Properties

Label 1053.2.e.d.352.1
Level $1053$
Weight $2$
Character 1053.352
Analytic conductor $8.408$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,1,2,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1053.352
Dual form 1053.2.e.d.703.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.00000 - 1.73205i) q^{5} +(2.00000 + 3.46410i) q^{7} +3.00000 q^{8} +2.00000 q^{10} +(2.00000 + 3.46410i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(-2.00000 + 3.46410i) q^{14} +(0.500000 + 0.866025i) q^{16} -2.00000 q^{17} +(-1.00000 - 1.73205i) q^{20} +(-2.00000 + 3.46410i) q^{22} +(0.500000 + 0.866025i) q^{25} -1.00000 q^{26} +4.00000 q^{28} +(-5.00000 - 8.66025i) q^{29} +(-2.00000 + 3.46410i) q^{31} +(2.50000 - 4.33013i) q^{32} +(-1.00000 - 1.73205i) q^{34} +8.00000 q^{35} -2.00000 q^{37} +(3.00000 - 5.19615i) q^{40} +(3.00000 - 5.19615i) q^{41} +(6.00000 + 10.3923i) q^{43} +4.00000 q^{44} +(-4.50000 + 7.79423i) q^{49} +(-0.500000 + 0.866025i) q^{50} +(0.500000 + 0.866025i) q^{52} -6.00000 q^{53} +8.00000 q^{55} +(6.00000 + 10.3923i) q^{56} +(5.00000 - 8.66025i) q^{58} +(6.00000 - 10.3923i) q^{59} +(1.00000 + 1.73205i) q^{61} -4.00000 q^{62} +7.00000 q^{64} +(1.00000 + 1.73205i) q^{65} +(4.00000 - 6.92820i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(4.00000 + 6.92820i) q^{70} +2.00000 q^{73} +(-1.00000 - 1.73205i) q^{74} +(-8.00000 + 13.8564i) q^{77} +(-4.00000 - 6.92820i) q^{79} +2.00000 q^{80} +6.00000 q^{82} +(2.00000 + 3.46410i) q^{83} +(-2.00000 + 3.46410i) q^{85} +(-6.00000 + 10.3923i) q^{86} +(6.00000 + 10.3923i) q^{88} +2.00000 q^{89} -4.00000 q^{91} +(-5.00000 - 8.66025i) q^{97} -9.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{4} + 2 q^{5} + 4 q^{7} + 6 q^{8} + 4 q^{10} + 4 q^{11} - q^{13} - 4 q^{14} + q^{16} - 4 q^{17} - 2 q^{20} - 4 q^{22} + q^{25} - 2 q^{26} + 8 q^{28} - 10 q^{29} - 4 q^{31} + 5 q^{32}+ \cdots - 18 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i 0.986869 0.161521i \(-0.0516399\pi\)
−0.633316 + 0.773893i \(0.718307\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000 1.73205i 0.447214 0.774597i −0.550990 0.834512i \(-0.685750\pi\)
0.998203 + 0.0599153i \(0.0190830\pi\)
\(6\) 0 0
\(7\) 2.00000 + 3.46410i 0.755929 + 1.30931i 0.944911 + 0.327327i \(0.106148\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i \(0.0393705\pi\)
−0.389338 + 0.921095i \(0.627296\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) −2.00000 + 3.46410i −0.534522 + 0.925820i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) −1.00000 1.73205i −0.223607 0.387298i
\(21\) 0 0
\(22\) −2.00000 + 3.46410i −0.426401 + 0.738549i
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 4.00000 0.755929
\(29\) −5.00000 8.66025i −0.928477 1.60817i −0.785872 0.618389i \(-0.787786\pi\)
−0.142605 0.989780i \(-0.545548\pi\)
\(30\) 0 0
\(31\) −2.00000 + 3.46410i −0.359211 + 0.622171i −0.987829 0.155543i \(-0.950287\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 2.50000 4.33013i 0.441942 0.765466i
\(33\) 0 0
\(34\) −1.00000 1.73205i −0.171499 0.297044i
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 3.00000 5.19615i 0.474342 0.821584i
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) 6.00000 + 10.3923i 0.914991 + 1.58481i 0.806914 + 0.590669i \(0.201136\pi\)
0.108078 + 0.994142i \(0.465531\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) −4.50000 + 7.79423i −0.642857 + 1.11346i
\(50\) −0.500000 + 0.866025i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 6.00000 + 10.3923i 0.801784 + 1.38873i
\(57\) 0 0
\(58\) 5.00000 8.66025i 0.656532 1.13715i
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 4.00000 6.92820i 0.488678 0.846415i −0.511237 0.859440i \(-0.670813\pi\)
0.999915 + 0.0130248i \(0.00414604\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 0 0
\(70\) 4.00000 + 6.92820i 0.478091 + 0.828079i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 0 0
\(76\) 0 0
\(77\) −8.00000 + 13.8564i −0.911685 + 1.57908i
\(78\) 0 0
\(79\) −4.00000 6.92820i −0.450035 0.779484i 0.548352 0.836247i \(-0.315255\pi\)
−0.998388 + 0.0567635i \(0.981922\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 2.00000 + 3.46410i 0.219529 + 0.380235i 0.954664 0.297686i \(-0.0962148\pi\)
−0.735135 + 0.677920i \(0.762881\pi\)
\(84\) 0 0
\(85\) −2.00000 + 3.46410i −0.216930 + 0.375735i
\(86\) −6.00000 + 10.3923i −0.646997 + 1.12063i
\(87\) 0 0
\(88\) 6.00000 + 10.3923i 0.639602 + 1.10782i
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −5.00000 8.66025i −0.507673 0.879316i −0.999961 0.00888289i \(-0.997172\pi\)
0.492287 0.870433i \(-0.336161\pi\)
\(98\) −9.00000 −0.909137
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i \(-0.813461\pi\)
−0.0623905 0.998052i \(-0.519872\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) −1.50000 + 2.59808i −0.147087 + 0.254762i
\(105\) 0 0
\(106\) −3.00000 5.19615i −0.291386 0.504695i
