Properties

Label 1050.6.g.o.799.2
Level $1050$
Weight $6$
Character 1050.799
Analytic conductor $168.403$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,6,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-32,0,72,0,0,-162,0,432] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(168.403010804\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.6.g.o.799.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} -9.00000i q^{3} -16.0000 q^{4} +36.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -81.0000 q^{9} +216.000 q^{11} +144.000i q^{12} +998.000i q^{13} +196.000 q^{14} +256.000 q^{16} -1302.00i q^{17} -324.000i q^{18} -884.000 q^{19} -441.000 q^{21} +864.000i q^{22} -2268.00i q^{23} -576.000 q^{24} -3992.00 q^{26} +729.000i q^{27} +784.000i q^{28} +1482.00 q^{29} +8360.00 q^{31} +1024.00i q^{32} -1944.00i q^{33} +5208.00 q^{34} +1296.00 q^{36} +4714.00i q^{37} -3536.00i q^{38} +8982.00 q^{39} -9786.00 q^{41} -1764.00i q^{42} +19436.0i q^{43} -3456.00 q^{44} +9072.00 q^{46} -22200.0i q^{47} -2304.00i q^{48} -2401.00 q^{49} -11718.0 q^{51} -15968.0i q^{52} +26790.0i q^{53} -2916.00 q^{54} -3136.00 q^{56} +7956.00i q^{57} +5928.00i q^{58} -28092.0 q^{59} -38866.0 q^{61} +33440.0i q^{62} +3969.00i q^{63} -4096.00 q^{64} +7776.00 q^{66} -23948.0i q^{67} +20832.0i q^{68} -20412.0 q^{69} -20628.0 q^{71} +5184.00i q^{72} +290.000i q^{73} -18856.0 q^{74} +14144.0 q^{76} -10584.0i q^{77} +35928.0i q^{78} +99544.0 q^{79} +6561.00 q^{81} -39144.0i q^{82} +19308.0i q^{83} +7056.00 q^{84} -77744.0 q^{86} -13338.0i q^{87} -13824.0i q^{88} -36390.0 q^{89} +48902.0 q^{91} +36288.0i q^{92} -75240.0i q^{93} +88800.0 q^{94} +9216.00 q^{96} +79078.0i q^{97} -9604.00i q^{98} -17496.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 72 q^{6} - 162 q^{9} + 432 q^{11} + 392 q^{14} + 512 q^{16} - 1768 q^{19} - 882 q^{21} - 1152 q^{24} - 7984 q^{26} + 2964 q^{29} + 16720 q^{31} + 10416 q^{34} + 2592 q^{36} + 17964 q^{39}+ \cdots - 34992 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) − 9.00000i − 0.577350i
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 36.0000 0.408248
\(7\) − 49.0000i − 0.377964i
\(8\) − 64.0000i − 0.353553i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 216.000 0.538235 0.269118 0.963107i \(-0.413268\pi\)
0.269118 + 0.963107i \(0.413268\pi\)
\(12\) 144.000i 0.288675i
\(13\) 998.000i 1.63784i 0.573906 + 0.818921i \(0.305428\pi\)
−0.573906 + 0.818921i \(0.694572\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 1302.00i − 1.09267i −0.837567 0.546335i \(-0.816023\pi\)
0.837567 0.546335i \(-0.183977\pi\)
\(18\) − 324.000i − 0.235702i
\(19\) −884.000 −0.561783 −0.280891 0.959740i \(-0.590630\pi\)
−0.280891 + 0.959740i \(0.590630\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 864.000i 0.380590i
\(23\) − 2268.00i − 0.893971i −0.894541 0.446986i \(-0.852498\pi\)
0.894541 0.446986i \(-0.147502\pi\)
\(24\) −576.000 −0.204124
\(25\) 0 0
\(26\) −3992.00 −1.15813
\(27\) 729.000i 0.192450i
\(28\) 784.000i 0.188982i
\(29\) 1482.00 0.327230 0.163615 0.986524i \(-0.447685\pi\)
0.163615 + 0.986524i \(0.447685\pi\)
\(30\) 0 0
\(31\) 8360.00 1.56244 0.781218 0.624259i \(-0.214599\pi\)
0.781218 + 0.624259i \(0.214599\pi\)
\(32\) 1024.00i 0.176777i
\(33\) − 1944.00i − 0.310750i
\(34\) 5208.00 0.772634
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 4714.00i 0.566090i 0.959107 + 0.283045i \(0.0913445\pi\)
−0.959107 + 0.283045i \(0.908655\pi\)
