Properties

Label 1053.2.b.j.649.8
Level $1053$
Weight $2$
Character 1053.649
Analytic conductor $8.408$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1053,2,Mod(649,1053)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1053.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 91x^{6} + 222x^{4} + 228x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.8
Root \(1.63641i\) of defining polynomial
Character \(\chi\) \(=\) 1053.649
Dual form 1053.2.b.j.649.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.63641i q^{2} -0.677835 q^{4} -1.09738i q^{5} -3.20939i q^{7} +2.16360i q^{8} +1.79576 q^{10} -1.75848i q^{11} +(-3.57405 - 0.475605i) q^{13} +5.25188 q^{14} -4.89621 q^{16} +1.47360 q^{17} -3.61452i q^{19} +0.743842i q^{20} +2.87759 q^{22} +4.69197 q^{23} +3.79576 q^{25} +(0.778285 - 5.84860i) q^{26} +2.17544i q^{28} -1.91817 q^{29} -6.56129i q^{31} -3.68500i q^{32} +2.41141i q^{34} -3.52192 q^{35} -11.6237i q^{37} +5.91483 q^{38} +2.37429 q^{40} +5.40415i q^{41} -1.77828 q^{43} +1.19196i q^{44} +7.67798i q^{46} -10.2774i q^{47} -3.30020 q^{49} +6.21142i q^{50} +(2.42261 + 0.322382i) q^{52} +11.7738 q^{53} -1.92972 q^{55} +6.94385 q^{56} -3.13891i q^{58} -5.52622i q^{59} +1.97030 q^{61} +10.7370 q^{62} -3.76225 q^{64} +(-0.521919 + 3.92208i) q^{65} +8.26112i q^{67} -0.998855 q^{68} -5.76330i q^{70} -5.84860i q^{71} -1.24694i q^{73} +19.0212 q^{74} +2.45005i q^{76} -5.64365 q^{77} +0.485823 q^{79} +5.37300i q^{80} -8.84340 q^{82} +15.5135i q^{83} -1.61709i q^{85} -2.91000i q^{86} +3.80465 q^{88} +13.4245i q^{89} +(-1.52640 + 11.4705i) q^{91} -3.18038 q^{92} +16.8181 q^{94} -3.96649 q^{95} -5.95544i q^{97} -5.40048i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 8 q^{10} + 4 q^{13} + 18 q^{14} - 4 q^{16} - 6 q^{17} + 10 q^{22} - 24 q^{23} + 12 q^{25} - 6 q^{26} - 12 q^{29} - 6 q^{35} - 12 q^{38} + 8 q^{40} - 4 q^{43} + 10 q^{49} + 54 q^{53} + 10 q^{55}+ \cdots - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63641i 1.15712i 0.815641 + 0.578558i \(0.196384\pi\)
−0.815641 + 0.578558i \(0.803616\pi\)
\(3\) 0 0
\(4\) −0.677835 −0.338918
\(5\) 1.09738i 0.490763i −0.969427 0.245381i \(-0.921087\pi\)
0.969427 0.245381i \(-0.0789132\pi\)
\(6\) 0 0
\(7\) 3.20939i 1.21304i −0.795070 0.606518i \(-0.792566\pi\)
0.795070 0.606518i \(-0.207434\pi\)
\(8\) 2.16360i 0.764949i
\(9\) 0 0
\(10\) 1.79576 0.567869
\(11\) 1.75848i 0.530201i −0.964221 0.265101i \(-0.914595\pi\)
0.964221 0.265101i \(-0.0854051\pi\)
\(12\) 0 0
\(13\) −3.57405 0.475605i −0.991262 0.131909i
\(14\) 5.25188 1.40362
\(15\) 0 0
\(16\) −4.89621 −1.22405
\(17\) 1.47360 0.357399 0.178700 0.983904i \(-0.442811\pi\)
0.178700 + 0.983904i \(0.442811\pi\)
\(18\) 0 0
\(19\) 3.61452i 0.829227i −0.909998 0.414614i \(-0.863917\pi\)
0.909998 0.414614i \(-0.136083\pi\)
\(20\) 0.743842i 0.166328i
\(21\) 0 0
\(22\) 2.87759 0.613504
\(23\) 4.69197 0.978343 0.489172 0.872187i \(-0.337299\pi\)
0.489172 + 0.872187i \(0.337299\pi\)
\(24\) 0 0
\(25\) 3.79576 0.759152
\(26\) 0.778285 5.84860i 0.152634 1.14700i
\(27\) 0 0
\(28\) 2.17544i 0.411120i
\(29\) −1.91817 −0.356195 −0.178098 0.984013i \(-0.556994\pi\)
−0.178098 + 0.984013i \(0.556994\pi\)
\(30\) 0 0
\(31\) 6.56129i 1.17844i −0.807972 0.589221i \(-0.799435\pi\)
0.807972 0.589221i \(-0.200565\pi\)
\(32\) 3.68500i 0.651422i
\(33\) 0 0
\(34\) 2.41141i 0.413553i
\(35\) −3.52192 −0.595313
\(36\) 0 0
\(37\) 11.6237i 1.91093i −0.295103 0.955465i \(-0.595354\pi\)
0.295103 0.955465i \(-0.404646\pi\)
\(38\) 5.91483 0.959512
\(39\) 0 0
\(40\) 2.37429 0.375408
\(41\) 5.40415i 0.843986i 0.906599 + 0.421993i \(0.138669\pi\)
−0.906599 + 0.421993i \(0.861331\pi\)
\(42\) 0 0
\(43\) −1.77828 −0.271186 −0.135593 0.990765i \(-0.543294\pi\)
−0.135593 + 0.990765i \(0.543294\pi\)
\(44\) 1.19196i 0.179695i
\(45\) 0 0
\(46\) 7.67798i 1.13206i
\(47\) 10.2774i 1.49912i −0.661937 0.749559i \(-0.730265\pi\)
0.661937 0.749559i \(-0.269735\pi\)
\(48\) 0 0
\(49\) −3.30020 −0.471458
\(50\) 6.21142i 0.878427i
\(51\) 0 0
\(52\) 2.42261 + 0.322382i 0.335956 + 0.0447063i
\(53\) 11.7738 1.61726 0.808628 0.588320i \(-0.200211\pi\)
0.808628 + 0.588320i \(0.200211\pi\)
\(54\) 0 0
\(55\) −1.92972 −0.260203
\(56\) 6.94385 0.927911
\(57\) 0 0
\(58\) 3.13891i 0.412159i
\(59\) 5.52622i 0.719452i −0.933058 0.359726i \(-0.882870\pi\)
0.933058 0.359726i \(-0.117130\pi\)
\(60\) 0 0
\(61\) 1.97030 0.252271 0.126135 0.992013i \(-0.459743\pi\)
0.126135 + 0.992013i \(0.459743\pi\)
\(62\) 10.7370 1.36359
\(63\) 0 0
\(64\) −3.76225 −0.470282
\(65\) −0.521919 + 3.92208i −0.0647361 + 0.486474i
\(66\) 0 0
\(67\) 8.26112i 1.00926i 0.863337 + 0.504628i \(0.168370\pi\)
−0.863337 + 0.504628i \(0.831630\pi\)
\(68\) −0.998855 −0.121129
\(69\) 0 0
\(70\) 5.76330i 0.688846i