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 4.00000 + 6.92820i 0.381385 + 0.660578i
\(111\) 0 0
\(112\) −2.00000 + 3.46410i −0.188982 + 0.327327i
\(113\) −3.00000 + 5.19615i −0.282216 + 0.488813i −0.971930 0.235269i \(-0.924403\pi\)
0.689714 + 0.724082i \(0.257736\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.0000 −0.928477
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) −4.00000 6.92820i −0.366679 0.635107i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −1.00000 + 1.73205i −0.0905357 + 0.156813i
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.50000 2.59808i −0.132583 0.229640i
\(129\) 0 0
\(130\) −1.00000 + 1.73205i −0.0877058 + 0.151911i
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 3.00000 + 5.19615i 0.256307 + 0.443937i 0.965250 0.261329i \(-0.0841608\pi\)
−0.708942 + 0.705266i \(0.750827\pi\)
\(138\) 0 0
\(139\) −6.00000 + 10.3923i −0.508913 + 0.881464i 0.491033 + 0.871141i \(0.336619\pi\)
−0.999947 + 0.0103230i \(0.996714\pi\)
\(140\) 4.00000 6.92820i 0.338062 0.585540i
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −20.0000 −1.66091
\(146\) 1.00000 + 1.73205i 0.0827606 + 0.143346i
\(147\) 0 0
\(148\) −1.00000 + 1.73205i −0.0821995 + 0.142374i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) −2.00000 3.46410i −0.162758 0.281905i 0.773099 0.634285i \(-0.218706\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −16.0000 −1.28932
\(155\) 4.00000 + 6.92820i 0.321288 + 0.556487i
\(156\) 0 0
\(157\) 9.00000 15.5885i 0.718278 1.24409i −0.243403 0.969925i \(-0.578264\pi\)
0.961681 0.274169i \(-0.0884028\pi\)
\(158\) 4.00000 6.92820i 0.318223 0.551178i
\(159\) 0 0
\(160\) −5.00000 8.66025i −0.395285 0.684653i
\(161\) 0 0
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −3.00000 5.19615i −0.234261 0.405751i
\(165\) 0 0
\(166\) −2.00000 + 3.46410i −0.155230 + 0.268866i
\(167\) −4.00000 + 6.92820i −0.309529 + 0.536120i −0.978259 0.207385i \(-0.933505\pi\)
0.668730 + 0.743505i \(0.266838\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −4.00000 −0.306786
\(171\) 0 0
\(172\) 12.0000 0.914991
\(173\) 3.00000 + 5.19615i 0.228086 + 0.395056i 0.957241 0.289292i \(-0.0934200\pi\)
−0.729155 + 0.684349i \(0.760087\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) −2.00000 + 3.46410i −0.150756 + 0.261116i
\(177\) 0 0
\(178\) 1.00000 + 1.73205i 0.0749532 + 0.129823i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −2.00000 3.46410i −0.148250 0.256776i
\(183\) 0 0
\(184\) 0 0
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 0 0
\(187\) −4.00000 6.92820i −0.292509 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 + 6.92820i 0.289430 + 0.501307i 0.973674 0.227946i \(-0.0732010\pi\)
−0.684244 + 0.729253i \(0.739868\pi\)
\(192\) 0 0
\(193\) −9.00000 + 15.5885i −0.647834 + 1.12208i 0.335805 + 0.941932i \(0.390992\pi\)
−0.983639 + 0.180150i \(0.942342\pi\)
\(194\) 5.00000 8.66025i 0.358979 0.621770i
\(195\) 0 0
\(196\) 4.50000 + 7.79423i 0.321429 + 0.556731i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 1.50000 + 2.59808i 0.106066 + 0.183712i
\(201\) 0 0
\(202\) 9.00000 15.5885i 0.633238 1.09680i
\(203\) 20.0000 34.6410i 1.40372 2.43132i
\(204\) 0 0
\(205\) −6.00000 10.3923i −0.419058 0.725830i
\(206\) 0 0
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) 0 0
\(211\) 10.0000 17.3205i 0.688428 1.19239i −0.283918 0.958849i \(-0.591634\pi\)
0.972346 0.233544i \(-0.0750324\pi\)
\(212\) −3.00000 + 5.19615i −0.206041 + 0.356873i
\(213\) 0 0
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 24.0000 1.63679
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) −1.00000 1.73205i −0.0677285 0.117309i
\(219\) 0 0
\(220\) 4.00000 6.92820i 0.269680 0.467099i
\(221\) 1.00000 1.73205i 0.0672673 0.116510i
\(222\) 0 0
\(223\) −2.00000 3.46410i −0.133930 0.231973i 0.791258 0.611482i \(-0.209426\pi\)
−0.925188 + 0.379509i \(0.876093\pi\)
\(224\) 20.0000 1.33631
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −10.0000 17.3205i −0.663723 1.14960i −0.979630 0.200812i \(-0.935642\pi\)
0.315906 0.948790i \(-0.397691\pi\)
\(228\) 0 0
\(229\) 5.00000 8.66025i 0.330409 0.572286i −0.652183 0.758062i \(-0.726147\pi\)
0.982592 + 0.185776i \(0.0594799\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −15.0000 25.9808i −0.984798 1.70572i
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.00000 10.3923i −0.390567 0.676481i
\(237\) 0 0
\(238\) 4.00000 6.92820i 0.259281 0.449089i
\(239\) −12.0000 + 20.7846i −0.776215 + 1.34444i 0.157893 + 0.987456i \(0.449530\pi\)
−0.934109 + 0.356988i \(0.883804\pi\)
\(240\) 0 0
\(241\) −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i \(-0.271048\pi\)
−0.980917 + 0.194429i \(0.937715\pi\)
\(242\) −5.00000 −0.321412
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 9.00000 + 15.5885i 0.574989 + 0.995910i
\(246\) 0 0
\(247\) 0 0
\(248\) −6.00000 + 10.3923i −0.381000 + 0.659912i
\(249\) 0 0