\(38\) − 3536.00i − 0.397240i
\(39\) 8982.00 0.945609
\(40\) 0 0
\(41\) −9786.00 −0.909171 −0.454585 0.890703i \(-0.650213\pi\)
−0.454585 + 0.890703i \(0.650213\pi\)
\(42\) − 1764.00i − 0.154303i
\(43\) 19436.0i 1.60301i 0.597989 + 0.801504i \(0.295967\pi\)
−0.597989 + 0.801504i \(0.704033\pi\)
\(44\) −3456.00 −0.269118
\(45\) 0 0
\(46\) 9072.00 0.632133
\(47\) − 22200.0i − 1.46591i −0.680275 0.732957i \(-0.738140\pi\)
0.680275 0.732957i \(-0.261860\pi\)
\(48\) − 2304.00i − 0.144338i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −11718.0 −0.630853
\(52\) − 15968.0i − 0.818921i
\(53\) 26790.0i 1.31004i 0.755614 + 0.655018i \(0.227339\pi\)
−0.755614 + 0.655018i \(0.772661\pi\)
\(54\) −2916.00 −0.136083
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 7956.00i 0.324345i
\(58\) 5928.00i 0.231387i
\(59\) −28092.0 −1.05064 −0.525318 0.850906i \(-0.676054\pi\)
−0.525318 + 0.850906i \(0.676054\pi\)
\(60\) 0 0
\(61\) −38866.0 −1.33735 −0.668675 0.743555i \(-0.733138\pi\)
−0.668675 + 0.743555i \(0.733138\pi\)
\(62\) 33440.0i 1.10481i
\(63\) 3969.00i 0.125988i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 7776.00 0.219734
\(67\) − 23948.0i − 0.651752i −0.945413 0.325876i \(-0.894341\pi\)
0.945413 0.325876i \(-0.105659\pi\)
\(68\) 20832.0i 0.546335i
\(69\) −20412.0 −0.516134
\(70\) 0 0
\(71\) −20628.0 −0.485636 −0.242818 0.970072i \(-0.578072\pi\)
−0.242818 + 0.970072i \(0.578072\pi\)
\(72\) 5184.00i 0.117851i
\(73\) 290.000i 0.00636929i 0.999995 + 0.00318464i \(0.00101371\pi\)
−0.999995 + 0.00318464i \(0.998986\pi\)
\(74\) −18856.0 −0.400286
\(75\) 0 0
\(76\) 14144.0 0.280891
\(77\) − 10584.0i − 0.203434i
\(78\) 35928.0i 0.668646i
\(79\) 99544.0 1.79452 0.897258 0.441506i \(-0.145556\pi\)
0.897258 + 0.441506i \(0.145556\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) − 39144.0i − 0.642881i
\(83\) 19308.0i 0.307639i 0.988099 + 0.153820i \(0.0491575\pi\)
−0.988099 + 0.153820i \(0.950842\pi\)
\(84\) 7056.00 0.109109
\(85\) 0 0
\(86\) −77744.0 −1.13350
\(87\) − 13338.0i − 0.188926i
\(88\) − 13824.0i − 0.190295i
\(89\) −36390.0 −0.486975 −0.243488 0.969904i \(-0.578292\pi\)
−0.243488 + 0.969904i \(0.578292\pi\)
\(90\) 0 0
\(91\) 48902.0 0.619046
\(92\) 36288.0i 0.446986i
\(93\) − 75240.0i − 0.902072i
\(94\) 88800.0 1.03656
\(95\) 0 0
\(96\) 9216.00 0.102062
\(97\) 79078.0i 0.853348i 0.904405 + 0.426674i \(0.140315\pi\)
−0.904405 + 0.426674i \(0.859685\pi\)
\(98\) − 9604.00i − 0.101015i
\(99\) −17496.0 −0.179412
\(100\) 0 0
\(101\) 184626. 1.80090 0.900450 0.434960i \(-0.143238\pi\)
0.900450 + 0.434960i \(0.143238\pi\)
\(102\) − 46872.0i − 0.446080i
\(103\) 64592.0i 0.599909i 0.953953 + 0.299955i \(0.0969716\pi\)
−0.953953 + 0.299955i \(0.903028\pi\)
\(104\) 63872.0 0.579065
\(105\) 0 0
\(106\) −107160. −0.926335
\(107\) − 149592.i − 1.26313i −0.775322 0.631566i \(-0.782412\pi\)
0.775322 0.631566i \(-0.217588\pi\)
\(108\) − 11664.0i − 0.0962250i
\(109\) 63826.0 0.514555 0.257277 0.966338i \(-0.417175\pi\)
0.257277 + 0.966338i \(0.417175\pi\)
\(110\) 0 0
\(111\) 42426.0 0.326832
\(112\) − 12544.0i − 0.0944911i
\(113\) − 71022.0i − 0.523235i −0.965172 0.261618i \(-0.915744\pi\)
0.965172 0.261618i \(-0.0842559\pi\)
\(114\) −31824.0 −0.229347
\(115\) 0 0
\(116\) −23712.0 −0.163615
\(117\) − 80838.0i − 0.545948i
\(118\) − 112368.i − 0.742912i
\(119\) −63798.0 −0.412990
\(120\) 0 0
\(121\) −114395. −0.710303
\(122\) − 155464.i − 0.945650i
