0.267873\pi\)
0.666310 + 0.745675i \(0.267873\pi\)
\(602\) 3.18229 0.129700
\(603\) −23.3480 −0.950803
\(604\) 22.2030 0.903427
\(605\) −20.3585 −0.827692
\(606\) 37.0260 1.50408
\(607\) 4.09287 0.166124 0.0830622 0.996544i \(-0.473530\pi\)
0.0830622 + 0.996544i \(0.473530\pi\)
\(608\) −3.55407 −0.144137
\(609\) 20.3434 0.824357
\(610\) 24.2790 0.983028
\(611\) −3.11187 −0.125893
\(612\) −13.4648 −0.544282
\(613\) 29.7094 1.19995 0.599975 0.800019i \(-0.295177\pi\)
0.599975 + 0.800019i \(0.295177\pi\)
\(614\) 32.9589 1.33011
\(615\) −53.8948 −2.17325
\(616\) 4.76529 0.191999
\(617\) −20.8936 −0.841146 −0.420573 0.907259i \(-0.638171\pi\)
−0.420573 + 0.907259i \(0.638171\pi\)
\(618\) 23.3407 0.938900
\(619\) 36.3294 1.46020 0.730102 0.683339i \(-0.239473\pi\)
0.730102 + 0.683339i \(0.239473\pi\)
\(620\) 14.1048 0.566463
\(621\) 0 0
\(622\) −19.9212 −0.798767
\(623\) −31.2607 −1.25244
\(624\) 3.22236 0.128998
\(625\) 51.1745 2.04698
\(626\) 9.67273 0.386600
\(627\) 20.6813 0.825933
\(628\) −12.4925 −0.498506
\(629\) −9.90883 −0.395091
\(630\) −20.9402 −0.834277
\(631\) 1.77569 0.0706890 0.0353445 0.999375i \(-0.488747\pi\)
0.0353445 + 0.999375i \(0.488747\pi\)
\(632\) −7.06114 −0.280877
\(633\) −0.239099 −0.00950333
\(634\) −18.3490 −0.728733
\(635\) 33.5077 1.32971
\(636\) 21.0137 0.833246
\(637\) −4.36139 −0.172805
\(638\) 10.7822 0.426873
\(639\) −36.9773 −1.46280
\(640\) 4.07171 0.160948
\(641\) 33.0344 1.30478 0.652389 0.757884i \(-0.273767\pi\)
0.652389 + 0.757884i \(0.273767\pi\)
\(642\) 5.00691 0.197607
\(643\) −43.0895 −1.69928 −0.849642 0.527360i \(-0.823182\pi\)
−0.849642 + 0.527360i \(0.823182\pi\)
\(644\) 0 0
\(645\) −15.8227 −0.623017
\(646\) 18.1023 0.712227
\(647\) −0.0891034 −0.00350302 −0.00175151 0.999998i \(-0.500558\pi\)
−0.00175151 + 0.999998i \(0.500558\pi\)
\(648\) −9.94225 −0.390568
\(649\) −35.1013 −1.37785
\(650\) 15.7058 0.616034
\(651\) −16.0096 −0.627466
\(652\) 6.33254 0.248001
\(653\) −9.03587 −0.353601 −0.176801 0.984247i \(-0.556575\pi\)
−0.176801 + 0.984247i \(0.556575\pi\)
\(654\) 26.4474 1.03418
\(655\) −35.8860 −1.40218
\(656\) −5.57177 −0.217541
\(657\) −13.0095 −0.507548
\(658\) 4.46311 0.173990
\(659\) −7.78944 −0.303433 −0.151717 0.988424i \(-0.548480\pi\)
−0.151717 + 0.988424i \(0.548480\pi\)
\(660\) −23.6935 −0.922268
\(661\) 27.8692 1.08399 0.541993 0.840383i \(-0.317670\pi\)
0.541993 + 0.840383i \(0.317670\pi\)
\(662\) −25.5384 −0.992576
\(663\) −16.4128 −0.637422
\(664\) −4.96828 −0.192807