\(250\) 6.00000 + 10.3923i 0.379473 + 0.657267i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −8.00000 13.8564i −0.501965 0.869428i
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 13.0000 22.5167i 0.810918 1.40455i −0.101305 0.994855i \(-0.532302\pi\)
0.912222 0.409695i \(-0.134365\pi\)
\(258\) 0 0
\(259\) −4.00000 6.92820i −0.248548 0.430498i
\(260\) 2.00000 0.124035
\(261\) 0 0
\(262\) 4.00000 0.247121
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0 0
\(265\) −6.00000 + 10.3923i −0.368577 + 0.638394i
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 6.92820i −0.244339 0.423207i
\(269\) −22.0000 −1.34136 −0.670682 0.741745i \(-0.733998\pi\)
−0.670682 + 0.741745i \(0.733998\pi\)
\(270\) 0 0
\(271\) −12.0000 −0.728948 −0.364474 0.931214i \(-0.618751\pi\)
−0.364474 + 0.931214i \(0.618751\pi\)
\(272\) −1.00000 1.73205i −0.0606339 0.105021i
\(273\) 0 0
\(274\) −3.00000 + 5.19615i −0.181237 + 0.313911i
\(275\) −2.00000 + 3.46410i −0.120605 + 0.208893i
\(276\) 0 0
\(277\) 5.00000 + 8.66025i 0.300421 + 0.520344i 0.976231 0.216731i \(-0.0695395\pi\)
−0.675810 + 0.737075i \(0.736206\pi\)
\(278\) −12.0000 −0.719712
\(279\) 0 0
\(280\) 24.0000 1.43427
\(281\) −5.00000 8.66025i −0.298275 0.516627i 0.677466 0.735554i \(-0.263078\pi\)
−0.975741 + 0.218926i \(0.929745\pi\)
\(282\) 0 0
\(283\) −6.00000 + 10.3923i −0.356663 + 0.617758i −0.987401 0.158237i \(-0.949419\pi\)
0.630738 + 0.775996i \(0.282752\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −2.00000 3.46410i −0.118262 0.204837i
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −10.0000 17.3205i −0.587220 1.01710i
\(291\) 0 0
\(292\) 1.00000 1.73205i 0.0585206 0.101361i
\(293\) −3.00000 + 5.19615i −0.175262 + 0.303562i −0.940252 0.340480i \(-0.889411\pi\)
0.764990 + 0.644042i \(0.222744\pi\)
\(294\) 0 0
\(295\) −12.0000 20.7846i −0.698667 1.21013i
\(296\) −6.00000 −0.348743
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) −24.0000 + 41.5692i −1.38334 + 2.39601i
\(302\) 2.00000 3.46410i 0.115087 0.199337i
\(303\) 0 0
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −16.0000 −0.913168 −0.456584 0.889680i \(-0.650927\pi\)
−0.456584 + 0.889680i \(0.650927\pi\)
\(308\) 8.00000 + 13.8564i 0.455842 + 0.789542i
\(309\) 0 0
\(310\) −4.00000 + 6.92820i −0.227185 + 0.393496i
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 3.00000 + 5.19615i 0.169570 + 0.293704i 0.938269 0.345907i \(-0.112429\pi\)
−0.768699 + 0.639611i \(0.779095\pi\)
\(314\) 18.0000 1.01580
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 13.0000 + 22.5167i 0.730153 + 1.26466i 0.956818 + 0.290689i \(0.0938844\pi\)
−0.226665 + 0.973973i \(0.572782\pi\)
\(318\) 0 0
\(319\) 20.0000 34.6410i 1.11979 1.93952i
\(320\) 7.00000 12.1244i 0.391312 0.677772i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 4.00000 + 6.92820i 0.221540 + 0.383718i
\(327\) 0 0
\(328\) 9.00000 15.5885i 0.496942 0.860729i
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 + 13.8564i 0.439720 + 0.761617i 0.997668 0.0682590i \(-0.0217444\pi\)
−0.557948 + 0.829876i \(0.688411\pi\)
\(332\) 4.00000 0.219529
\(333\) 0 0
\(334\) −8.00000 −0.437741
\(335\) −8.00000 13.8564i −0.437087 0.757056i
\(336\) 0 0
\(337\) −9.00000 + 15.5885i −0.490261 + 0.849157i −0.999937 0.0112091i \(-0.996432\pi\)
0.509676 + 0.860366i \(0.329765\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 0 0
\(340\) 2.00000 + 3.46410i 0.108465 + 0.187867i
\(341\) −16.0000 −0.866449
\(342\) 0 0
\(343\) −8.00000 −0.431959
\(344\) 18.0000 + 31.1769i 0.970495 + 1.68095i
\(345\) 0 0
\(346\) −3.00000 + 5.19615i −0.161281 + 0.279347i
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 0 0
\(349\) 13.0000 + 22.5167i 0.695874 + 1.20529i 0.969885 + 0.243563i \(0.0783162\pi\)
−0.274011 + 0.961727i \(0.588351\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) 20.0000 1.06600
\(353\) −1.00000 1.73205i −0.0532246 0.0921878i 0.838186 0.545385i \(-0.183617\pi\)
−0.891410 + 0.453197i \(0.850283\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1.00000 1.73205i 0.0529999 0.0917985i
\(357\) 0 0
\(358\) −2.00000 3.46410i −0.105703 0.183083i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −5.00000 8.66025i −0.262794 0.455173i
\(363\) 0 0
\(364\) −2.00000 + 3.46410i −0.104828 + 0.181568i
\(365\) 2.00000 3.46410i 0.104685 0.181319i
\(366\) 0 0
\(367\) −8.00000 13.8564i −0.417597 0.723299i 0.578101 0.815966i \(-0.303794\pi\)
−0.995697 + 0.0926670i \(0.970461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −4.00000 −0.207950
\(371\) −12.0000 20.7846i −0.623009 1.07908i
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 4.00000 6.92820i 0.206835 0.358249i
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000 0.515026
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 + 6.92820i −0.204658 + 0.354478i
\(383\) −8.00000 + 13.8564i −0.408781 + 0.708029i −0.994753 0.102302i \(-0.967379\pi\)