\(123\) 88074.0i 0.524910i
\(124\) −133760. −0.781218
\(125\) 0 0
\(126\) −15876.0 −0.0890871
\(127\) − 269624.i − 1.48337i −0.670749 0.741685i \(-0.734027\pi\)
0.670749 0.741685i \(-0.265973\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 174924. 0.925497
\(130\) 0 0
\(131\) 81180.0 0.413305 0.206653 0.978414i \(-0.433743\pi\)
0.206653 + 0.978414i \(0.433743\pi\)
\(132\) 31104.0i 0.155375i
\(133\) 43316.0i 0.212334i
\(134\) 95792.0 0.460858
\(135\) 0 0
\(136\) −83328.0 −0.386317
\(137\) 260910.i 1.18765i 0.804593 + 0.593826i \(0.202383\pi\)
−0.804593 + 0.593826i \(0.797617\pi\)
\(138\) − 81648.0i − 0.364962i
\(139\) 297964. 1.30806 0.654029 0.756470i \(-0.273078\pi\)
0.654029 + 0.756470i \(0.273078\pi\)
\(140\) 0 0
\(141\) −199800. −0.846346
\(142\) − 82512.0i − 0.343397i
\(143\) 215568.i 0.881544i
\(144\) −20736.0 −0.0833333
\(145\) 0 0
\(146\) −1160.00 −0.00450377
\(147\) 21609.0i 0.0824786i
\(148\) − 75424.0i − 0.283045i
\(149\) 398970. 1.47223 0.736113 0.676859i \(-0.236659\pi\)
0.736113 + 0.676859i \(0.236659\pi\)
\(150\) 0 0
\(151\) −224968. −0.802931 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(152\) 56576.0i 0.198620i
\(153\) 105462.i 0.364223i
\(154\) 42336.0 0.143849
\(155\) 0 0
\(156\) −143712. −0.472804
\(157\) 233218.i 0.755115i 0.925986 + 0.377557i \(0.123236\pi\)
−0.925986 + 0.377557i \(0.876764\pi\)
\(158\) 398176.i 1.26891i
\(159\) 241110. 0.756349
\(160\) 0 0
\(161\) −111132. −0.337889
\(162\) 26244.0i 0.0785674i
\(163\) 466220.i 1.37443i 0.726455 + 0.687214i \(0.241166\pi\)
−0.726455 + 0.687214i \(0.758834\pi\)
\(164\) 156576. 0.454585
\(165\) 0 0
\(166\) −77232.0 −0.217534
\(167\) 100848.i 0.279818i 0.990164 + 0.139909i \(0.0446811\pi\)
−0.990164 + 0.139909i \(0.955319\pi\)
\(168\) 28224.0i 0.0771517i
\(169\) −624711. −1.68253
\(170\) 0 0
\(171\) 71604.0 0.187261
\(172\) − 310976.i − 0.801504i
\(173\) − 668838.i − 1.69905i −0.527550 0.849524i \(-0.676889\pi\)
0.527550 0.849524i \(-0.323111\pi\)
\(174\) 53352.0 0.133591
\(175\) 0 0
\(176\) 55296.0 0.134559
\(177\) 252828.i 0.606585i
\(178\) − 145560.i − 0.344344i
\(179\) 614856. 1.43430 0.717151 0.696917i \(-0.245446\pi\)
0.717151 + 0.696917i \(0.245446\pi\)
\(180\) 0 0
\(181\) 540686. 1.22673 0.613365 0.789800i \(-0.289816\pi\)
0.613365 + 0.789800i \(0.289816\pi\)
\(182\) 195608.i 0.437732i
\(183\) 349794.i 0.772120i
\(184\) −145152. −0.316066
\(185\) 0 0
\(186\) 300960. 0.637862
\(187\) − 281232.i − 0.588113i
\(188\) 355200.i 0.732957i
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) −41916.0 −0.0831374 −0.0415687 0.999136i \(-0.513236\pi\)
−0.0415687 + 0.999136i \(0.513236\pi\)
\(192\) 36864.0i 0.0721688i
\(193\) − 533998.i − 1.03192i −0.856612 0.515960i \(-0.827435\pi\)
0.856612 0.515960i \(-0.172565\pi\)
\(194\) −316312. −0.603408
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) − 824886.i − 1.51436i −0.653208 0.757179i \(-0.726577\pi\)
0.653208 0.757179i \(-0.273423\pi\)
\(198\) − 69984.0i − 0.126863i
\(199\) 399544. 0.715207 0.357604 0.933873i \(-0.383594\pi\)
0.357604 + 0.933873i \(0.383594\pi\)
\(200\) 0 0
\(201\) −215532. −0.376289
\(202\) 738504.i 1.27343i
\(203\) − 72618.0i − 0.123681i
\(204\) 187488. 0.315426
\(205\) 0 0
\(206\) −258368. −0.424200
\(207\) 183708.i 0.297990i
\(208\) 255488.i 0.409461i
\(209\) −190944. −0.302371
\(210\) 0 0
\(211\) 868868. 1.34353 0.671765 0.740764i \(-0.265536\pi\)
0.671765 + 0.740764i \(0.265536\pi\)
\(212\) − 428640.i − 0.655018i