\(665\) 28.1524 1.09170
\(666\) 5.14285 0.199281
\(667\) 0 0
\(668\) −20.6741 −0.799906
\(669\) 14.5321 0.561845
\(670\) −35.9613 −1.38930
\(671\) −14.6059 −0.563856
\(672\) −4.62158 −0.178281
\(673\) 0.885122 0.0341189 0.0170595 0.999854i \(-0.494570\pi\)
0.0170595 + 0.999854i \(0.494570\pi\)
\(674\) 32.6280 1.25678
\(675\) −9.80428 −0.377367
\(676\) −11.1601 −0.429234
\(677\) −45.3102 −1.74141 −0.870707 0.491802i \(-0.836338\pi\)
−0.870707 + 0.491802i \(0.836338\pi\)
\(678\) 27.5919 1.05966
\(679\) −16.7146 −0.641446
\(680\) −20.7389 −0.795300
\(681\) −58.2105 −2.23063
\(682\) −8.48528 −0.324918
\(683\) −51.8395 −1.98358 −0.991791 0.127866i \(-0.959187\pi\)
−0.991791 + 0.127866i \(0.959187\pi\)
\(684\) −9.39543 −0.359243
\(685\) 15.7871 0.603195
\(686\) 19.8731 0.758760
\(687\) −33.1931 −1.26640
\(688\) −1.63579 −0.0623637
\(689\) 11.9984 0.457102
\(690\) 0 0
\(691\) 31.3012 1.19075 0.595377 0.803447i \(-0.297003\pi\)
0.595377 + 0.803447i \(0.297003\pi\)
\(692\) 1.59817 0.0607532
\(693\) 12.5974 0.478534
\(694\) 11.6909 0.443779
\(695\) −2.17183 −0.0823821
\(696\) −10.4571 −0.396375
\(697\) 28.3793 1.07494
\(698\) 11.3012 0.427756
\(699\) 11.5370 0.436368
\(700\) −22.5256 −0.851388
\(701\) −12.3084 −0.464881 −0.232440 0.972611i \(-0.574671\pi\)
−0.232440 + 0.972611i \(0.574671\pi\)
\(702\) −1.14855 −0.0433493
\(703\) −6.91416 −0.260772
\(704\) −2.44949 −0.0923186
\(705\) −22.1910 −0.835762
\(706\) −25.1190 −0.945367
\(707\) −30.3210 −1.14034
\(708\) 34.0427 1.27940
\(709\) 19.3568 0.726959 0.363480 0.931602i \(-0.381589\pi\)
0.363480 + 0.931602i \(0.381589\pi\)
\(710\) −56.9536 −2.13743
\(711\) −18.6666 −0.700052
\(712\) 16.0689 0.602207
\(713\) 0 0
\(714\) 23.5396 0.880948
\(715\) −13.5285 −0.505937
\(716\) 8.87107 0.331528
\(717\) 25.3243 0.945752
\(718\) 15.9761 0.596222
\(719\) 0.616416 0.0229885 0.0114942 0.999934i \(-0.496341\pi\)
0.0114942 + 0.999934i \(0.496341\pi\)
\(720\) 10.7638 0.401145
\(721\) −19.1139 −0.711840
\(722\) −6.36860 −0.237015
\(723\) 31.7873 1.18218
\(724\) 4.26624 0.158553
\(725\) −50.9679 −1.89290
\(726\) −11.8781 −0.440838
\(727\) 45.3126 1.68055 0.840275 0.542160i \(-0.182393\pi\)
0.840275 + 0.542160i \(0.182393\pi\)
\(728\) −2.63883 −0.0978015
\(729\) −20.2484 −0.749940
\(730\) −20.0376 −0.741625
\(731\) 8.33173 0.308160
\(732\) 14.1655 0.523571
\(733\) −17.3915 −0.642370 −0.321185 0.947017i \(-0.604081\pi\)
−0.321185 + 0.947017i \(0.604081\pi\)
\(734\) 0.337877 0.0124713
\(735\) −31.1014 −1.14719
\(736\) 0 0