0.585973 + 0.810331i \(0.300713\pi\)
\(384\) 0 0
\(385\) 16.0000 + 27.7128i 0.815436 + 1.41238i
\(386\) −18.0000 −0.916176
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 11.0000 + 19.0526i 0.557722 + 0.966003i 0.997686 + 0.0679877i \(0.0216579\pi\)
−0.439964 + 0.898015i \(0.645009\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −13.5000 + 23.3827i −0.681853 + 1.18100i
\(393\) 0 0
\(394\) −9.00000 15.5885i −0.453413 0.785335i
\(395\) −16.0000 −0.805047
\(396\) 0 0
\(397\) 38.0000 1.90717 0.953583 0.301131i \(-0.0973643\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 4.00000 + 6.92820i 0.200502 + 0.347279i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 11.0000 19.0526i 0.549314 0.951439i −0.449008 0.893528i \(-0.648223\pi\)
0.998322 0.0579116i \(-0.0184442\pi\)
\(402\) 0 0
\(403\) −2.00000 3.46410i −0.0996271 0.172559i
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 40.0000 1.98517
\(407\) −4.00000 6.92820i −0.198273 0.343418i
\(408\) 0 0
\(409\) −17.0000 + 29.4449i −0.840596 + 1.45595i 0.0487958 + 0.998809i \(0.484462\pi\)
−0.889392 + 0.457146i \(0.848872\pi\)
\(410\) 6.00000 10.3923i 0.296319 0.513239i
\(411\) 0 0
\(412\) 0 0
\(413\) 48.0000 2.36193
\(414\) 0 0
\(415\) 8.00000 0.392705
\(416\) 2.50000 + 4.33013i 0.122573 + 0.212302i
\(417\) 0 0
\(418\) 0 0
\(419\) 2.00000 3.46410i 0.0977064 0.169232i −0.813029 0.582224i \(-0.802183\pi\)
0.910735 + 0.412991i \(0.135516\pi\)
\(420\) 0 0
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) 20.0000 0.973585
\(423\) 0 0
\(424\) −18.0000 −0.874157
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) −4.00000 + 6.92820i −0.193574 + 0.335279i
\(428\) −6.00000 + 10.3923i −0.290021 + 0.502331i
\(429\) 0 0
\(430\) 12.0000 + 20.7846i 0.578691 + 1.00232i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) −8.00000 13.8564i −0.384012 0.665129i
\(435\) 0 0
\(436\) −1.00000 + 1.73205i −0.0478913 + 0.0829502i
\(437\) 0 0
\(438\) 0 0
\(439\) −16.0000 27.7128i −0.763638 1.32266i −0.940963 0.338508i \(-0.890078\pi\)
0.177325 0.984152i \(-0.443256\pi\)
\(440\) 24.0000 1.14416
\(441\) 0 0
\(442\) 2.00000 0.0951303
\(443\) −2.00000 3.46410i −0.0950229 0.164584i 0.814595 0.580030i \(-0.196959\pi\)
−0.909618 + 0.415445i \(0.863626\pi\)
\(444\) 0 0
\(445\) 2.00000 3.46410i 0.0948091 0.164214i
\(446\) 2.00000 3.46410i 0.0947027 0.164030i
\(447\) 0 0
\(448\) 14.0000 + 24.2487i 0.661438 + 1.14564i
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) 0 0
\(454\) 10.0000 17.3205i 0.469323 0.812892i
\(455\) −4.00000 + 6.92820i −0.187523 + 0.324799i
\(456\) 0 0
\(457\) −1.00000 1.73205i −0.0467780 0.0810219i 0.841688 0.539964i \(-0.181562\pi\)
−0.888466 + 0.458942i \(0.848229\pi\)
\(458\) 10.0000 0.467269
\(459\) 0 0
\(460\) 0 0
\(461\) −19.0000 32.9090i −0.884918 1.53272i −0.845807 0.533488i \(-0.820881\pi\)
−0.0391109 0.999235i \(-0.512453\pi\)
\(462\) 0 0
\(463\) −2.00000 + 3.46410i −0.0929479 + 0.160990i −0.908750 0.417340i \(-0.862962\pi\)
0.815802 + 0.578331i \(0.196296\pi\)
\(464\) 5.00000 8.66025i 0.232119 0.402042i
\(465\) 0 0
\(466\) 7.00000 + 12.1244i 0.324269 + 0.561650i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 32.0000 1.47762
\(470\) 0 0
\(471\) 0 0
\(472\) 18.0000 31.1769i 0.828517 1.43503i
\(473\) −24.0000 + 41.5692i −1.10352 + 1.91135i
\(474\) 0 0
\(475\) 0 0
\(476\) −8.00000 −0.366679
\(477\) 0 0
\(478\) −24.0000 −1.09773
\(479\) −12.0000 20.7846i −0.548294 0.949673i −0.998392 0.0566937i \(-0.981944\pi\)
0.450098 0.892979i \(-0.351389\pi\)
\(480\) 0 0
\(481\) 1.00000 1.73205i 0.0455961 0.0789747i
\(482\) 5.00000 8.66025i 0.227744 0.394464i
\(483\) 0 0
\(484\) 2.50000 + 4.33013i 0.113636 + 0.196824i
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 3.00000 + 5.19615i 0.135804 + 0.235219i
\(489\) 0 0
\(490\) −9.00000 + 15.5885i −0.406579 + 0.704215i
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) 0 0
\(493\) 10.0000 + 17.3205i 0.450377 + 0.780076i
\(494\) 0 0
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 12.0000 20.7846i 0.537194 0.930447i −0.461860 0.886953i \(-0.652818\pi\)
0.999054 0.0434940i \(-0.0138489\pi\)
\(500\) 6.00000 10.3923i 0.268328 0.464758i
\(501\) 0 0
\(502\) 6.00000 + 10.3923i 0.267793 + 0.463831i
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −36.0000 −1.60198
\(506\) 0 0
\(507\) 0 0
\(508\) −8.00000 + 13.8564i −0.354943 + 0.614779i
\(509\) 5.00000 8.66025i 0.221621 0.383859i −0.733679 0.679496i \(-0.762199\pi\)
0.955300 + 0.295637i \(0.0955319\pi\)
\(510\) 0 0
\(511\) 4.00000 + 6.92820i 0.176950 + 0.306486i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) 26.0000 1.14681
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 4.00000 6.92820i 0.175750 0.304408i
\(519\) 0 0
\(520\) 3.00000 + 5.19615i 0.131559 + 0.227866i
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) −2.00000 3.46410i −0.0873704 0.151330i
\(525\) 0 0