\(213\) 185652.i 0.280382i
\(214\) 598368. 0.893170
\(215\) 0 0
\(216\) 46656.0 0.0680414
\(217\) − 409640.i − 0.590545i
\(218\) 255304.i 0.363845i
\(219\) 2610.00 0.00367731
\(220\) 0 0
\(221\) 1.29940e6 1.78962
\(222\) 169704.i 0.231105i
\(223\) − 626656.i − 0.843853i −0.906630 0.421927i \(-0.861354\pi\)
0.906630 0.421927i \(-0.138646\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 284088. 0.369983
\(227\) 450396.i 0.580136i 0.957006 + 0.290068i \(0.0936779\pi\)
−0.957006 + 0.290068i \(0.906322\pi\)
\(228\) − 127296.i − 0.162173i
\(229\) 1.06453e6 1.34143 0.670717 0.741714i \(-0.265987\pi\)
0.670717 + 0.741714i \(0.265987\pi\)
\(230\) 0 0
\(231\) −95256.0 −0.117453
\(232\) − 94848.0i − 0.115693i
\(233\) 1.43618e6i 1.73308i 0.499108 + 0.866540i \(0.333661\pi\)
−0.499108 + 0.866540i \(0.666339\pi\)
\(234\) 323352. 0.386043
\(235\) 0 0
\(236\) 449472. 0.525318
\(237\) − 895896.i − 1.03606i
\(238\) − 255192.i − 0.292028i
\(239\) 997860. 1.12999 0.564995 0.825094i \(-0.308878\pi\)
0.564995 + 0.825094i \(0.308878\pi\)
\(240\) 0 0
\(241\) −227974. −0.252838 −0.126419 0.991977i \(-0.540348\pi\)
−0.126419 + 0.991977i \(0.540348\pi\)
\(242\) − 457580.i − 0.502260i
\(243\) − 59049.0i − 0.0641500i
\(244\) 621856. 0.668675
\(245\) 0 0
\(246\) −352296. −0.371168
\(247\) − 882232.i − 0.920111i
\(248\) − 535040.i − 0.552404i
\(249\) 173772. 0.177616
\(250\) 0 0
\(251\) 1.51657e6 1.51942 0.759712 0.650260i \(-0.225340\pi\)
0.759712 + 0.650260i \(0.225340\pi\)
\(252\) − 63504.0i − 0.0629941i
\(253\) − 489888.i − 0.481167i
\(254\) 1.07850e6 1.04890
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 455886.i − 0.430550i −0.976553 0.215275i \(-0.930935\pi\)
0.976553 0.215275i \(-0.0690648\pi\)
\(258\) 699696.i 0.654425i
\(259\) 230986. 0.213962
\(260\) 0 0
\(261\) −120042. −0.109077
\(262\) 324720.i 0.292251i
\(263\) − 752652.i − 0.670973i −0.942045 0.335486i \(-0.891099\pi\)
0.942045 0.335486i \(-0.108901\pi\)
\(264\) −124416. −0.109867
\(265\) 0 0
\(266\) −173264. −0.150143
\(267\) 327510.i 0.281155i
\(268\) 383168.i 0.325876i
\(269\) −143682. −0.121066 −0.0605329 0.998166i \(-0.519280\pi\)
−0.0605329 + 0.998166i \(0.519280\pi\)
\(270\) 0 0
\(271\) 757496. 0.626552 0.313276 0.949662i \(-0.398574\pi\)
0.313276 + 0.949662i \(0.398574\pi\)
\(272\) − 333312.i − 0.273167i
\(273\) − 440118.i − 0.357407i
\(274\) −1.04364e6 −0.839797
\(275\) 0 0
\(276\) 326592. 0.258067
\(277\) 1.16214e6i 0.910035i 0.890482 + 0.455018i \(0.150367\pi\)
−0.890482 + 0.455018i \(0.849633\pi\)
\(278\) 1.19186e6i 0.924936i
\(279\) −677160. −0.520812
\(280\) 0 0
\(281\) −414366. −0.313053 −0.156527 0.987674i \(-0.550030\pi\)
−0.156527 + 0.987674i \(0.550030\pi\)
\(282\) − 799200.i − 0.598457i
\(283\) 120428.i 0.0893843i 0.999001 + 0.0446922i \(0.0142307\pi\)
−0.999001 + 0.0446922i \(0.985769\pi\)
\(284\) 330048. 0.242818
\(285\) 0 0
\(286\) −862272. −0.623346
\(287\) 479514.i 0.343634i
\(288\) − 82944.0i − 0.0589256i
\(289\) −275347. −0.193926
\(290\) 0 0
\(291\) 711702. 0.492681
\(292\) − 4640.00i − 0.00318464i
\(293\) 2.20159e6i 1.49819i 0.662463 + 0.749094i \(0.269511\pi\)
−0.662463 + 0.749094i \(0.730489\pi\)
\(294\) −86436.0 −0.0583212
\(295\) 0 0
\(296\) 301696. 0.200143
\(297\) 157464.i 0.103583i
\(298\) 1.59588e6i 1.04102i
\(299\) 2.26346e6 1.46418
\(300\) 0 0
\(301\) 952364. 0.605880
\(302\) − 899872.i − 0.567758i
\(303\) − 1.66163e6i − 1.03975i
\(304\) −226304. −0.140446
\(305\) 0 0