\(71\) 5.84860i 0.694101i −0.937846 0.347051i \(-0.887183\pi\)
0.937846 0.347051i \(-0.112817\pi\)
\(72\) 0 0
\(73\) 1.24694i 0.145943i −0.997334 0.0729714i \(-0.976752\pi\)
0.997334 0.0729714i \(-0.0232482\pi\)
\(74\) 19.0212 2.21117
\(75\) 0 0
\(76\) 2.45005i 0.281040i
\(77\) −5.64365 −0.643153
\(78\) 0 0
\(79\) 0.485823 0.0546594 0.0273297 0.999626i \(-0.491300\pi\)
0.0273297 + 0.999626i \(0.491300\pi\)
\(80\) 5.37300i 0.600719i
\(81\) 0 0
\(82\) −8.84340 −0.976590
\(83\) 15.5135i 1.70283i 0.524490 + 0.851417i \(0.324256\pi\)
−0.524490 + 0.851417i \(0.675744\pi\)
\(84\) 0 0
\(85\) 1.61709i 0.175398i
\(86\) 2.91000i 0.313794i
\(87\) 0 0
\(88\) 3.80465 0.405577
\(89\) 13.4245i 1.42300i 0.702688 + 0.711498i \(0.251983\pi\)
−0.702688 + 0.711498i \(0.748017\pi\)
\(90\) 0 0
\(91\) −1.52640 + 11.4705i −0.160011 + 1.20244i
\(92\) −3.18038 −0.331578
\(93\) 0 0
\(94\) 16.8181 1.73465
\(95\) −3.96649 −0.406954
\(96\) 0 0
\(97\) 5.95544i 0.604684i −0.953200 0.302342i \(-0.902232\pi\)
0.953200 0.302342i \(-0.0977684\pi\)
\(98\) 5.40048i 0.545531i
\(99\) 0 0
\(100\) −2.57290 −0.257290
\(101\) −15.8858 −1.58070 −0.790348 0.612658i \(-0.790100\pi\)
−0.790348 + 0.612658i \(0.790100\pi\)
\(102\) 0 0
\(103\) −6.25188 −0.616016 −0.308008 0.951384i \(-0.599662\pi\)
−0.308008 + 0.951384i \(0.599662\pi\)
\(104\) 1.02902 7.73281i 0.100904 0.758265i
\(105\) 0 0
\(106\) 19.2668i 1.87135i
\(107\) −10.6339 −1.02802 −0.514010 0.857784i \(-0.671840\pi\)
−0.514010 + 0.857784i \(0.671840\pi\)
\(108\) 0 0
\(109\) 16.0203i 1.53447i 0.641368 + 0.767234i \(0.278367\pi\)
−0.641368 + 0.767234i \(0.721633\pi\)
\(110\) 3.15781i 0.301085i
\(111\) 0 0
\(112\) 15.7139i 1.48482i
\(113\) −2.97736 −0.280086 −0.140043 0.990145i \(-0.544724\pi\)
−0.140043 + 0.990145i \(0.544724\pi\)
\(114\) 0 0
\(115\) 5.14887i 0.480134i
\(116\) 1.30020 0.120721
\(117\) 0 0
\(118\) 9.04316 0.832490
\(119\) 4.72935i 0.433539i
\(120\) 0 0
\(121\) 7.90776 0.718887
\(122\) 3.22421i 0.291906i
\(123\) 0 0
\(124\) 4.44747i 0.399395i
\(125\) 9.65228i 0.863326i
\(126\) 0 0
\(127\) 6.12947 0.543903 0.271951 0.962311i \(-0.412331\pi\)
0.271951 + 0.962311i \(0.412331\pi\)
\(128\) 13.5266i 1.19559i
\(129\) 0 0
\(130\) −6.41813 0.854073i −0.562907 0.0749072i
\(131\) 8.42527 0.736119 0.368060 0.929802i \(-0.380022\pi\)
0.368060 + 0.929802i \(0.380022\pi\)
\(132\) 0 0
\(133\) −11.6004 −1.00588
\(134\) −13.5186 −1.16783
\(135\) 0 0
\(136\) 3.18828i 0.273392i
\(137\) 7.74397i 0.661612i 0.943699 + 0.330806i \(0.107321\pi\)
−0.943699 + 0.330806i \(0.892679\pi\)
\(138\) 0 0
\(139\) 12.5959 1.06837 0.534186 0.845367i \(-0.320618\pi\)
0.534186 + 0.845367i \(0.320618\pi\)
\(140\) 2.38728 0.201762
\(141\) 0 0
\(142\) 9.57070 0.803156
\(143\) −0.836341 + 6.28488i −0.0699384 + 0.525568i
\(144\) 0 0
\(145\) 2.10496i 0.174807i
\(146\) 2.04050 0.168873
\(147\) 0 0
\(148\) 7.87898i 0.647648i
\(149\) 7.81445i 0.640184i 0.947386 + 0.320092i \(0.103714\pi\)
−0.947386 + 0.320092i \(0.896286\pi\)
\(150\) 0 0
\(151\) 17.6763i 1.43848i 0.694762 + 0.719239i \(0.255509\pi\)
−0.694762 + 0.719239i \(0.744491\pi\)
\(152\) 7.82038 0.634317
\(153\) 0 0
\(154\) 9.23532i 0.744203i
\(155\) −7.20022 −0.578335
\(156\) 0 0
\(157\) −17.7995 −1.42055 −0.710277 0.703923i \(-0.751430\pi\)
−0.710277 + 0.703923i \(0.751430\pi\)
\(158\) 0.795006i 0.0632473i
\(159\) 0 0
\(160\) −4.04384 −0.319693
\(161\) 15.0584i 1.18677i
\(162\) 0 0
\(163\) 16.7251i 1.31001i −0.755624 0.655006i \(-0.772666\pi\)
0.755624 0.655006i \(-0.227334\pi\)
\(164\) 3.66312i 0.286042i
\(165\) 0 0
\(166\) −25.3865 −1.97038
\(167\) 5.33479i 0.412818i −0.978466 0.206409i \(-0.933822\pi\)
0.978466 0.206409i \(-0.0661778\pi\)
\(168\) 0 0
\(169\) 12.5476 + 3.39967i 0.965200 + 0.261513i
\(170\) 2.64622 0.202956
\(171\) 0 0
\(172\) 1.20538 0.0919097
\(173\) −12.3066 −0.935653 −0.467827 0.883820i \(-0.654963\pi\)
−0.467827 + 0.883820i \(0.654963\pi\)
\(174\) 0 0
\(175\) 12.1821i 0.920879i
\(176\) 8.60988i 0.648994i
\(177\) 0 0
\(178\) −21.9680 −1.64657
\(179\) −18.8439 −1.40846 −0.704228 0.709974i \(-0.748707\pi\)
−0.704228 + 0.709974i \(0.748707\pi\)
\(180\) 0 0
\(181\) 10.8768 0.808469 0.404235 0.914655i \(-0.367538\pi\)
0.404235 + 0.914655i \(0.367538\pi\)
\(182\) −18.7705 2.49782i −1.39136 0.185151i
\(183\) 0 0
\(184\) 10.1516i 0.748383i
\(185\) −12.7556 −0.937813
\(186\) 0 0
\(187\) 2.59129i 0.189494i
\(188\) 6.96641i 0.508078i
\(189\) 0 0
\(190\) 6.49081i 0.470893i
\(191\) 18.5971 1.34564 0.672818 0.739808i \(-0.265084\pi\)
0.672818 + 0.739808i \(0.265084\pi\)
\(192\) 0 0
\(193\) 12.9574i 0.932692i −0.884602 0.466346i \(-0.845570\pi\)
0.884602 0.466346i \(-0.154430\pi\)
\(194\) 9.74554 0.699689
\(195\) 0 0
\(196\) 2.23699 0.159785
\(197\) 14.0963i 1.00432i 0.864774 + 0.502162i \(0.167462\pi\)