\(526\) −12.0000 + 20.7846i −0.523225 + 0.906252i
\(527\) 4.00000 6.92820i 0.174243 0.301797i
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −12.0000 −0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) 3.00000 + 5.19615i 0.129944 + 0.225070i
\(534\) 0 0
\(535\) −12.0000 + 20.7846i −0.518805 + 0.898597i
\(536\) 12.0000 20.7846i 0.518321 0.897758i
\(537\) 0 0
\(538\) −11.0000 19.0526i −0.474244 0.821414i
\(539\) −36.0000 −1.55063
\(540\) 0 0
\(541\) 30.0000 1.28980 0.644900 0.764267i \(-0.276899\pi\)
0.644900 + 0.764267i \(0.276899\pi\)
\(542\) −6.00000 10.3923i −0.257722 0.446388i
\(543\) 0 0
\(544\) −5.00000 + 8.66025i −0.214373 + 0.371305i
\(545\) −2.00000 + 3.46410i −0.0856706 + 0.148386i
\(546\) 0 0
\(547\) −2.00000 3.46410i −0.0855138 0.148114i 0.820096 0.572226i \(-0.193920\pi\)
−0.905610 + 0.424111i \(0.860587\pi\)
\(548\) 6.00000 0.256307
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 0 0
\(552\) 0 0
\(553\) 16.0000 27.7128i 0.680389 1.17847i
\(554\) −5.00000 + 8.66025i −0.212430 + 0.367939i
\(555\) 0 0
\(556\) 6.00000 + 10.3923i 0.254457 + 0.440732i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 4.00000 + 6.92820i 0.169031 + 0.292770i
\(561\) 0 0
\(562\) 5.00000 8.66025i 0.210912 0.365311i
\(563\) −6.00000 + 10.3923i −0.252870 + 0.437983i −0.964315 0.264758i \(-0.914708\pi\)
0.711445 + 0.702742i \(0.248041\pi\)
\(564\) 0 0
\(565\) 6.00000 + 10.3923i 0.252422 + 0.437208i
\(566\) −12.0000 −0.504398
\(567\) 0 0
\(568\) 0 0
\(569\) 17.0000 + 29.4449i 0.712677 + 1.23439i 0.963849 + 0.266450i \(0.0858508\pi\)
−0.251172 + 0.967943i \(0.580816\pi\)
\(570\) 0 0
\(571\) 2.00000 3.46410i 0.0836974 0.144968i −0.821138 0.570730i \(-0.806660\pi\)
0.904835 + 0.425762i \(0.139994\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 12.0000 + 20.7846i 0.500870 + 0.867533i
\(575\) 0 0
\(576\) 0 0
\(577\) −46.0000 −1.91501 −0.957503 0.288425i \(-0.906868\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −6.50000 11.2583i −0.270364 0.468285i
\(579\) 0 0
\(580\) −10.0000 + 17.3205i −0.415227 + 0.719195i
\(581\) −8.00000 + 13.8564i −0.331896 + 0.574861i
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 14.0000 + 24.2487i 0.577842 + 1.00085i 0.995726 + 0.0923513i \(0.0294383\pi\)
−0.417885 + 0.908500i \(0.637228\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 12.0000 20.7846i 0.494032 0.855689i
\(591\) 0 0
\(592\) −1.00000 1.73205i −0.0410997 0.0711868i
\(593\) 26.0000 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(594\) 0 0
\(595\) −16.0000 −0.655936
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 0 0
\(598\) 0 0
\(599\) −20.0000 + 34.6410i −0.817178 + 1.41539i 0.0905757 + 0.995890i \(0.471129\pi\)
−0.907754 + 0.419504i \(0.862204\pi\)
\(600\) 0 0
\(601\) 19.0000 + 32.9090i 0.775026 + 1.34238i 0.934780 + 0.355228i \(0.115597\pi\)
−0.159754 + 0.987157i \(0.551070\pi\)
\(602\) −48.0000 −1.95633
\(603\) 0 0
\(604\) −4.00000 −0.162758
\(605\) 5.00000 + 8.66025i 0.203279 + 0.352089i
\(606\) 0 0
\(607\) 8.00000 13.8564i 0.324710 0.562414i −0.656744 0.754114i \(-0.728067\pi\)
0.981454 + 0.191700i \(0.0614000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 2.00000 + 3.46410i 0.0809776 + 0.140257i
\(611\) 0 0
\(612\) 0 0
\(613\) −2.00000 −0.0807792 −0.0403896 0.999184i \(-0.512860\pi\)
−0.0403896 + 0.999184i \(0.512860\pi\)
\(614\) −8.00000 13.8564i −0.322854 0.559199i
\(615\) 0 0
\(616\) −24.0000 + 41.5692i −0.966988 + 1.67487i
\(617\) 11.0000 19.0526i 0.442843 0.767027i −0.555056 0.831813i \(-0.687303\pi\)
0.997899 + 0.0647859i \(0.0206365\pi\)
\(618\) 0 0
\(619\) −12.0000 20.7846i −0.482321 0.835404i 0.517473 0.855699i \(-0.326873\pi\)
−0.999794 + 0.0202954i \(0.993539\pi\)
\(620\) 8.00000 0.321288
\(621\) 0 0
\(622\) 0 0
\(623\) 4.00000 + 6.92820i 0.160257 + 0.277573i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) −3.00000 + 5.19615i −0.119904 + 0.207680i
\(627\) 0 0
\(628\) −9.00000 15.5885i −0.359139 0.622047i
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) −12.0000 20.7846i −0.477334 0.826767i
\(633\) 0 0
\(634\) −13.0000 + 22.5167i −0.516296 + 0.894251i
\(635\) −16.0000 + 27.7128i −0.634941 + 1.09975i
\(636\) 0 0
\(637\) −4.50000 7.79423i −0.178296 0.308819i
\(638\) 40.0000 1.58362
\(639\) 0 0
\(640\) −6.00000 −0.237171
\(641\) 1.00000 + 1.73205i 0.0394976 + 0.0684119i 0.885098 0.465404i \(-0.154091\pi\)
−0.845601 + 0.533816i \(0.820758\pi\)
\(642\) 0 0
\(643\) 20.0000 34.6410i 0.788723 1.36611i −0.138027 0.990429i \(-0.544076\pi\)
0.926750 0.375680i \(-0.122591\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) −0.500000 0.866025i −0.0196116 0.0339683i
\(651\) 0 0
\(652\) 4.00000 6.92820i 0.156652 0.271329i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) −4.00000 6.92820i −0.156293 0.270707i
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 0 0
\(659\) 14.0000 + 24.2487i 0.545363 + 0.944596i 0.998584 + 0.0531977i \(0.0169414\pi\)