\(306\) −421848. −0.257545
\(307\) − 110900.i − 0.0671561i −0.999436 0.0335781i \(-0.989310\pi\)
0.999436 0.0335781i \(-0.0106902\pi\)
\(308\) 169344.i 0.101717i
\(309\) 581328. 0.346358
\(310\) 0 0
\(311\) −910608. −0.533864 −0.266932 0.963715i \(-0.586010\pi\)
−0.266932 + 0.963715i \(0.586010\pi\)
\(312\) − 574848.i − 0.334323i
\(313\) 3.12247e6i 1.80152i 0.434322 + 0.900758i \(0.356988\pi\)
−0.434322 + 0.900758i \(0.643012\pi\)
\(314\) −932872. −0.533947
\(315\) 0 0
\(316\) −1.59270e6 −0.897258
\(317\) 2.76688e6i 1.54647i 0.634117 + 0.773237i \(0.281364\pi\)
−0.634117 + 0.773237i \(0.718636\pi\)
\(318\) 964440.i 0.534820i
\(319\) 320112. 0.176127
\(320\) 0 0
\(321\) −1.34633e6 −0.729270
\(322\) − 444528.i − 0.238924i
\(323\) 1.15097e6i 0.613842i
\(324\) −104976. −0.0555556
\(325\) 0 0
\(326\) −1.86488e6 −0.971867
\(327\) − 574434.i − 0.297078i
\(328\) 626304.i 0.321440i
\(329\) −1.08780e6 −0.554063
\(330\) 0 0
\(331\) 3.22257e6 1.61671 0.808356 0.588694i \(-0.200358\pi\)
0.808356 + 0.588694i \(0.200358\pi\)
\(332\) − 308928.i − 0.153820i
\(333\) − 381834.i − 0.188697i
\(334\) −403392. −0.197861
\(335\) 0 0
\(336\) −112896. −0.0545545
\(337\) − 1.63306e6i − 0.783298i −0.920115 0.391649i \(-0.871905\pi\)
0.920115 0.391649i \(-0.128095\pi\)
\(338\) − 2.49884e6i − 1.18973i
\(339\) −639198. −0.302090
\(340\) 0 0
\(341\) 1.80576e6 0.840958
\(342\) 286416.i 0.132413i
\(343\) 117649.i 0.0539949i
\(344\) 1.24390e6 0.566749
\(345\) 0 0
\(346\) 2.67535e6 1.20141
\(347\) − 1.03642e6i − 0.462073i −0.972945 0.231036i \(-0.925788\pi\)
0.972945 0.231036i \(-0.0742117\pi\)
\(348\) 213408.i 0.0944632i
\(349\) 4.22999e6 1.85898 0.929491 0.368844i \(-0.120246\pi\)
0.929491 + 0.368844i \(0.120246\pi\)
\(350\) 0 0
\(351\) −727542. −0.315203
\(352\) 221184.i 0.0951474i
\(353\) 238806.i 0.102002i 0.998699 + 0.0510010i \(0.0162412\pi\)
−0.998699 + 0.0510010i \(0.983759\pi\)
\(354\) −1.01131e6 −0.428921
\(355\) 0 0
\(356\) 582240. 0.243488
\(357\) 574182.i 0.238440i
\(358\) 2.45942e6i 1.01421i
\(359\) 2.66428e6 1.09105 0.545523 0.838096i \(-0.316331\pi\)
0.545523 + 0.838096i \(0.316331\pi\)
\(360\) 0 0
\(361\) −1.69464e6 −0.684400
\(362\) 2.16274e6i 0.867429i
\(363\) 1.02956e6i 0.410094i
\(364\) −782432. −0.309523
\(365\) 0 0
\(366\) −1.39918e6 −0.545971
\(367\) 1.71083e6i 0.663044i 0.943448 + 0.331522i \(0.107562\pi\)
−0.943448 + 0.331522i \(0.892438\pi\)
\(368\) − 580608.i − 0.223493i
\(369\) 792666. 0.303057
\(370\) 0 0
\(371\) 1.31271e6 0.495147
\(372\) 1.20384e6i 0.451036i
\(373\) − 3.96649e6i − 1.47616i −0.674712 0.738081i \(-0.735732\pi\)
0.674712 0.738081i \(-0.264268\pi\)
\(374\) 1.12493e6 0.415859
\(375\) 0 0
\(376\) −1.42080e6 −0.518279
\(377\) 1.47904e6i 0.535951i
\(378\) 142884.i 0.0514344i
\(379\) −828668. −0.296335 −0.148167 0.988962i \(-0.547337\pi\)
−0.148167 + 0.988962i \(0.547337\pi\)
\(380\) 0 0
\(381\) −2.42662e6 −0.856424
\(382\) − 167664.i − 0.0587870i
\(383\) − 2.55686e6i − 0.890657i −0.895367 0.445329i \(-0.853087\pi\)
0.895367 0.445329i \(-0.146913\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 2.13599e6 0.729678
\(387\) − 1.57432e6i − 0.534336i
\(388\) − 1.26525e6i − 0.426674i
\(389\) −2.91785e6 −0.977664 −0.488832 0.872378i \(-0.662577\pi\)
−0.488832 + 0.872378i \(0.662577\pi\)
\(390\) 0 0
\(391\) −2.95294e6 −0.976815
\(392\) 153664.i 0.0505076i
\(393\) − 730620.i − 0.238622i
\(394\) 3.29954e6 1.07081
\(395\) 0 0
\(396\) 279936. 0.0897059