\(737\) 21.6339 0.796893
\(738\) −14.7294 −0.542195
\(739\) 33.9686 1.24956 0.624778 0.780803i \(-0.285190\pi\)
0.624778 + 0.780803i \(0.285190\pi\)
\(740\) 7.92118 0.291188
\(741\) −11.4525 −0.420718
\(742\) −17.2083 −0.631737
\(743\) 25.9127 0.950643 0.475321 0.879812i \(-0.342332\pi\)
0.475321 + 0.879812i \(0.342332\pi\)
\(744\) 8.22939 0.301704
\(745\) −11.3705 −0.416582
\(746\) 2.17582 0.0796624
\(747\) −13.1340 −0.480548
\(748\) 12.4763 0.456177
\(749\) −4.10021 −0.149818
\(750\) 63.6355 2.32364
\(751\) 21.5515 0.786427 0.393213 0.919447i \(-0.371363\pi\)
0.393213 + 0.919447i \(0.371363\pi\)
\(752\) −2.29416 −0.0836595
\(753\) 8.17831 0.298034
\(754\) −5.97078 −0.217443
\(755\) 90.4041 3.29014
\(756\) 1.64727 0.0599108
\(757\) −30.5862 −1.11167 −0.555837 0.831292i \(-0.687602\pi\)
−0.555837 + 0.831292i \(0.687602\pi\)
\(758\) 3.99367 0.145057
\(759\) 0 0
\(760\) −14.4711 −0.524923
\(761\) 22.0332 0.798702 0.399351 0.916798i \(-0.369235\pi\)
0.399351 + 0.916798i \(0.369235\pi\)
\(762\) 19.5499 0.708218
\(763\) −21.6581 −0.784074
\(764\) 3.58630 0.129748
\(765\) −54.8247 −1.98219
\(766\) −16.2398 −0.586769
\(767\) 19.4377 0.701855
\(768\) 2.37562 0.0857228
\(769\) −42.3961 −1.52884 −0.764421 0.644717i \(-0.776975\pi\)
−0.764421 + 0.644717i \(0.776975\pi\)
\(770\) 19.4028 0.699230
\(771\) −20.8853 −0.752164
\(772\) 15.2870 0.550190
\(773\) −10.2548 −0.368838 −0.184419 0.982848i \(-0.559040\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(774\) −4.32431 −0.155434
\(775\) 40.1101 1.44080
\(776\) 8.59175 0.308426
\(777\) −8.99091 −0.322547
\(778\) 3.96170 0.142034
\(779\) 19.8025 0.709497
\(780\) 13.1205 0.469790
\(781\) 34.2626 1.22601
\(782\) 0 0
\(783\) 3.72723 0.133200
\(784\) −3.21534 −0.114834
\(785\) −50.8659 −1.81548
\(786\) −20.9375 −0.746818
\(787\) −48.6462 −1.73405 −0.867025 0.498265i \(-0.833970\pi\)
−0.867025 + 0.498265i \(0.833970\pi\)
\(788\) −7.79946 −0.277844
\(789\) 40.6129 1.44586
\(790\) −28.7509 −1.02291
\(791\) −22.5953 −0.803396
\(792\) −6.47539 −0.230093
\(793\) 8.08820 0.287220
\(794\) 9.53339 0.338328
\(795\) 85.5615 3.03455
\(796\) −24.1394 −0.855597
\(797\) −46.1175 −1.63356 −0.816782 0.576946i \(-0.804244\pi\)
−0.816782 + 0.576946i \(0.804244\pi\)
\(798\) 16.4254 0.581453
\(799\) 11.6851 0.413390
\(800\) 11.5788 0.409372
\(801\) 42.4792 1.50093
\(802\) −3.05120 −0.107742
\(803\) 12.0544 0.425390
\(804\) −20.9814 −0.739958
\(805\) 0 0
\(806\) 4.69882 0.165509
\(807\) −10.1720 −0.358070
\(808\) 15.5858 0.548307