−0.453221 + 0.891398i \(0.649725\pi\)
\(660\) 0 0
\(661\) −15.0000 + 25.9808i −0.583432 + 1.01053i 0.411636 + 0.911348i \(0.364957\pi\)
−0.995069 + 0.0991864i \(0.968376\pi\)
\(662\) −8.00000 + 13.8564i −0.310929 + 0.538545i
\(663\) 0 0
\(664\) 6.00000 + 10.3923i 0.232845 + 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 4.00000 + 6.92820i 0.154765 + 0.268060i
\(669\) 0 0
\(670\) 8.00000 13.8564i 0.309067 0.535320i
\(671\) −4.00000 + 6.92820i −0.154418 + 0.267460i
\(672\) 0 0
\(673\) 7.00000 + 12.1244i 0.269830 + 0.467360i 0.968818 0.247774i \(-0.0796991\pi\)
−0.698988 + 0.715134i \(0.746366\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) 11.0000 + 19.0526i 0.422764 + 0.732249i 0.996209 0.0869952i \(-0.0277265\pi\)
−0.573444 + 0.819244i \(0.694393\pi\)
\(678\) 0 0
\(679\) 20.0000 34.6410i 0.767530 1.32940i
\(680\) −6.00000 + 10.3923i −0.230089 + 0.398527i
\(681\) 0 0
\(682\) −8.00000 13.8564i −0.306336 0.530589i
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) −4.00000 6.92820i −0.152721 0.264520i
\(687\) 0 0
\(688\) −6.00000 + 10.3923i −0.228748 + 0.396203i
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) 12.0000 + 20.7846i 0.456502 + 0.790684i 0.998773 0.0495194i \(-0.0157690\pi\)
−0.542272 + 0.840203i \(0.682436\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 12.0000 + 20.7846i 0.455186 + 0.788405i
\(696\) 0 0
\(697\) −6.00000 + 10.3923i −0.227266 + 0.393637i
\(698\) −13.0000 + 22.5167i −0.492057 + 0.852268i
\(699\) 0 0
\(700\) 2.00000 + 3.46410i 0.0755929 + 0.130931i
\(701\) 34.0000 1.28416 0.642081 0.766637i \(-0.278071\pi\)
0.642081 + 0.766637i \(0.278071\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 14.0000 + 24.2487i 0.527645 + 0.913908i
\(705\) 0 0
\(706\) 1.00000 1.73205i 0.0376355 0.0651866i
\(707\) 36.0000 62.3538i 1.35392 2.34506i
\(708\) 0 0
\(709\) 13.0000 + 22.5167i 0.488225 + 0.845631i 0.999908 0.0135434i \(-0.00431112\pi\)
−0.511683 + 0.859174i \(0.670978\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 0 0
\(714\) 0 0
\(715\) −4.00000 + 6.92820i −0.149592 + 0.259100i
\(716\) −2.00000 + 3.46410i −0.0747435 + 0.129460i
\(717\) 0 0
\(718\) −12.0000 20.7846i −0.447836 0.775675i
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −9.50000 16.4545i −0.353553 0.612372i
\(723\) 0 0
\(724\) −5.00000 + 8.66025i −0.185824 + 0.321856i
\(725\) 5.00000 8.66025i 0.185695 0.321634i
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) −12.0000 −0.444750
\(729\) 0 0
\(730\) 4.00000 0.148047
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) 0 0
\(733\) −15.0000 + 25.9808i −0.554038 + 0.959621i 0.443940 + 0.896056i \(0.353580\pi\)
−0.997978 + 0.0635649i \(0.979753\pi\)
\(734\) 8.00000 13.8564i 0.295285 0.511449i
\(735\) 0 0
\(736\) 0 0
\(737\) 32.0000 1.17874
\(738\) 0 0
\(739\) 32.0000 1.17714 0.588570 0.808447i \(-0.299691\pi\)
0.588570 + 0.808447i \(0.299691\pi\)
\(740\) 2.00000 + 3.46410i 0.0735215 + 0.127343i
\(741\) 0 0
\(742\) 12.0000 20.7846i 0.440534 0.763027i
\(743\) 24.0000 41.5692i 0.880475 1.52503i 0.0296605 0.999560i \(-0.490557\pi\)
0.850814 0.525467i \(-0.176109\pi\)
\(744\) 0 0
\(745\) 6.00000 + 10.3923i 0.219823 + 0.380745i
\(746\) 26.0000 0.951928
\(747\) 0 0
\(748\) −8.00000 −0.292509
\(749\) −24.0000 41.5692i −0.876941 1.51891i
\(750\) 0 0
\(751\) −4.00000 + 6.92820i −0.145962 + 0.252814i −0.929731 0.368238i \(-0.879961\pi\)
0.783769 + 0.621052i \(0.213294\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 5.00000 + 8.66025i 0.182089 + 0.315388i
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) −12.0000 20.7846i −0.435860 0.754931i
\(759\) 0 0
\(760\) 0 0
\(761\) −5.00000 + 8.66025i −0.181250 + 0.313934i −0.942306 0.334752i \(-0.891348\pi\)
0.761057 + 0.648686i \(0.224681\pi\)
\(762\) 0 0
\(763\) −4.00000 6.92820i −0.144810 0.250818i
\(764\) 8.00000 0.289430
\(765\) 0 0
\(766\) −16.0000 −0.578103
\(767\) 6.00000 + 10.3923i 0.216647 + 0.375244i
\(768\) 0 0
\(769\) 15.0000 25.9808i 0.540914 0.936890i −0.457938 0.888984i \(-0.651412\pi\)
0.998852 0.0479061i \(-0.0152548\pi\)
\(770\) −16.0000 + 27.7128i −0.576600 + 0.998700i
\(771\) 0 0
\(772\) 9.00000 + 15.5885i 0.323917 + 0.561041i
\(773\) −10.0000 −0.359675 −0.179838 0.983696i \(-0.557557\pi\)
−0.179838 + 0.983696i \(0.557557\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) −15.0000 25.9808i −0.538469 0.932655i
\(777\) 0 0
\(778\) −11.0000 + 19.0526i −0.394369 + 0.683067i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −9.00000 −0.321429
\(785\) −18.0000 31.1769i −0.642448 1.11275i
\(786\) 0 0
\(787\) 16.0000 27.7128i 0.570338 0.987855i −0.426193 0.904632i \(-0.640145\pi\)
0.996531 0.0832226i \(-0.0265213\pi\)
\(788\) −9.00000 + 15.5885i −0.320612 + 0.555316i
\(789\) 0 0
\(790\) −8.00000 13.8564i −0.284627 0.492989i
\(791\) −24.0000 −0.853342
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 19.0000 + 32.9090i 0.674285 + 1.16790i