\(397\) − 2.50715e6i − 0.798370i −0.916870 0.399185i \(-0.869293\pi\)
0.916870 0.399185i \(-0.130707\pi\)
\(398\) 1.59818e6i 0.505728i
\(399\) 389844. 0.122591
\(400\) 0 0
\(401\) 990666. 0.307657 0.153828 0.988098i \(-0.450840\pi\)
0.153828 + 0.988098i \(0.450840\pi\)
\(402\) − 862128.i − 0.266077i
\(403\) 8.34328e6i 2.55902i
\(404\) −2.95402e6 −0.900450
\(405\) 0 0
\(406\) 290472. 0.0874559
\(407\) 1.01822e6i 0.304689i
\(408\) 749952.i 0.223040i
\(409\) −4.51824e6 −1.33555 −0.667777 0.744362i \(-0.732754\pi\)
−0.667777 + 0.744362i \(0.732754\pi\)
\(410\) 0 0
\(411\) 2.34819e6 0.685691
\(412\) − 1.03347e6i − 0.299955i
\(413\) 1.37651e6i 0.397103i
\(414\) −734832. −0.210711
\(415\) 0 0
\(416\) −1.02195e6 −0.289532
\(417\) − 2.68168e6i − 0.755207i
\(418\) − 763776.i − 0.213809i
\(419\) −605220. −0.168414 −0.0842070 0.996448i \(-0.526836\pi\)
−0.0842070 + 0.996448i \(0.526836\pi\)
\(420\) 0 0
\(421\) 4.49893e6 1.23710 0.618549 0.785746i \(-0.287721\pi\)
0.618549 + 0.785746i \(0.287721\pi\)
\(422\) 3.47547e6i 0.950020i
\(423\) 1.79820e6i 0.488638i
\(424\) 1.71456e6 0.463167
\(425\) 0 0
\(426\) −742608. −0.198260
\(427\) 1.90443e6i 0.505471i
\(428\) 2.39347e6i 0.631566i
\(429\) 1.94011e6 0.508960
\(430\) 0 0
\(431\) 5.37594e6 1.39400 0.696998 0.717074i \(-0.254519\pi\)
0.696998 + 0.717074i \(0.254519\pi\)
\(432\) 186624.i 0.0481125i
\(433\) − 1.98561e6i − 0.508950i −0.967079 0.254475i \(-0.918097\pi\)
0.967079 0.254475i \(-0.0819027\pi\)
\(434\) 1.63856e6 0.417578
\(435\) 0 0
\(436\) −1.02122e6 −0.257277
\(437\) 2.00491e6i 0.502217i
\(438\) 10440.0i 0.00260025i
\(439\) −3.38727e6 −0.838859 −0.419429 0.907788i \(-0.637770\pi\)
−0.419429 + 0.907788i \(0.637770\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 5.19758e6i 1.26545i
\(443\) 2.14094e6i 0.518318i 0.965835 + 0.259159i \(0.0834453\pi\)
−0.965835 + 0.259159i \(0.916555\pi\)
\(444\) −678816. −0.163416
\(445\) 0 0
\(446\) 2.50662e6 0.596695
\(447\) − 3.59073e6i − 0.849990i
\(448\) 200704.i 0.0472456i
\(449\) 6.97808e6 1.63350 0.816752 0.576990i \(-0.195773\pi\)
0.816752 + 0.576990i \(0.195773\pi\)
\(450\) 0 0
\(451\) −2.11378e6 −0.489348
\(452\) 1.13635e6i 0.261618i
\(453\) 2.02471e6i 0.463573i
\(454\) −1.80158e6 −0.410218
\(455\) 0 0
\(456\) 509184. 0.114673
\(457\) 5.17999e6i 1.16021i 0.814540 + 0.580107i \(0.196989\pi\)
−0.814540 + 0.580107i \(0.803011\pi\)
\(458\) 4.25812e6i 0.948537i
\(459\) 949158. 0.210284
\(460\) 0 0
\(461\) −7.83001e6 −1.71597 −0.857985 0.513674i \(-0.828284\pi\)
−0.857985 + 0.513674i \(0.828284\pi\)
\(462\) − 381024.i − 0.0830515i
\(463\) 165320.i 0.0358404i 0.999839 + 0.0179202i \(0.00570448\pi\)
−0.999839 + 0.0179202i \(0.994296\pi\)
\(464\) 379392. 0.0818075
\(465\) 0 0
\(466\) −5.74471e6 −1.22547
\(467\) 1.79329e6i 0.380504i 0.981735 + 0.190252i \(0.0609304\pi\)
−0.981735 + 0.190252i \(0.939070\pi\)
\(468\) 1.29341e6i 0.272974i
\(469\) −1.17345e6 −0.246339
\(470\) 0 0
\(471\) 2.09896e6 0.435966
\(472\) 1.79789e6i 0.371456i
\(473\) 4.19818e6i 0.862795i
\(474\) 3.58358e6 0.732608
\(475\) 0 0
\(476\) 1.02077e6 0.206495
\(477\) − 2.16999e6i − 0.436678i
\(478\) 3.99144e6i 0.799024i
\(479\) 6.59657e6 1.31365 0.656824 0.754044i \(-0.271899\pi\)
0.656824 + 0.754044i \(0.271899\pi\)
\(480\) 0 0
\(481\) −4.70457e6 −0.927166
\(482\) − 911896.i − 0.178784i
\(483\) 1.00019e6i 0.195080i
\(484\) 1.83032e6 0.355151
\(485\) 0 0
\(486\) 236196. 0.0453609
\(487\) 5.97393e6i 1.14140i 0.821159 + 0.570700i \(0.193328\pi\)