\(809\) 33.9809 1.19470 0.597352 0.801979i \(-0.296220\pi\)
0.597352 + 0.801979i \(0.296220\pi\)
\(810\) −40.4819 −1.42239
\(811\) 5.04290 0.177080 0.0885400 0.996073i \(-0.471780\pi\)
0.0885400 + 0.996073i \(0.471780\pi\)
\(812\) 8.56341 0.300517
\(813\) −32.3885 −1.13592
\(814\) −4.76529 −0.167023
\(815\) 25.7842 0.903182
\(816\) −12.1000 −0.423585
\(817\) 5.81369 0.203395
\(818\) 39.7028 1.38818
\(819\) −6.97592 −0.243759
\(820\) −22.6866 −0.792251
\(821\) 2.44191 0.0852231 0.0426116 0.999092i \(-0.486432\pi\)
0.0426116 + 0.999092i \(0.486432\pi\)
\(822\) 9.21092 0.321268
\(823\) −2.84938 −0.0993232 −0.0496616 0.998766i \(-0.515814\pi\)
−0.0496616 + 0.998766i \(0.515814\pi\)
\(824\) 9.82510 0.342273
\(825\) −67.3777 −2.34579
\(826\) −27.8779 −0.969997
\(827\) −3.88626 −0.135139 −0.0675693 0.997715i \(-0.521524\pi\)
−0.0675693 + 0.997715i \(0.521524\pi\)
\(828\) 0 0
\(829\) 20.3631 0.707239 0.353620 0.935389i \(-0.384951\pi\)
0.353620 + 0.935389i \(0.384951\pi\)
\(830\) −20.2294 −0.702172
\(831\) −72.0751 −2.50026
\(832\) 1.35643 0.0470258
\(833\) 16.3771 0.567432
\(834\) −1.26714 −0.0438776
\(835\) −84.1789 −2.91313
\(836\) 8.70565 0.301091
\(837\) −2.93321 −0.101387
\(838\) −30.8981 −1.06736
\(839\) 7.05733 0.243646 0.121823 0.992552i \(-0.461126\pi\)
0.121823 + 0.992552i \(0.461126\pi\)
\(840\) −18.8177 −0.649273
\(841\) −9.62388 −0.331858
\(842\) −2.14868 −0.0740485
\(843\) −21.9933 −0.757490
\(844\) −0.100647 −0.00346441
\(845\) −45.4406 −1.56321
\(846\) −6.06477 −0.208511
\(847\) 9.72710 0.334227
\(848\) 8.84555 0.303758
\(849\) −35.0145 −1.20169
\(850\) −58.9756 −2.02285
\(851\) 0 0
\(852\) −33.2293 −1.13842
\(853\) −22.4781 −0.769635 −0.384818 0.922993i \(-0.625736\pi\)
−0.384818 + 0.922993i \(0.625736\pi\)
\(854\) −11.6003 −0.396953
\(855\) −38.2554 −1.30831
\(856\) 2.10762 0.0720370
\(857\) 6.43977 0.219978 0.109989 0.993933i \(-0.464918\pi\)
0.109989 + 0.993933i \(0.464918\pi\)
\(858\) −7.89315 −0.269468
\(859\) 37.7008 1.28633 0.643167 0.765726i \(-0.277620\pi\)
0.643167 + 0.765726i \(0.277620\pi\)
\(860\) −6.66044 −0.227119
\(861\) 25.7504 0.877571
\(862\) −25.1005 −0.854927
\(863\) 34.5566 1.17632 0.588159 0.808745i \(-0.299853\pi\)
0.588159 + 0.808745i \(0.299853\pi\)
\(864\) −0.846745 −0.0288068
\(865\) 6.50727 0.221254
\(866\) −5.95292 −0.202288
\(867\) 21.2449 0.721513
\(868\) −6.73913 −0.228741
\(869\) 17.2962 0.586733
\(870\) −42.5782 −1.44353
\(871\) −11.9800 −0.405926
\(872\) 11.1328 0.377006
\(873\) 22.7129 0.768715