\(795\) 0 0
\(796\) 4.00000 6.92820i 0.141776 0.245564i
\(797\) 23.0000 39.8372i 0.814702 1.41110i −0.0948400 0.995493i \(-0.530234\pi\)
0.909542 0.415612i \(-0.136433\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 5.00000 0.176777
\(801\) 0 0
\(802\) 22.0000 0.776847
\(803\) 4.00000 + 6.92820i 0.141157 + 0.244491i
\(804\) 0 0
\(805\) 0 0
\(806\) 2.00000 3.46410i 0.0704470 0.122018i
\(807\) 0 0
\(808\) −27.0000 46.7654i −0.949857 1.64520i
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 8.00000 0.280918 0.140459 0.990086i \(-0.455142\pi\)
0.140459 + 0.990086i \(0.455142\pi\)
\(812\) −20.0000 34.6410i −0.701862 1.21566i
\(813\) 0 0
\(814\) 4.00000 6.92820i 0.140200 0.242833i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 0 0
\(817\) 0 0
\(818\) −34.0000 −1.18878
\(819\) 0 0
\(820\) −12.0000 −0.419058
\(821\) −11.0000 19.0526i −0.383903 0.664939i 0.607714 0.794156i \(-0.292087\pi\)
−0.991616 + 0.129217i \(0.958754\pi\)
\(822\) 0 0
\(823\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 24.0000 + 41.5692i 0.835067 + 1.44638i
\(827\) −4.00000 −0.139094 −0.0695468 0.997579i \(-0.522155\pi\)
−0.0695468 + 0.997579i \(0.522155\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 4.00000 + 6.92820i 0.138842 + 0.240481i
\(831\) 0 0
\(832\) −3.50000 + 6.06218i −0.121341 + 0.210168i
\(833\) 9.00000 15.5885i 0.311832 0.540108i
\(834\) 0 0
\(835\) 8.00000 + 13.8564i 0.276851 + 0.479521i
\(836\) 0 0
\(837\) 0 0
\(838\) 4.00000 0.138178
\(839\) 24.0000 + 41.5692i 0.828572 + 1.43513i 0.899158 + 0.437623i \(0.144180\pi\)
−0.0705865 + 0.997506i \(0.522487\pi\)
\(840\) 0 0
\(841\) −35.5000 + 61.4878i −1.22414 + 2.12027i
\(842\) −5.00000 + 8.66025i −0.172311 + 0.298452i
\(843\) 0 0
\(844\) −10.0000 17.3205i −0.344214 0.596196i
\(845\) −2.00000 −0.0688021
\(846\) 0 0
\(847\) −20.0000 −0.687208
\(848\) −3.00000 5.19615i −0.103020 0.178437i
\(849\) 0 0
\(850\) 1.00000 1.73205i 0.0342997 0.0594089i
\(851\) 0 0
\(852\) 0 0
\(853\) −15.0000 25.9808i −0.513590 0.889564i −0.999876 0.0157644i \(-0.994982\pi\)
0.486286 0.873800i \(-0.338351\pi\)
\(854\) −8.00000 −0.273754
\(855\) 0 0
\(856\) −36.0000 −1.23045
\(857\) −23.0000 39.8372i −0.785665 1.36081i −0.928601 0.371080i \(-0.878988\pi\)
0.142936 0.989732i \(-0.454346\pi\)
\(858\) 0 0
\(859\) 22.0000 38.1051i 0.750630 1.30013i −0.196887 0.980426i \(-0.563083\pi\)
0.947518 0.319704i \(-0.103583\pi\)
\(860\) 12.0000 20.7846i 0.409197 0.708749i
\(861\) 0 0
\(862\) 0 0
\(863\) −16.0000 −0.544646 −0.272323 0.962206i \(-0.587792\pi\)
−0.272323 + 0.962206i \(0.587792\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 17.0000 + 29.4449i 0.577684 + 1.00058i
\(867\) 0 0
\(868\) −8.00000 + 13.8564i −0.271538 + 0.470317i
\(869\) 16.0000 27.7128i 0.542763 0.940093i
\(870\) 0 0
\(871\) 4.00000 + 6.92820i 0.135535 + 0.234753i
\(872\) −6.00000 −0.203186
\(873\) 0 0
\(874\) 0 0
\(875\) 24.0000 + 41.5692i 0.811348 + 1.40530i
\(876\) 0 0
\(877\) 5.00000 8.66025i 0.168838 0.292436i −0.769174 0.639040i \(-0.779332\pi\)
0.938012 + 0.346604i \(0.112665\pi\)
\(878\) 16.0000 27.7128i 0.539974 0.935262i
\(879\) 0 0
\(880\) 4.00000 + 6.92820i 0.134840 + 0.233550i
\(881\) −58.0000 −1.95407 −0.977035 0.213080i \(-0.931651\pi\)
−0.977035 + 0.213080i \(0.931651\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) −1.00000 1.73205i −0.0336336 0.0582552i
\(885\) 0 0
\(886\) 2.00000 3.46410i 0.0671913 0.116379i
\(887\) −24.0000 + 41.5692i −0.805841 + 1.39576i 0.109881 + 0.993945i \(0.464953\pi\)
−0.915722 + 0.401813i \(0.868380\pi\)
\(888\) 0 0
\(889\) −32.0000 55.4256i −1.07325 1.85892i
\(890\) 4.00000 0.134080
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 0 0
\(894\) 0 0
\(895\) −4.00000 + 6.92820i −0.133705 + 0.231584i
\(896\) 6.00000 10.3923i 0.200446 0.347183i
\(897\) 0 0
\(898\) −11.0000 19.0526i −0.367075 0.635792i
\(899\) 40.0000 1.33407
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 12.0000 + 20.7846i 0.399556 + 0.692052i
\(903\) 0 0
\(904\) −9.00000 + 15.5885i −0.299336 + 0.518464i
\(905\) −10.0000 + 17.3205i −0.332411 + 0.575753i
\(906\) 0 0
\(907\) −6.00000 10.3923i −0.199227 0.345071i 0.749051 0.662512i \(-0.230510\pi\)
−0.948278 + 0.317441i \(0.897176\pi\)
\(908\) −20.0000 −0.663723
\(909\) 0 0
\(910\) −8.00000 −0.265197
\(911\) −20.0000 34.6410i −0.662630 1.14771i −0.979922 0.199380i \(-0.936107\pi\)
0.317293 0.948328i \(-0.397226\pi\)
\(912\) 0 0
\(913\) −8.00000 + 13.8564i −0.264761 + 0.458580i
\(914\) 1.00000 1.73205i 0.0330771 0.0572911i
\(915\) 0 0
\(916\) −5.00000 8.66025i −0.165205 0.286143i
\(917\) 16.0000 0.528367
\(918\) 0 0
\(919\) −48.0000 −1.58337 −0.791687 0.610927i \(-0.790797\pi\)
−0.791687 + 0.610927i \(0.790797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 19.0000 32.9090i 0.625732 1.08380i
\(923\) 0 0
\(924\) 0 0
\(925\) −1.00000 1.73205i −0.0328798 0.0569495i