−0.864774 + 0.502162i \(0.832538\pi\)
\(198\) 0 0
\(199\) 16.6913 1.18321 0.591607 0.806226i \(-0.298494\pi\)
0.591607 + 0.806226i \(0.298494\pi\)
\(200\) 8.21252i 0.580713i
\(201\) 0 0
\(202\) 25.9957i 1.82905i
\(203\) 6.15616i 0.432078i
\(204\) 0 0
\(205\) 5.93040 0.414197
\(206\) 10.2306i 0.712802i
\(207\) 0 0
\(208\) 17.4993 + 2.32866i 1.21336 + 0.161464i
\(209\) −6.35605 −0.439657
\(210\) 0 0
\(211\) 5.48134 0.377351 0.188675 0.982040i \(-0.439581\pi\)
0.188675 + 0.982040i \(0.439581\pi\)
\(212\) −7.98070 −0.548117
\(213\) 0 0
\(214\) 17.4014i 1.18954i
\(215\) 1.95145i 0.133088i
\(216\) 0 0
\(217\) −21.0578 −1.42949
\(218\) −26.2158 −1.77556
\(219\) 0 0
\(220\) 1.30803 0.0881873
\(221\) −5.26670 0.700850i −0.354276 0.0471443i
\(222\) 0 0
\(223\) 9.17528i 0.614422i −0.951641 0.307211i \(-0.900604\pi\)
0.951641 0.307211i \(-0.0993958\pi\)
\(224\) −11.8266 −0.790198
\(225\) 0 0
\(226\) 4.87217i 0.324092i
\(227\) 3.44493i 0.228648i 0.993443 + 0.114324i \(0.0364703\pi\)
−0.993443 + 0.114324i \(0.963530\pi\)
\(228\) 0 0
\(229\) 12.4818i 0.824818i 0.910999 + 0.412409i \(0.135313\pi\)
−0.910999 + 0.412409i \(0.864687\pi\)
\(230\) 8.42565 0.555571
\(231\) 0 0
\(232\) 4.15016i 0.272471i
\(233\) −5.08821 −0.333340 −0.166670 0.986013i \(-0.553301\pi\)
−0.166670 + 0.986013i \(0.553301\pi\)
\(234\) 0 0
\(235\) −11.2782 −0.735711
\(236\) 3.74587i 0.243835i
\(237\) 0 0
\(238\) 7.73915 0.501655
\(239\) 1.51801i 0.0981917i −0.998794 0.0490958i \(-0.984366\pi\)
0.998794 0.0490958i \(-0.0156340\pi\)
\(240\) 0 0
\(241\) 19.1028i 1.23052i −0.788324 0.615260i \(-0.789051\pi\)
0.788324 0.615260i \(-0.210949\pi\)
\(242\) 12.9403i 0.831836i
\(243\) 0 0
\(244\) −1.33554 −0.0854990
\(245\) 3.62157i 0.231374i
\(246\) 0 0
\(247\) −1.71908 + 12.9184i −0.109383 + 0.821981i
\(248\) 14.1960 0.901448
\(249\) 0 0
\(250\) 15.7951 0.998968
\(251\) −7.96535 −0.502768 −0.251384 0.967887i \(-0.580886\pi\)
−0.251384 + 0.967887i \(0.580886\pi\)
\(252\) 0 0
\(253\) 8.25073i 0.518719i
\(254\) 10.0303i 0.629358i
\(255\) 0 0
\(256\) 14.6105 0.913157
\(257\) −21.0656 −1.31403 −0.657017 0.753875i \(-0.728182\pi\)
−0.657017 + 0.753875i \(0.728182\pi\)
\(258\) 0 0
\(259\) −37.3051 −2.31803
\(260\) 0.353775 2.65852i 0.0219402 0.164875i
\(261\) 0 0
\(262\) 13.7872i 0.851776i
\(263\) 24.1049 1.48637 0.743187 0.669084i \(-0.233313\pi\)
0.743187 + 0.669084i \(0.233313\pi\)
\(264\) 0 0
\(265\) 12.9203i 0.793689i
\(266\) 18.9830i 1.16392i
\(267\) 0 0
\(268\) 5.59968i 0.342055i
\(269\) −21.7780 −1.32783 −0.663913 0.747809i \(-0.731106\pi\)
−0.663913 + 0.747809i \(0.731106\pi\)
\(270\) 0 0
\(271\) 5.09950i 0.309773i −0.987932 0.154886i \(-0.950499\pi\)
0.987932 0.154886i \(-0.0495012\pi\)
\(272\) −7.21503 −0.437476
\(273\) 0 0
\(274\) −12.6723 −0.765562
\(275\) 6.67476i 0.402503i
\(276\) 0 0
\(277\) 12.2776 0.737687 0.368844 0.929491i \(-0.379754\pi\)
0.368844 + 0.929491i \(0.379754\pi\)
\(278\) 20.6121i 1.23623i
\(279\) 0 0
\(280\) 7.62003i 0.455384i
\(281\) 7.31219i 0.436208i 0.975925 + 0.218104i \(0.0699873\pi\)
−0.975925 + 0.218104i \(0.930013\pi\)
\(282\) 0 0
\(283\) 12.7977 0.760742 0.380371 0.924834i \(-0.375796\pi\)
0.380371 + 0.924834i \(0.375796\pi\)
\(284\) 3.96439i 0.235243i
\(285\) 0 0
\(286\) −10.2846 1.36860i −0.608143 0.0809268i
\(287\) 17.3440 1.02379
\(288\) 0 0
\(289\) −14.8285 −0.872266
\(290\) −3.44457 −0.202272
\(291\) 0 0
\(292\) 0.845217i 0.0494626i
\(293\) 6.57424i 0.384071i −0.981388 0.192036i \(-0.938491\pi\)
0.981388 0.192036i \(-0.0615089\pi\)
\(294\) 0 0
\(295\) −6.06435 −0.353080
\(296\) 25.1492 1.46176
\(297\) 0 0
\(298\) −12.7876 −0.740768
\(299\) −16.7693 2.23153i −0.969794 0.129052i
\(300\) 0 0
\(301\) 5.70722i 0.328958i
\(302\) −28.9257 −1.66449
\(303\) 0 0
\(304\) 17.6974i 1.01502i
\(305\) 2.16216i 0.123805i
\(306\) 0 0
\(307\) 24.3307i 1.38863i 0.719672 + 0.694315i \(0.244292\pi\)
−0.719672 + 0.694315i \(0.755708\pi\)
\(308\) 3.82546 0.217976
\(309\) 0 0
\(310\) 11.7825i 0.669201i
\(311\) 11.1667 0.633206 0.316603 0.948558i \(-0.397458\pi\)
0.316603 + 0.948558i \(0.397458\pi\)
\(312\) 0 0
\(313\) 17.8028 1.00627 0.503136 0.864208i \(-0.332180\pi\)
0.503136 + 0.864208i \(0.332180\pi\)
\(314\) 29.1272i 1.64374i
\(315\) 0 0
\(316\) −0.329308 −0.0185250
\(317\) 30.8623i 1.73340i −0.498829 0.866700i \(-0.666236\pi\)
0.498829 0.866700i \(-0.333764\pi\)
\(318\) 0 0
\(319\) 3.37306i 0.188855i
\(320\) 4.12862i 0.230797i
\(321\) 0 0
\(322\) 24.6417 1.37323
\(323\) 5.32634i 0.296365i
\(324\) 0 0
\(325\) −13.5662 1.80528i −0.752518 0.100139i
\(326\) 27.3691 1.51584
\(327\) 0 0
\(328\) −11.6924 −0.645607
\(329\) −32.9843 −1.81849
\(330\) 0 0
\(331\) 17.4048i 0.956657i 0.878181 + 0.478328i \(0.158757\pi\)