−0.821159 + 0.570700i \(0.806672\pi\)
\(488\) 2.48742e6i 0.472825i
\(489\) 4.19598e6 0.793526
\(490\) 0 0
\(491\) 381264. 0.0713710 0.0356855 0.999363i \(-0.488639\pi\)
0.0356855 + 0.999363i \(0.488639\pi\)
\(492\) − 1.40918e6i − 0.262455i
\(493\) − 1.92956e6i − 0.357554i
\(494\) 3.52893e6 0.650617
\(495\) 0 0
\(496\) 2.14016e6 0.390609
\(497\) 1.01077e6i 0.183553i
\(498\) 695088.i 0.125593i
\(499\) −1.54351e6 −0.277497 −0.138748 0.990328i \(-0.544308\pi\)
−0.138748 + 0.990328i \(0.544308\pi\)
\(500\) 0 0
\(501\) 907632. 0.161553
\(502\) 6.06629e6i 1.07439i
\(503\) − 4.02300e6i − 0.708974i −0.935061 0.354487i \(-0.884656\pi\)
0.935061 0.354487i \(-0.115344\pi\)
\(504\) 254016. 0.0445435
\(505\) 0 0
\(506\) 1.95955e6 0.340236
\(507\) 5.62240e6i 0.971408i
\(508\) 4.31398e6i 0.741685i
\(509\) 1.94715e6 0.333123 0.166562 0.986031i \(-0.446734\pi\)
0.166562 + 0.986031i \(0.446734\pi\)
\(510\) 0 0
\(511\) 14210.0 0.00240736
\(512\) 262144.i 0.0441942i
\(513\) − 644436.i − 0.108115i
\(514\) 1.82354e6 0.304445
\(515\) 0 0
\(516\) −2.79878e6 −0.462749
\(517\) − 4.79520e6i − 0.789006i
\(518\) 923944.i 0.151294i
\(519\) −6.01954e6 −0.980946
\(520\) 0 0
\(521\) 7.38569e6 1.19206 0.596028 0.802963i \(-0.296745\pi\)
0.596028 + 0.802963i \(0.296745\pi\)
\(522\) − 480168.i − 0.0771289i
\(523\) − 329740.i − 0.0527130i −0.999653 0.0263565i \(-0.991610\pi\)
0.999653 0.0263565i \(-0.00839050\pi\)
\(524\) −1.29888e6 −0.206653
\(525\) 0 0
\(526\) 3.01061e6 0.474449
\(527\) − 1.08847e7i − 1.70722i
\(528\) − 497664.i − 0.0776875i
\(529\) 1.29252e6 0.200816
\(530\) 0 0
\(531\) 2.27545e6 0.350212
\(532\) − 693056.i − 0.106167i
\(533\) − 9.76643e6i − 1.48908i
\(534\) −1.31004e6 −0.198807
\(535\) 0 0
\(536\) −1.53267e6 −0.230429
\(537\) − 5.53370e6i − 0.828095i
\(538\) − 574728.i − 0.0856065i
\(539\) −518616. −0.0768907
\(540\) 0 0
\(541\) 87086.0 0.0127925 0.00639625 0.999980i \(-0.497964\pi\)
0.00639625 + 0.999980i \(0.497964\pi\)
\(542\) 3.02998e6i 0.443039i
\(543\) − 4.86617e6i − 0.708252i
\(544\) 1.33325e6 0.193158
\(545\) 0 0
\(546\) 1.76047e6 0.252725
\(547\) − 6.91531e6i − 0.988196i −0.869406 0.494098i \(-0.835498\pi\)
0.869406 0.494098i \(-0.164502\pi\)
\(548\) − 4.17456e6i − 0.593826i
\(549\) 3.14815e6 0.445784
\(550\) 0 0
\(551\) −1.31009e6 −0.183832
\(552\) 1.30637e6i 0.182481i
\(553\) − 4.87766e6i − 0.678263i
\(554\) −4.64855e6 −0.643492
\(555\) 0 0
\(556\) −4.76742e6 −0.654029
\(557\) 1.52258e6i 0.207942i 0.994580 + 0.103971i \(0.0331549\pi\)
−0.994580 + 0.103971i \(0.966845\pi\)
\(558\) − 2.70864e6i − 0.368270i
\(559\) −1.93971e7 −2.62548
\(560\) 0 0
\(561\) −2.53109e6 −0.339547
\(562\) − 1.65746e6i − 0.221362i
\(563\) − 7.86462e6i − 1.04570i −0.852425 0.522850i \(-0.824869\pi\)
0.852425 0.522850i \(-0.175131\pi\)
\(564\) 3.19680e6 0.423173
\(565\) 0 0
\(566\) −481712. −0.0632043
\(567\) − 321489.i − 0.0419961i
\(568\) 1.32019e6i 0.171698i
\(569\) 1.46321e6 0.189464 0.0947321 0.995503i \(-0.469801\pi\)
0.0947321 + 0.995503i \(0.469801\pi\)
\(570\) 0 0
\(571\) 9.19855e6 1.18067 0.590336 0.807158i \(-0.298995\pi\)
0.590336 + 0.807158i \(0.298995\pi\)
\(572\) − 3.44909e6i − 0.440772i
\(573\) 377244.i 0.0479994i
\(574\) −1.91806e6 −0.242986
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) − 3.28939e6i − 0.411317i −0.978624 0.205658i \(-0.934066\pi\)
0.978624 0.205658i \(-0.0659336\pi\)
\(578\) − 1.10139e6i − 0.137126i
\(579\) −4.80598e6 −0.595780
\(580\) 0 0