\(874\) 0 0
\(875\) −52.1118 −1.76170
\(876\) −11.6909 −0.394997
\(877\) −7.17164 −0.242169 −0.121085 0.992642i \(-0.538637\pi\)
−0.121085 + 0.992642i \(0.538637\pi\)
\(878\) 24.1766 0.815921
\(879\) −37.5062 −1.26505
\(880\) −9.97360 −0.336210
\(881\) −8.08174 −0.272281 −0.136140 0.990690i \(-0.543470\pi\)
−0.136140 + 0.990690i \(0.543470\pi\)
\(882\) −8.49998 −0.286209
\(883\) −41.0042 −1.37990 −0.689950 0.723857i \(-0.742367\pi\)
−0.689950 + 0.723857i \(0.742367\pi\)
\(884\) −6.90887 −0.232370
\(885\) 138.612 4.65939
\(886\) 6.51214 0.218780
\(887\) −37.8321 −1.27028 −0.635138 0.772398i \(-0.719057\pi\)
−0.635138 + 0.772398i \(0.719057\pi\)
\(888\) 4.62158 0.155090
\(889\) −16.0096 −0.536945
\(890\) 65.4278 2.19315
\(891\) 24.3534 0.815871
\(892\) 6.11720 0.204819
\(893\) 8.15361 0.272850
\(894\) −6.63406 −0.221876
\(895\) 36.1204 1.20737
\(896\) −1.94542 −0.0649919
\(897\) 0 0
\(898\) 29.7300 0.992102
\(899\) −15.2484 −0.508562
\(900\) 30.6093 1.02031
\(901\) −45.0541 −1.50097
\(902\) 13.6480 0.454429
\(903\) 7.55991 0.251578
\(904\) 11.6146 0.386296
\(905\) 17.3709 0.577427
\(906\) 52.7459 1.75236
\(907\) 15.9611 0.529978 0.264989 0.964251i \(-0.414632\pi\)
0.264989 + 0.964251i \(0.414632\pi\)
\(908\) −24.5033 −0.813170
\(909\) 41.2022 1.36659
\(910\) −10.7445 −0.356178
\(911\) −37.5172 −1.24300 −0.621501 0.783414i \(-0.713477\pi\)
−0.621501 + 0.783414i \(0.713477\pi\)
\(912\) −8.44312 −0.279579
\(913\) 12.1698 0.402760
\(914\) −4.37251 −0.144630
\(915\) 57.6776 1.90676
\(916\) −13.9724 −0.461661
\(917\) 17.1460 0.566210
\(918\) 4.31282 0.142344
\(919\) −26.7175 −0.881330 −0.440665 0.897672i \(-0.645257\pi\)
−0.440665 + 0.897672i \(0.645257\pi\)
\(920\) 0 0
\(921\) 78.2979 2.58000
\(922\) 7.86593 0.259051
\(923\) −18.9733 −0.624513
\(924\) 11.3205 0.372417
\(925\) 22.5256 0.740638
\(926\) −21.9472 −0.721230
\(927\) 25.9733 0.853076
\(928\) −4.40183 −0.144497
\(929\) −43.8177 −1.43761 −0.718805 0.695211i \(-0.755311\pi\)
−0.718805 + 0.695211i \(0.755311\pi\)
\(930\) 33.5077 1.09876
\(931\) 11.4275 0.374523
\(932\) 4.85641 0.159077
\(933\) −47.3251 −1.54936
\(934\) 29.6404 0.969864
\(935\) 50.7997 1.66133
\(936\) 3.58582 0.117206
\(937\) 34.4360 1.12498 0.562488 0.826805i \(-0.309844\pi\)
0.562488 + 0.826805i \(0.309844\pi\)
\(938\) 17.1819 0.561010
\(939\) 22.9787 0.749883
\(940\) −9.34115 −0.304675
\(941\) −35.8492 −1.16865 −0.584326 0.811519i \(-0.698641\pi\)
−0.584326 + 0.811519i \(0.698641\pi\)
\(942\) −29.6775 −0.966945