−0.878181 + 0.478328i \(0.841243\pi\)
\(332\) 10.5156i 0.577120i
\(333\) 0 0
\(334\) 8.72989 0.477678
\(335\) 9.06558 0.495305
\(336\) 0 0
\(337\) 8.75830 0.477095 0.238548 0.971131i \(-0.423329\pi\)
0.238548 + 0.971131i \(0.423329\pi\)
\(338\) −5.56325 + 20.5330i −0.302601 + 1.11685i
\(339\) 0 0
\(340\) 1.09612i 0.0594456i
\(341\) −11.5379 −0.624811
\(342\) 0 0
\(343\) 11.8741i 0.641141i
\(344\) 3.84750i 0.207443i
\(345\) 0 0
\(346\) 20.1386i 1.08266i
\(347\) −7.27756 −0.390680 −0.195340 0.980736i \(-0.562581\pi\)
−0.195340 + 0.980736i \(0.562581\pi\)
\(348\) 0 0
\(349\) 12.5256i 0.670479i −0.942133 0.335240i \(-0.891183\pi\)
0.942133 0.335240i \(-0.108817\pi\)
\(350\) 19.9349 1.06556
\(351\) 0 0
\(352\) −6.47999 −0.345385
\(353\) 1.64092i 0.0873371i 0.999046 + 0.0436686i \(0.0139046\pi\)
−0.999046 + 0.0436686i \(0.986095\pi\)
\(354\) 0 0
\(355\) −6.41813 −0.340639
\(356\) 9.09962i 0.482279i
\(357\) 0 0
\(358\) 30.8363i 1.62975i
\(359\) 7.00788i 0.369862i 0.982752 + 0.184931i \(0.0592061\pi\)
−0.982752 + 0.184931i \(0.940794\pi\)
\(360\) 0 0
\(361\) 5.93526 0.312382
\(362\) 17.7990i 0.935493i
\(363\) 0 0
\(364\) 1.03465 7.77512i 0.0542304 0.407527i
\(365\) −1.36836 −0.0716233
\(366\) 0 0
\(367\) −1.19268 −0.0622574 −0.0311287 0.999515i \(-0.509910\pi\)
−0.0311287 + 0.999515i \(0.509910\pi\)
\(368\) −22.9729 −1.19754
\(369\) 0 0
\(370\) 20.8735i 1.08516i
\(371\) 37.7868i 1.96179i
\(372\) 0 0
\(373\) 17.3040 0.895968 0.447984 0.894042i \(-0.352142\pi\)
0.447984 + 0.894042i \(0.352142\pi\)
\(374\) 4.24040 0.219266
\(375\) 0 0
\(376\) 22.2363 1.14675
\(377\) 6.85563 + 0.912292i 0.353083 + 0.0469854i
\(378\) 0 0
\(379\) 1.54294i 0.0792554i −0.999215 0.0396277i \(-0.987383\pi\)
0.999215 0.0396277i \(-0.0126172\pi\)
\(380\) 2.68863 0.137924
\(381\) 0 0
\(382\) 30.4324i 1.55706i
\(383\) 23.6612i 1.20903i 0.796593 + 0.604515i \(0.206633\pi\)
−0.796593 + 0.604515i \(0.793367\pi\)
\(384\) 0 0
\(385\) 6.19322i 0.315636i
\(386\) 21.2036 1.07923
\(387\) 0 0
\(388\) 4.03681i 0.204938i
\(389\) −5.16671 −0.261963 −0.130981 0.991385i \(-0.541813\pi\)
−0.130981 + 0.991385i \(0.541813\pi\)
\(390\) 0 0
\(391\) 6.91407 0.349659
\(392\) 7.14033i 0.360641i
\(393\) 0 0
\(394\) −23.0674 −1.16212
\(395\) 0.533132i 0.0268248i
\(396\) 0 0
\(397\) 14.0455i 0.704926i −0.935826 0.352463i \(-0.885344\pi\)
0.935826 0.352463i \(-0.114656\pi\)
\(398\) 27.3138i 1.36912i
\(399\) 0 0
\(400\) −18.5848 −0.929242
\(401\) 14.9882i 0.748474i 0.927333 + 0.374237i \(0.122095\pi\)
−0.927333 + 0.374237i \(0.877905\pi\)
\(402\) 0 0
\(403\) −3.12058 + 23.4503i −0.155447 + 1.16814i
\(404\) 10.7680 0.535726
\(405\) 0 0
\(406\) −10.0740 −0.499964
\(407\) −20.4401 −1.01318
\(408\) 0 0
\(409\) 0.475605i 0.0235172i 0.999931 + 0.0117586i \(0.00374296\pi\)
−0.999931 + 0.0117586i \(0.996257\pi\)
\(410\) 9.70456i 0.479274i
\(411\) 0 0
\(412\) 4.23775 0.208779
\(413\) −17.7358 −0.872722
\(414\) 0 0
\(415\) 17.0242 0.835687
\(416\) −1.75260 + 13.1704i −0.0859285 + 0.645730i
\(417\) 0 0
\(418\) 10.4011i 0.508734i
\(419\) 12.9182 0.631093 0.315547 0.948910i \(-0.397812\pi\)
0.315547 + 0.948910i \(0.397812\pi\)
\(420\) 0 0
\(421\) 31.6159i 1.54087i 0.637521 + 0.770433i \(0.279960\pi\)
−0.637521 + 0.770433i \(0.720040\pi\)
\(422\) 8.96971i 0.436639i
\(423\) 0 0
\(424\) 25.4738i 1.23712i
\(425\) 5.59342 0.271321
\(426\) 0 0
\(427\) 6.32346i 0.306014i
\(428\) 7.20804 0.348414
\(429\) 0 0
\(430\) −3.19337 −0.153998
\(431\) 12.5560i 0.604799i −0.953181 0.302400i \(-0.902212\pi\)
0.953181 0.302400i \(-0.0977877\pi\)
\(432\) 0 0
\(433\) −27.9766 −1.34447 −0.672235 0.740338i \(-0.734665\pi\)
−0.672235 + 0.740338i \(0.734665\pi\)
\(434\) 34.4591i 1.65409i
\(435\) 0 0
\(436\) 10.8591i 0.520058i
\(437\) 16.9592i 0.811269i
\(438\) 0 0
\(439\) −11.5356 −0.550564 −0.275282 0.961364i \(-0.588771\pi\)
−0.275282 + 0.961364i \(0.588771\pi\)
\(440\) 4.17514i 0.199042i
\(441\) 0 0
\(442\) 1.14688 8.61847i 0.0545514 0.409939i
\(443\) 26.2645 1.24786 0.623932 0.781479i \(-0.285534\pi\)
0.623932 + 0.781479i \(0.285534\pi\)
\(444\) 0 0
\(445\) 14.7318 0.698354
\(446\) 15.0145 0.710958
\(447\) 0 0
\(448\) 12.0746i 0.570469i
\(449\) 29.9575i 1.41378i 0.707323 + 0.706891i \(0.249903\pi\)
−0.707323 + 0.706891i \(0.750097\pi\)
\(450\) 0 0
\(451\) 9.50308 0.447483
\(452\) 2.01816 0.0949262
\(453\) 0 0
\(454\) −5.63732 −0.264573
\(455\) 12.5875 + 1.67504i 0.590111 + 0.0785272i
\(456\) 0 0
\(457\) 11.4601i 0.536082i 0.963408 + 0.268041i \(0.0863762\pi\)
−0.963408 + 0.268041i \(0.913624\pi\)
\(458\) −20.4253 −0.954410
\(459\) 0 0
\(460\) 3.49008i 0.162726i
\(461\) 28.5125i 1.32796i 0.747750 + 0.663981i \(0.231134\pi\)
−0.747750 + 0.663981i \(0.768866\pi\)
\(462\) 0 0
\(463\) 1.69588i 0.0788144i −0.999223 0.0394072i \(-0.987453\pi\)