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) −50.0000 −1.64133
\(929\) 15.0000 + 25.9808i 0.492134 + 0.852401i 0.999959 0.00905914i \(-0.00288365\pi\)
−0.507825 + 0.861460i \(0.669550\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 7.00000 12.1244i 0.229293 0.397146i
\(933\) 0 0
\(934\) −6.00000 10.3923i −0.196326 0.340047i
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 16.0000 + 27.7128i 0.522419 + 0.904855i
\(939\) 0 0
\(940\) 0 0
\(941\) −7.00000 + 12.1244i −0.228193 + 0.395243i −0.957273 0.289187i \(-0.906615\pi\)
0.729079 + 0.684429i \(0.239949\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) −30.0000 51.9615i −0.974869 1.68852i −0.680367 0.732872i \(-0.738179\pi\)
−0.294502 0.955651i \(-0.595154\pi\)
\(948\) 0 0
\(949\) −1.00000 + 1.73205i −0.0324614 + 0.0562247i
\(950\) 0 0
\(951\) 0 0
\(952\) −12.0000 20.7846i −0.388922 0.673633i
\(953\) 30.0000 0.971795 0.485898 0.874016i \(-0.338493\pi\)
0.485898 + 0.874016i \(0.338493\pi\)
\(954\) 0 0
\(955\) 16.0000 0.517748
\(956\) 12.0000 + 20.7846i 0.388108 + 0.672222i
\(957\) 0 0
\(958\) 12.0000 20.7846i 0.387702 0.671520i
\(959\) −12.0000 + 20.7846i −0.387500 + 0.671170i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 2.00000 0.0644826
\(963\) 0 0
\(964\) −10.0000 −0.322078
\(965\) 18.0000 + 31.1769i 0.579441 + 1.00362i
\(966\) 0 0
\(967\) 26.0000 45.0333i 0.836104 1.44817i −0.0570251 0.998373i \(-0.518161\pi\)
0.893129 0.449801i \(-0.148505\pi\)
\(968\) −7.50000 + 12.9904i −0.241059 + 0.417527i
\(969\) 0 0
\(970\) −10.0000 17.3205i −0.321081 0.556128i
\(971\) 60.0000 1.92549 0.962746 0.270408i \(-0.0871586\pi\)
0.962746 + 0.270408i \(0.0871586\pi\)
\(972\) 0 0
\(973\) −48.0000 −1.53881
\(974\) 6.00000 + 10.3923i 0.192252 + 0.332991i
\(975\) 0 0
\(976\) −1.00000 + 1.73205i −0.0320092 + 0.0554416i
\(977\) −21.0000 + 36.3731i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(978\) 0 0
\(979\) 4.00000 + 6.92820i 0.127841 + 0.221426i
\(980\) 18.0000 0.574989
\(981\) 0 0
\(982\) −12.0000 −0.382935
\(983\) 8.00000 + 13.8564i 0.255160 + 0.441951i 0.964939 0.262474i \(-0.0845384\pi\)
−0.709779 + 0.704425i \(0.751205\pi\)
\(984\) 0 0
\(985\) −18.0000 + 31.1769i −0.573528 + 0.993379i
\(986\) −10.0000 + 17.3205i −0.318465 + 0.551597i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 10.0000 + 17.3205i 0.317500 + 0.549927i
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00000 13.8564i 0.253617 0.439278i
\(996\) 0 0
\(997\) 13.0000 + 22.5167i 0.411714 + 0.713110i 0.995077 0.0991016i \(-0.0315969\pi\)
−0.583363 + 0.812211i \(0.698264\pi\)
\(998\) 24.0000 0.759707
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.d.352.1 2
3.2 odd 2 1053.2.e.b.352.1 2
9.2 odd 6 1053.2.e.b.703.1 2
9.4 even 3 117.2.a.a.1.1 1
9.5 odd 6 39.2.a.a.1.1 1
9.7 even 3 inner 1053.2.e.d.703.1 2
36.23 even 6 624.2.a.i.1.1 1
36.31 odd 6 1872.2.a.h.1.1 1
45.4 even 6 2925.2.a.p.1.1 1
45.13 odd 12 2925.2.c.e.2224.2 2
45.14 odd 6 975.2.a.f.1.1 1
45.22 odd 12 2925.2.c.e.2224.1 2
45.23 even 12 975.2.c.f.274.1 2
45.32 even 12 975.2.c.f.274.2 2
63.13 odd 6 5733.2.a.e.1.1 1
63.41 even 6 1911.2.a.f.1.1 1
72.5 odd 6 2496.2.a.q.1.1 1
72.13 even 6 7488.2.a.bl.1.1 1
72.59 even 6 2496.2.a.e.1.1 1
72.67 odd 6 7488.2.a.by.1.1 1
99.32 even 6 4719.2.a.c.1.1 1
117.5 even 12 507.2.b.a.337.1 2
117.23 odd 6 507.2.e.b.22.1 2
117.31 odd 12 1521.2.b.b.1351.2 2
117.32 even 12 507.2.j.e.361.1 4
117.41 even 12 507.2.j.e.316.2 4
117.50 even 12 507.2.j.e.316.1 4
117.59 even 12 507.2.j.e.361.2 4
117.68 odd 6 507.2.e.a.22.1 2
117.77 odd 6 507.2.a.a.1.1 1
117.86 even 12 507.2.b.a.337.2 2
117.95 odd 6 507.2.e.b.484.1 2
117.103 even 6 1521.2.a.e.1.1 1
117.112 odd 12 1521.2.b.b.1351.1 2
117.113 odd 6 507.2.e.a.484.1 2
468.311 even 6 8112.2.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.a.a.1.1 1 9.5 odd 6
117.2.a.a.1.1 1 9.4 even 3
507.2.a.a.1.1 1 117.77 odd 6
507.2.b.a.337.1 2 117.5 even 12
507.2.b.a.337.2 2 117.86 even 12
507.2.e.a.22.1 2 117.68 odd 6
507.2.e.a.484.1 2 117.113 odd 6
507.2.e.b.22.1 2 117.23 odd 6
507.2.e.b.484.1 2 117.95 odd 6
507.2.j.e.316.1 4 117.50 even 12
507.2.j.e.316.2 4 117.41 even 12
507.2.j.e.361.1 4 117.32 even 12
507.2.j.e.361.2 4 117.59 even 12
624.2.a.i.1.1 1 36.23 even 6
975.2.a.f.1.1 1 45.14 odd 6
975.2.c.f.274.1 2 45.23 even 12
975.2.c.f.274.2 2 45.32 even 12
1053.2.e.b.352.1 2 3.2 odd 2
1053.2.e.b.703.1 2 9.2 odd 6
1053.2.e.d.352.1 2 1.1 even 1 trivial
1053.2.e.d.703.1 2 9.7 even 3 inner
1521.2.a.e.1.1 1 117.103 even 6
1521.2.b.b.1351.1 2 117.112 odd 12
1521.2.b.b.1351.2 2 117.31 odd 12
1872.2.a.h.1.1 1 36.31 odd 6
1911.2.a.f.1.1 1 63.41 even 6
2496.2.a.e.1.1 1 72.59 even 6
2496.2.a.q.1.1 1 72.5 odd 6
2925.2.a.p.1.1 1 45.4 even 6
2925.2.c.e.2224.1 2 45.22 odd 12
2925.2.c.e.2224.2 2 45.13 odd 12
4719.2.a.c.1.1 1 99.32 even 6
5733.2.a.e.1.1 1 63.13 odd 6
7488.2.a.bl.1.1 1 72.13 even 6
7488.2.a.by.1.1 1 72.67 odd 6
8112.2.a.s.1.1 1 468.311 even 6