\(943\) 0 0
\(944\) 14.3300 0.466403
\(945\) 6.70722 0.218186
\(946\) 4.00684 0.130274
\(947\) 0.975923 0.0317132 0.0158566 0.999874i \(-0.494952\pi\)
0.0158566 + 0.999874i \(0.494952\pi\)
\(948\) −16.7746 −0.544813
\(949\) −6.67524 −0.216688
\(950\) −41.1518 −1.33514
\(951\) −43.5903 −1.41351
\(952\) 9.90883 0.321147
\(953\) −16.6476 −0.539267 −0.269634 0.962963i \(-0.586903\pi\)
−0.269634 + 0.962963i \(0.586903\pi\)
\(954\) 23.3838 0.757079
\(955\) 14.6024 0.472522
\(956\) 10.6601 0.344771
\(957\) 25.6145 0.827999
\(958\) −38.7485 −1.25191
\(959\) −7.54292 −0.243574
\(960\) 9.67283 0.312189
\(961\) −19.0000 −0.612903
\(962\) 2.63883 0.0850792
\(963\) 5.57164 0.179544
\(964\) 13.3806 0.430961
\(965\) 62.2440 2.00370
\(966\) 0 0
\(967\) 52.3940 1.68488 0.842439 0.538792i \(-0.181119\pi\)
0.842439 + 0.538792i \(0.181119\pi\)
\(968\) −5.00000 −0.160706
\(969\) 43.0043 1.38150
\(970\) 34.9831 1.12324
\(971\) 51.8696 1.66457 0.832287 0.554344i \(-0.187031\pi\)
0.832287 + 0.554344i \(0.187031\pi\)
\(972\) −21.0788 −0.676102
\(973\) 1.03768 0.0332664
\(974\) 15.6777 0.502347
\(975\) 37.3111 1.19491
\(976\) 5.96285 0.190866
\(977\) −18.1728 −0.581399 −0.290699 0.956814i \(-0.593888\pi\)
−0.290699 + 0.956814i \(0.593888\pi\)
\(978\) 15.0437 0.481045
\(979\) −39.3606 −1.25797
\(980\) −13.0919 −0.418206
\(981\) 29.4304 0.939641
\(982\) −16.8561 −0.537899
\(983\) −23.6079 −0.752975 −0.376488 0.926422i \(-0.622868\pi\)
−0.376488 + 0.926422i \(0.622868\pi\)
\(984\) −13.2364 −0.421961
\(985\) −31.7571 −1.01187
\(986\) 22.4204 0.714010
\(987\) 10.6026 0.337486
\(988\) −4.82085 −0.153372
\(989\) 0 0
\(990\) −26.3659 −0.837964
\(991\) 3.77401 0.119885 0.0599427 0.998202i \(-0.480908\pi\)
0.0599427 + 0.998202i \(0.480908\pi\)
\(992\) 3.46410 0.109985
\(993\) −60.6694 −1.92529
\(994\) 27.2119 0.863108
\(995\) −98.2884 −3.11595
\(996\) −11.8027 −0.373984
\(997\) −14.6939 −0.465361 −0.232681 0.972553i \(-0.574750\pi\)
−0.232681 + 0.972553i \(0.574750\pi\)
\(998\) −16.9853 −0.537661
\(999\) −1.64727 −0.0521175
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.2.a.n.1.6 yes 8
3.2 odd 2 9522.2.a.ce.1.1 8
4.3 odd 2 8464.2.a.cb.1.4 8
23.22 odd 2 inner 1058.2.a.n.1.5 8
69.68 even 2 9522.2.a.ce.1.8 8
92.91 even 2 8464.2.a.cb.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.2.a.n.1.5 8 23.22 odd 2 inner
1058.2.a.n.1.6 yes 8 1.1 even 1 trivial
8464.2.a.cb.1.3 8 92.91 even 2
8464.2.a.cb.1.4 8 4.3 odd 2
9522.2.a.ce.1.1 8 3.2 odd 2
9522.2.a.ce.1.8 8 69.68 even 2