0.999223 0.0394072i \(-0.0125470\pi\)
\(464\) 9.39177 0.436002
\(465\) 0 0
\(466\) 8.32639i 0.385713i
\(467\) 14.1217 0.653476 0.326738 0.945115i \(-0.394051\pi\)
0.326738 + 0.945115i \(0.394051\pi\)
\(468\) 0 0
\(469\) 26.5132 1.22427
\(470\) 18.4558i 0.851304i
\(471\) 0 0
\(472\) 11.9565 0.550344
\(473\) 3.12707i 0.143783i
\(474\) 0 0
\(475\) 13.7198i 0.629510i
\(476\) 3.20572i 0.146934i
\(477\) 0 0
\(478\) 2.48408 0.113619
\(479\) 27.7634i 1.26854i 0.773110 + 0.634272i \(0.218700\pi\)
−0.773110 + 0.634272i \(0.781300\pi\)
\(480\) 0 0
\(481\) −5.52831 + 41.5438i −0.252069 + 1.89423i
\(482\) 31.2600 1.42385
\(483\) 0 0
\(484\) −5.36016 −0.243643
\(485\) −6.53537 −0.296756
\(486\) 0 0
\(487\) 27.5898i 1.25021i 0.780539 + 0.625107i \(0.214945\pi\)
−0.780539 + 0.625107i \(0.785055\pi\)
\(488\) 4.26294i 0.192974i
\(489\) 0 0
\(490\) −5.92638 −0.267726
\(491\) 40.7366 1.83842 0.919210 0.393769i \(-0.128829\pi\)
0.919210 + 0.393769i \(0.128829\pi\)
\(492\) 0 0
\(493\) −2.82661 −0.127304
\(494\) −21.1399 2.81312i −0.951128 0.126568i
\(495\) 0 0
\(496\) 32.1254i 1.44248i
\(497\) −18.7705 −0.841970
\(498\) 0 0
\(499\) 15.6223i 0.699349i 0.936871 + 0.349674i \(0.113708\pi\)
−0.936871 + 0.349674i \(0.886292\pi\)
\(500\) 6.54266i 0.292596i
\(501\) 0 0
\(502\) 13.0346i 0.581761i
\(503\) 30.2181 1.34736 0.673679 0.739024i \(-0.264713\pi\)
0.673679 + 0.739024i \(0.264713\pi\)
\(504\) 0 0
\(505\) 17.4327i 0.775746i
\(506\) 13.5016 0.600218
\(507\) 0 0
\(508\) −4.15477 −0.184338
\(509\) 15.0873i 0.668734i −0.942443 0.334367i \(-0.891478\pi\)
0.942443 0.334367i \(-0.108522\pi\)
\(510\) 0 0
\(511\) −4.00191 −0.177034
\(512\) 3.14438i 0.138963i
\(513\) 0 0
\(514\) 34.4719i 1.52049i
\(515\) 6.86068i 0.302318i
\(516\) 0 0
\(517\) −18.0727 −0.794834
\(518\) 61.0465i 2.68223i
\(519\) 0 0
\(520\) −8.48582 1.12923i −0.372128 0.0495198i
\(521\) 26.8690 1.17715 0.588576 0.808442i \(-0.299689\pi\)
0.588576 + 0.808442i \(0.299689\pi\)
\(522\) 0 0
\(523\) 24.9855 1.09254 0.546270 0.837609i \(-0.316047\pi\)
0.546270 + 0.837609i \(0.316047\pi\)
\(524\) −5.71095 −0.249484
\(525\) 0 0
\(526\) 39.4455i 1.71991i
\(527\) 9.66869i 0.421175i
\(528\) 0 0
\(529\) −0.985414 −0.0428441
\(530\) 21.1429 0.918390
\(531\) 0 0
\(532\) 7.86317 0.340911
\(533\) 2.57024 19.3147i 0.111330 0.836612i
\(534\) 0 0
\(535\) 11.6694i 0.504513i
\(536\) −17.8738 −0.772030
\(537\) 0 0
\(538\) 35.6377i 1.53645i
\(539\) 5.80334i 0.249967i
\(540\) 0 0
\(541\) 33.1735i 1.42624i 0.701042 + 0.713120i \(0.252719\pi\)
−0.701042 + 0.713120i \(0.747281\pi\)
\(542\) 8.34488 0.358443
\(543\) 0 0
\(544\) 5.43020i 0.232818i
\(545\) 17.5803 0.753059
\(546\) 0 0
\(547\) 18.7240 0.800582 0.400291 0.916388i \(-0.368909\pi\)
0.400291 + 0.916388i \(0.368909\pi\)
\(548\) 5.24913i 0.224232i
\(549\) 0 0
\(550\) 10.9226 0.465743
\(551\) 6.93326i 0.295367i
\(552\) 0 0
\(553\) 1.55920i 0.0663038i
\(554\) 20.0911i 0.853590i
\(555\) 0 0
\(556\) −8.53796 −0.362090
\(557\) 27.4258i 1.16207i −0.813879 0.581035i \(-0.802648\pi\)
0.813879 0.581035i \(-0.197352\pi\)
\(558\) 0 0
\(559\) 6.35567 + 0.845762i 0.268816 + 0.0357719i
\(560\) 17.2441 0.728694
\(561\) 0 0
\(562\) −11.9657 −0.504744
\(563\) −19.7146 −0.830872 −0.415436 0.909622i \(-0.636371\pi\)
−0.415436 + 0.909622i \(0.636371\pi\)
\(564\) 0 0
\(565\) 3.26729i 0.137456i
\(566\) 20.9422i 0.880267i
\(567\) 0 0
\(568\) 12.6540 0.530952
\(569\) 19.4174 0.814021 0.407011 0.913423i \(-0.366571\pi\)
0.407011 + 0.913423i \(0.366571\pi\)
\(570\) 0 0
\(571\) 9.99073 0.418099 0.209050 0.977905i \(-0.432963\pi\)
0.209050 + 0.977905i \(0.432963\pi\)
\(572\) 0.566902 4.26011i 0.0237034 0.178124i
\(573\) 0 0
\(574\) 28.3820i 1.18464i
\(575\) 17.8096 0.742711
\(576\) 0 0
\(577\) 17.2976i 0.720107i −0.932932 0.360054i \(-0.882758\pi\)
0.932932 0.360054i \(-0.117242\pi\)
\(578\) 24.2655i 1.00931i
\(579\) 0 0
\(580\) 1.42682i 0.0592453i
\(581\) 49.7891 2.06560
\(582\) 0 0
\(583\) 20.7040i 0.857471i
\(584\) 2.69787 0.111639
\(585\) 0 0
\(586\) 10.7582 0.444415
\(587\) 21.9939i 0.907786i 0.891056 + 0.453893i \(0.149965\pi\)
−0.891056 + 0.453893i \(0.850035\pi\)
\(588\) 0 0
\(589\) −23.7159 −0.977196
\(590\) 9.92376i 0.408555i
\(591\) 0 0
\(592\) 56.9123i 2.33908i
\(593\) 29.8711i 1.22666i −0.789826 0.613330i \(-0.789829\pi\)
0.789826 0.613330i \(-0.210171\pi\)
\(594\) 0 0
\(595\) −5.18988 −0.212765
\(596\) 5.29691i 0.216970i
\(597\) 0 0
\(598\) 3.65169 27.4415i 0.149329 1.12216i
\(599\) −0.0136575 −0.000558032 −0.000279016 1.00000i \(-0.500089\pi\)
−0.000279016 1.00000i \(0.500089\pi\)
\(600\) 0 0
\(601\) 6.51599 0.265793 0.132896 0.991130i \(-0.457572\pi\)
0.132896 + 0.991130i \(0.457572\pi\)
\(602\) −9.33934 −0.380643
\(603\) 0 0
\(604\) 11.9816i 0.487526i
\(605\) 8.67780i 0.352803i
\(606\) 0 0
\(607\) −35.5842 −1.44432 −0.722158 0.691728i \(-0.756850\pi\)
−0.722158 + 0.691728i \(0.756850\pi\)
\(608\) −13.3195 −0.540177
\(609\) 0 0
\(610\) 3.53818 0.143257
\(611\) −4.88801 + 36.7320i −0.197748 + 1.48602i
\(612\) 0 0
\(613\) 2.03420i 0.0821607i 0.999156 + 0.0410803i \(0.0130800\pi\)
−0.999156 + 0.0410803i \(0.986920\pi\)
\(614\) −39.8151 −1.60681
\(615\) 0 0
\(616\) 12.2106i 0.491979i
\(617\) 3.06833i 0.123526i 0.998091 + 0.0617632i \(0.0196724\pi\)
−0.998091 + 0.0617632i \(0.980328\pi\)
\(618\) 0 0
\(619\) 3.96169i 0.159234i 0.996826 + 0.0796169i \(0.0253697\pi\)
−0.996826 + 0.0796169i \(0.974630\pi\)
\(620\) 4.88056 0.196008
\(621\) 0 0
\(622\) 18.2733i 0.732693i
\(623\) 43.0846 1.72615
\(624\) 0 0
\(625\) 8.38660 0.335464
\(626\) 29.1326i 1.16437i
\(627\) 0 0
\(628\) 12.0651 0.481451
\(629\) 17.1287i 0.682966i
\(630\) 0 0
\(631\) 8.56943i 0.341144i −0.985345 0.170572i \(-0.945438\pi\)
0.985345 0.170572i \(-0.0545615\pi\)
\(632\) 1.05113i 0.0418116i
\(633\) 0 0
\(634\) 50.5034 2.00575
\(635\) 6.72635i 0.266927i
\(636\) 0 0
\(637\) 11.7951 + 1.56959i 0.467338 + 0.0621896i
\(638\) −5.51971 −0.218527
\(639\) 0 0
\(640\) −14.8438 −0.586752
\(641\) −10.9151 −0.431121 −0.215561 0.976490i \(-0.569158\pi\)
−0.215561 + 0.976490i \(0.569158\pi\)
\(642\) 0 0
\(643\) 29.3102i 1.15588i −0.816078 0.577941i \(-0.803856\pi\)
0.816078 0.577941i \(-0.196144\pi\)
\(644\) 10.2071i 0.402216i
\(645\) 0 0
\(646\) 8.71607 0.342929
\(647\) −5.27064 −0.207210 −0.103605 0.994619i \(-0.533038\pi\)
−0.103605 + 0.994619i \(0.533038\pi\)
\(648\) 0 0
\(649\) −9.71773 −0.381454
\(650\) 2.95418 22.1999i 0.115873 0.870751i
\(651\) 0 0
\(652\) 11.3369i 0.443986i
\(653\) 21.0634 0.824274 0.412137 0.911122i \(-0.364783\pi\)
0.412137 + 0.911122i \(0.364783\pi\)
\(654\) 0 0
\(655\) 9.24571i 0.361260i
\(656\) 26.4599i 1.03308i
\(657\) 0 0
\(658\) 53.9759i 2.10420i
\(659\) 9.20827 0.358703 0.179352 0.983785i \(-0.442600\pi\)
0.179352 + 0.983785i \(0.442600\pi\)
\(660\) 0 0
\(661\) 9.69679i 0.377162i −0.982058 0.188581i \(-0.939611\pi\)
0.982058 0.188581i \(-0.0603887\pi\)
\(662\) −28.4814 −1.10696
\(663\) 0 0
\(664\) −33.5652 −1.30258
\(665\) 12.7300i 0.493650i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 3.61611i 0.139911i
\(669\) 0 0
\(670\) 14.8350i 0.573126i
\(671\) 3.46472i 0.133754i
\(672\) 0 0
\(673\) −27.6272 −1.06495 −0.532475 0.846445i \(-0.678738\pi\)
−0.532475 + 0.846445i \(0.678738\pi\)
\(674\) 14.3322i 0.552054i
\(675\) 0 0
\(676\) −8.50521 2.30442i −0.327123 0.0886314i
\(677\) −22.9882 −0.883509 −0.441755 0.897136i \(-0.645644\pi\)
−0.441755 + 0.897136i \(0.645644\pi\)
\(678\) 0 0
\(679\) −19.1134 −0.733503
\(680\) 3.49874 0.134171
\(681\) 0 0
\(682\) 18.8807i 0.722979i
\(683\) 19.2616i 0.737023i −0.929623 0.368512i \(-0.879867\pi\)
0.929623 0.368512i \(-0.120133\pi\)
\(684\) 0 0
\(685\) 8.49806 0.324694
\(686\) 19.4309 0.741875
\(687\) 0 0
\(688\) 8.70686 0.331946
\(689\) −42.0801 5.59968i −1.60312 0.213331i
\(690\) 0 0
\(691\) 0.957657i 0.0364310i 0.999834 + 0.0182155i \(0.00579849\pi\)
−0.999834 + 0.0182155i \(0.994202\pi\)
\(692\) 8.34185 0.317109
\(693\) 0 0
\(694\) 11.9091i 0.452062i
\(695\) 13.8225i 0.524317i
\(696\) 0 0
\(697\) 7.96353i 0.301640i
\(698\) 20.4970 0.775822
\(699\) 0 0
\(700\) 8.25745i 0.312102i
\(701\) −5.78079 −0.218337 −0.109169 0.994023i \(-0.534819\pi\)
−0.109169 + 0.994023i \(0.534819\pi\)
\(702\) 0 0
\(703\) −42.0142 −1.58460
\(704\) 6.61584i 0.249344i
\(705\) 0 0
\(706\) −2.68521 −0.101059
\(707\) 50.9838i 1.91744i
\(708\) 0 0
\(709\) 5.59628i 0.210173i −0.994463 0.105086i \(-0.966488\pi\)
0.994463 0.105086i \(-0.0335119\pi\)
\(710\) 10.5027i 0.394159i
\(711\) 0 0
\(712\) −29.0453 −1.08852
\(713\) 30.7854i 1.15292i
\(714\) 0 0
\(715\) 6.89689 + 0.917783i 0.257929 + 0.0343231i
\(716\) 12.7730 0.477351
\(717\) 0 0
\(718\) −11.4678 −0.427973
\(719\) 17.4320 0.650102 0.325051 0.945696i \(-0.394618\pi\)
0.325051 + 0.945696i \(0.394618\pi\)
\(720\) 0 0
\(721\) 20.0647i 0.747250i
\(722\) 9.71252i 0.361463i
\(723\) 0 0
\(724\) −7.37271 −0.274004
\(725\) −7.28092 −0.270406
\(726\) 0 0
\(727\) 24.0426 0.891689 0.445845 0.895110i \(-0.352903\pi\)
0.445845 + 0.895110i \(0.352903\pi\)
\(728\) −24.8176 3.30253i −0.919803 0.122400i
\(729\) 0 0
\(730\) 2.23920i 0.0828764i
\(731\) −2.62047 −0.0969217
\(732\) 0 0
\(733\) 13.7324i 0.507217i −0.967307 0.253608i \(-0.918383\pi\)
0.967307 0.253608i \(-0.0816174\pi\)
\(734\) 1.95171i 0.0720390i
\(735\) 0 0
\(736\) 17.2899i 0.637314i
\(737\) 14.5270 0.535109
\(738\) 0 0
\(739\) 13.1229i 0.482732i 0.970434 + 0.241366i \(0.0775954\pi\)
−0.970434 + 0.241366i \(0.922405\pi\)
\(740\) 8.64622 0.317842
\(741\) 0 0
\(742\) 61.8346 2.27002
\(743\) 35.5269i 1.30335i −0.758497 0.651677i \(-0.774066\pi\)
0.758497 0.651677i \(-0.225934\pi\)
\(744\) 0 0
\(745\) 8.57541 0.314179
\(746\) 28.3164i 1.03674i
\(747\) 0 0
\(748\) 1.75646i 0.0642227i
\(749\) 34.1284i 1.24702i
\(750\) 0 0
\(751\) 23.4238 0.854747 0.427374 0.904075i \(-0.359439\pi\)
0.427374 + 0.904075i \(0.359439\pi\)
\(752\) 50.3205i 1.83500i
\(753\) 0 0
\(754\) −1.49288 + 11.2186i −0.0543676 + 0.408558i
\(755\) 19.3976 0.705951
\(756\) 0 0
\(757\) 18.7868 0.682817 0.341409 0.939915i \(-0.389096\pi\)
0.341409 + 0.939915i \(0.389096\pi\)
\(758\) 2.52488 0.0917077
\(759\) 0 0
\(760\) 8.58192i 0.311299i
\(761\) 16.9411i 0.614113i 0.951691 + 0.307057i \(0.0993441\pi\)
−0.951691 + 0.307057i \(0.900656\pi\)
\(762\) 0 0
\(763\) 51.4155 1.86136
\(764\) −12.6057 −0.456060
\(765\) 0 0
\(766\) −38.7194 −1.39899
\(767\) −2.62830 + 19.7510i −0.0949024 + 0.713166i
\(768\) 0 0
\(769\) 38.4177i 1.38538i −0.721237 0.692688i \(-0.756426\pi\)
0.721237 0.692688i \(-0.243574\pi\)
\(770\) −10.1346 −0.365227
\(771\) 0 0
\(772\) 8.78296i 0.316106i
\(773\) 21.1236i 0.759761i 0.925036 + 0.379881i \(0.124035\pi\)
−0.925036 + 0.379881i \(0.875965\pi\)
\(774\) 0 0
\(775\) 24.9051i 0.894617i
\(776\) 12.8852 0.462552
\(777\) 0 0
\(778\) 8.45485i 0.303121i
\(779\) 19.5334 0.699857
\(780\) 0 0
\(781\) −10.2846 −0.368013
\(782\) 11.3142i 0.404597i
\(783\) 0 0
\(784\) 16.1585 0.577089
\(785\) 19.5328i 0.697154i
\(786\) 0 0
\(787\) 2.97375i 0.106003i −0.998594 0.0530014i \(-0.983121\pi\)
0.998594 0.0530014i \(-0.0168788\pi\)
\(788\) 9.55500i 0.340383i
\(789\) 0 0
\(790\) 0.872422 0.0310394
\(791\) 9.55551i 0.339755i
\(792\) 0 0
\(793\) −7.04193 0.937084i −0.250066 0.0332768i
\(794\) 22.9843 0.815681
\(795\) 0 0
\(796\) −11.3139 −0.401012
\(797\) −29.7027 −1.05212 −0.526061 0.850447i \(-0.676332\pi\)
−0.526061 + 0.850447i \(0.676332\pi\)
\(798\) 0 0
\(799\) 15.1448i 0.535784i
\(800\) 13.9874i 0.494528i
\(801\) 0 0
\(802\) −24.5268 −0.866071
\(803\) −2.19271 −0.0773790
\(804\) 0 0
\(805\) −16.5247 −0.582421
\(806\) −38.3744 5.10655i −1.35168 0.179871i
\(807\) 0 0
\(808\) 34.3705i 1.20915i
\(809\) 1.78891 0.0628946 0.0314473 0.999505i \(-0.489988\pi\)
0.0314473 + 0.999505i \(0.489988\pi\)
\(810\) 0 0
\(811\) 17.3429i 0.608991i −0.952514 0.304496i \(-0.901512\pi\)
0.952514 0.304496i \(-0.0984879\pi\)
\(812\) 4.17287i 0.146439i
\(813\) 0 0
\(814\) 33.4484i 1.17236i
\(815\) −18.3538 −0.642905
\(816\) 0 0
\(817\) 6.42764i 0.224875i
\(818\) −0.778285 −0.0272121
\(819\) 0 0
\(820\) −4.01983 −0.140379
\(821\) 34.7618i 1.21320i −0.795008 0.606598i \(-0.792534\pi\)
0.795008 0.606598i \(-0.207466\pi\)
\(822\) 0 0
\(823\) −20.0338 −0.698335 −0.349167 0.937060i \(-0.613536\pi\)
−0.349167 + 0.937060i \(0.613536\pi\)
\(824\) 13.5266i 0.471221i
\(825\) 0 0
\(826\) 29.0230i 1.00984i
\(827\) 11.7034i 0.406966i −0.979078 0.203483i \(-0.934774\pi\)
0.979078 0.203483i \(-0.0652262\pi\)
\(828\) 0 0
\(829\) 25.2016 0.875287 0.437644 0.899149i \(-0.355813\pi\)
0.437644 + 0.899149i \(0.355813\pi\)
\(830\) 27.8586i 0.966987i
\(831\) 0 0
\(832\) 13.4465 + 1.78935i 0.466172 + 0.0620345i
\(833\) −4.86317 −0.168499
\(834\) 0 0
\(835\) −5.85428 −0.202596
\(836\) 4.30836 0.149008
\(837\) 0 0
\(838\) 21.1394i 0.730248i
\(839\) 12.6922i 0.438183i 0.975704 + 0.219091i \(0.0703093\pi\)
−0.975704 + 0.219091i \(0.929691\pi\)
\(840\) 0 0
\(841\) −25.3206 −0.873125
\(842\) −51.7366 −1.78296
\(843\) 0 0
\(844\) −3.71544 −0.127891
\(845\) 3.73072 13.7695i 0.128341 0.473684i
\(846\) 0 0
\(847\) 25.3791i 0.872036i
\(848\) −57.6470 −1.97961
\(849\) 0 0
\(850\) 9.15312i 0.313949i
\(851\) 54.5382i 1.86955i
\(852\) 0 0
\(853\) 6.47301i 0.221632i 0.993841 + 0.110816i \(0.0353463\pi\)
−0.993841 + 0.110816i \(0.964654\pi\)
\(854\) 10.3478 0.354093
\(855\) 0 0
\(856\) 23.0076i 0.786382i
\(857\) 26.4305 0.902849 0.451425 0.892309i \(-0.350916\pi\)
0.451425 + 0.892309i \(0.350916\pi\)
\(858\) 0 0
\(859\) −2.98193 −0.101742 −0.0508710 0.998705i \(-0.516200\pi\)
−0.0508710 + 0.998705i \(0.516200\pi\)
\(860\) 1.32276i 0.0451058i
\(861\) 0 0
\(862\) 20.5467 0.699823
\(863\) 3.40827i 0.116019i −0.998316 0.0580095i \(-0.981525\pi\)
0.998316 0.0580095i \(-0.0184754\pi\)
\(864\) 0 0
\(865\) 13.5050i 0.459184i
\(866\) 45.7812i 1.55571i
\(867\) 0 0
\(868\) 14.2737 0.484481
\(869\) 0.854310i 0.0289805i
\(870\) 0 0
\(871\) 3.92903 29.5256i 0.133130 1.00044i
\(872\) −34.6616 −1.17379
\(873\) 0 0
\(874\) 27.7522 0.938732
\(875\) −30.9780 −1.04725
\(876\) 0 0
\(877\) 16.0227i 0.541049i 0.962713 + 0.270524i \(0.0871971\pi\)
−0.962713 + 0.270524i \(0.912803\pi\)
\(878\) 18.8769i 0.637066i
\(879\) 0 0
\(880\) 9.44829 0.318502
\(881\) −26.8852 −0.905787 −0.452894 0.891565i \(-0.649608\pi\)
−0.452894 + 0.891565i \(0.649608\pi\)
\(882\) 0 0
\(883\) −16.3368 −0.549778 −0.274889 0.961476i \(-0.588641\pi\)
−0.274889 + 0.961476i \(0.588641\pi\)
\(884\) 3.56995 + 0.475061i 0.120071 + 0.0159780i
\(885\) 0 0
\(886\) 42.9795i 1.44392i
\(887\) 24.8199 0.833371 0.416686 0.909051i \(-0.363192\pi\)
0.416686 + 0.909051i \(0.363192\pi\)
\(888\) 0 0
\(889\) 19.6719i 0.659774i
\(890\) 24.1072i 0.808076i
\(891\) 0 0
\(892\) 6.21933i 0.208239i
\(893\) −37.1480 −1.24311
\(894\) 0 0
\(895\) 20.6789i 0.691218i
\(896\) −43.4121 −1.45030
\(897\) 0 0
\(898\) −49.0227 −1.63591
\(899\) 12.5857i 0.419756i
\(900\) 0 0
\(901\) 17.3498 0.578006
\(902\) 15.5509i 0.517789i
\(903\) 0 0
\(904\) 6.44182i 0.214252i
\(905\) 11.9360i 0.396766i
\(906\) 0 0
\(907\) −28.8675 −0.958529 −0.479265 0.877670i \(-0.659097\pi\)
−0.479265 + 0.877670i \(0.659097\pi\)
\(908\) 2.33510i 0.0774930i
\(909\) 0 0
\(910\) −2.74106 + 20.5983i −0.0908651 + 0.682827i
\(911\) 13.2819 0.440048 0.220024 0.975494i \(-0.429386\pi\)
0.220024 + 0.975494i \(0.429386\pi\)
\(912\) 0 0
\(913\) 27.2802 0.902844
\(914\) −18.7534 −0.620309
\(915\) 0 0
\(916\) 8.46058i 0.279545i
\(917\) 27.0400i 0.892940i
\(918\) 0 0
\(919\) −3.98083 −0.131316 −0.0656578 0.997842i \(-0.520915\pi\)
−0.0656578 + 0.997842i \(0.520915\pi\)
\(920\) 11.1401 0.367278
\(921\) 0 0
\(922\) −46.6582 −1.53661
\(923\) −2.78163 + 20.9032i −0.0915583 + 0.688036i
\(924\) 0 0
\(925\) 44.1209i 1.45069i
\(926\) 2.77516 0.0911975
\(927\) 0 0
\(928\) 7.06846i 0.232033i
\(929\) 7.35842i 0.241422i 0.992688 + 0.120711i \(0.0385174\pi\)
−0.992688 + 0.120711i \(0.961483\pi\)
\(930\) 0 0
\(931\) 11.9286i 0.390946i
\(932\) 3.44897 0.112975
\(933\) 0 0
\(934\) 23.1089i 0.756147i
\(935\) −2.84362 −0.0929964
\(936\) 0 0
\(937\) 8.02666 0.262220 0.131110 0.991368i \(-0.458146\pi\)
0.131110 + 0.991368i \(0.458146\pi\)
\(938\) 43.3864i 1.41662i
\(939\) 0 0
\(940\) 7.64479 0.249346
\(941\) 14.2624i 0.464941i −0.972603 0.232470i \(-0.925319\pi\)
0.972603 0.232470i \(-0.0746809\pi\)
\(942\) 0 0
\(943\) 25.3561i 0.825709i
\(944\) 27.0575i 0.880648i
\(945\) 0 0
\(946\) −5.11717 −0.166374
\(947\) 8.22076i 0.267139i −0.991039 0.133569i \(-0.957356\pi\)
0.991039 0.133569i \(-0.0426439\pi\)
\(948\) 0 0
\(949\) −0.593049 + 4.45661i −0.0192512 + 0.144668i
\(950\) 22.4513 0.728416
\(951\) 0 0
\(952\) 10.2324 0.331635
\(953\) −34.3915 −1.11405 −0.557025 0.830496i \(-0.688057\pi\)
−0.557025 + 0.830496i \(0.688057\pi\)
\(954\) 0 0
\(955\) 20.4080i 0.660388i
\(956\) 1.02896i 0.0332789i
\(957\) 0 0
\(958\) −45.4323 −1.46785
\(959\) 24.8534 0.802559
\(960\) 0 0
\(961\) −12.0505 −0.388726
\(962\) −67.9826 9.04658i −2.19185 0.291673i
\(963\) 0 0
\(964\) 12.9486i 0.417045i
\(965\) −14.2191 −0.457730
\(966\) 0 0
\(967\) 49.8119i 1.60184i −0.598770 0.800921i \(-0.704344\pi\)
0.598770 0.800921i \(-0.295656\pi\)
\(968\) 17.1092i 0.549912i
\(969\) 0 0
\(970\) 10.6945i 0.343381i
\(971\) 49.8192 1.59878 0.799388 0.600815i \(-0.205157\pi\)
0.799388 + 0.600815i \(0.205157\pi\)
\(972\) 0 0
\(973\) 40.4253i 1.29597i
\(974\) −45.1482 −1.44664
\(975\) 0 0
\(976\) −9.64699 −0.308793
\(977\) 43.6262i 1.39573i 0.716231 + 0.697863i \(0.245866\pi\)
−0.716231 + 0.697863i \(0.754134\pi\)
\(978\) 0 0
\(979\) 23.6067 0.754474
\(980\) 2.45483i 0.0784167i
\(981\) 0 0
\(982\) 66.6618i 2.12726i
\(983\) 57.4316i 1.83178i −0.401427 0.915891i \(-0.631486\pi\)
0.401427 0.915891i \(-0.368514\pi\)
\(984\) 0 0
\(985\) 15.4690 0.492884
\(986\) 4.62549i 0.147306i
\(987\) 0 0
\(988\) 1.16526 8.75658i 0.0370717 0.278584i
\(989\) −8.34366 −0.265313
\(990\) 0 0
\(991\) 7.92798 0.251841 0.125920 0.992040i \(-0.459812\pi\)
0.125920 + 0.992040i \(0.459812\pi\)
\(992\) −24.1783 −0.767663
\(993\) 0 0
\(994\) 30.7162i 0.974257i
\(995\) 18.3167i 0.580677i
\(996\) 0 0
\(997\) −46.1993 −1.46315 −0.731573 0.681763i \(-0.761214\pi\)
−0.731573 + 0.681763i \(0.761214\pi\)
\(998\) −25.5644 −0.809228
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.b.j.649.8 10
3.2 odd 2 1053.2.b.i.649.3 10
9.2 odd 6 351.2.t.c.64.3 20
9.4 even 3 117.2.t.c.25.3 20
9.5 odd 6 351.2.t.c.181.8 20
9.7 even 3 117.2.t.c.103.8 yes 20
13.12 even 2 inner 1053.2.b.j.649.3 10
39.38 odd 2 1053.2.b.i.649.8 10
117.25 even 6 117.2.t.c.103.3 yes 20
117.38 odd 6 351.2.t.c.64.8 20
117.77 odd 6 351.2.t.c.181.3 20
117.103 even 6 117.2.t.c.25.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.3 20 9.4 even 3
117.2.t.c.25.8 yes 20 117.103 even 6
117.2.t.c.103.3 yes 20 117.25 even 6
117.2.t.c.103.8 yes 20 9.7 even 3
351.2.t.c.64.3 20 9.2 odd 6
351.2.t.c.64.8 20 117.38 odd 6
351.2.t.c.181.3 20 117.77 odd 6
351.2.t.c.181.8 20 9.5 odd 6
1053.2.b.i.649.3 10 3.2 odd 2
1053.2.b.i.649.8 10 39.38 odd 2
1053.2.b.j.649.3 10 13.12 even 2 inner
1053.2.b.j.649.8 10 1.1 even 1 trivial