\(581\) 946092. 0.116277
\(582\) 2.84681e6i 0.348378i
\(583\) 5.78664e6i 0.705107i
\(584\) 18560.0 0.00225188
\(585\) 0 0
\(586\) −8.80634e6 −1.05938
\(587\) − 5.12929e6i − 0.614416i −0.951642 0.307208i \(-0.900605\pi\)
0.951642 0.307208i \(-0.0993947\pi\)
\(588\) − 345744.i − 0.0412393i
\(589\) −7.39024e6 −0.877749
\(590\) 0 0
\(591\) −7.42397e6 −0.874315
\(592\) 1.20678e6i 0.141522i
\(593\) − 2.75433e6i − 0.321647i −0.986983 0.160823i \(-0.948585\pi\)
0.986983 0.160823i \(-0.0514150\pi\)
\(594\) −629856. −0.0732445
\(595\) 0 0
\(596\) −6.38352e6 −0.736113
\(597\) − 3.59590e6i − 0.412925i
\(598\) 9.05386e6i 1.03533i
\(599\) 9.88616e6 1.12580 0.562899 0.826525i \(-0.309686\pi\)
0.562899 + 0.826525i \(0.309686\pi\)
\(600\) 0 0
\(601\) 1.37039e7 1.54760 0.773798 0.633433i \(-0.218355\pi\)
0.773798 + 0.633433i \(0.218355\pi\)
\(602\) 3.80946e6i 0.428422i
\(603\) 1.93979e6i 0.217251i
\(604\) 3.59949e6 0.401466
\(605\) 0 0
\(606\) 6.64654e6 0.735214
\(607\) 7.85310e6i 0.865107i 0.901608 + 0.432553i \(0.142387\pi\)
−0.901608 + 0.432553i \(0.857613\pi\)
\(608\) − 905216.i − 0.0993101i
\(609\) −653562. −0.0714075
\(610\) 0 0
\(611\) 2.21556e7 2.40094
\(612\) − 1.68739e6i − 0.182112i
\(613\) 1.46977e7i 1.57978i 0.613246 + 0.789892i \(0.289864\pi\)
−0.613246 + 0.789892i \(0.710136\pi\)
\(614\) 443600. 0.0474865
\(615\) 0 0
\(616\) −677376. −0.0719247
\(617\) − 6.28370e6i − 0.664511i −0.943189 0.332256i \(-0.892190\pi\)
0.943189 0.332256i \(-0.107810\pi\)
\(618\) 2.32531e6i 0.244912i
\(619\) 2.26692e6 0.237799 0.118900 0.992906i \(-0.462063\pi\)
0.118900 + 0.992906i \(0.462063\pi\)
\(620\) 0 0
\(621\) 1.65337e6 0.172045
\(622\) − 3.64243e6i − 0.377499i
\(623\) 1.78311e6i 0.184059i
\(624\) 2.29939e6 0.236402
\(625\) 0 0
\(626\) −1.24899e7 −1.27386
\(627\) 1.71850e6i 0.174574i
\(628\) − 3.73149e6i − 0.377557i
\(629\) 6.13763e6 0.618549
\(630\) 0 0
\(631\) −1.17477e7 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(632\) − 6.37082e6i − 0.634457i
\(633\) − 7.81981e6i − 0.775688i
\(634\) −1.10675e7 −1.09352
\(635\) 0 0
\(636\) −3.85776e6 −0.378175
\(637\) − 2.39620e6i − 0.233978i
\(638\) 1.28045e6i 0.124540i
\(639\) 1.67087e6 0.161879
\(640\) 0 0
\(641\) 5.93231e6 0.570268 0.285134 0.958488i \(-0.407962\pi\)
0.285134 + 0.958488i \(0.407962\pi\)
\(642\) − 5.38531e6i − 0.515672i
\(643\) − 6.94443e6i − 0.662383i −0.943564 0.331191i \(-0.892549\pi\)
0.943564 0.331191i \(-0.107451\pi\)
\(644\) 1.77811e6 0.168945
\(645\) 0 0
\(646\) −4.60387e6 −0.434052
\(647\) 4.97050e6i 0.466809i 0.972380 + 0.233404i \(0.0749866\pi\)
−0.972380 + 0.233404i \(0.925013\pi\)
\(648\) − 419904.i − 0.0392837i
\(649\) −6.06787e6 −0.565490
\(650\) 0 0
\(651\) −3.68676e6 −0.340951
\(652\) − 7.45952e6i − 0.687214i
\(653\) − 1.83355e7i − 1.68271i −0.540484 0.841354i \(-0.681759\pi\)
0.540484 0.841354i \(-0.318241\pi\)
\(654\) 2.29774e6 0.210066
\(655\) 0 0
\(656\) −2.50522e6 −0.227293
\(657\) − 23490.0i − 0.00212310i
\(658\) − 4.35120e6i − 0.391782i
\(659\) −9.01402e6 −0.808546 −0.404273 0.914638i \(-0.632475\pi\)
−0.404273 + 0.914638i \(0.632475\pi\)
\(660\) 0 0
\(661\) 699398. 0.0622617 0.0311308 0.999515i \(-0.490089\pi\)
0.0311308 + 0.999515i \(0.490089\pi\)
\(662\) 1.28903e7i 1.14319i
\(663\) − 1.16946e7i − 1.03324i
\(664\) 1.23571e6 0.108767
\(665\) 0 0
\(666\) 1.52734e6 0.133429
\(667\) − 3.36118e6i − 0.292534i
\(668\) − 1.61357e6i − 0.139909i
\(669\) −5.63990e6 −0.487199
\(670\) 0 0
\(671\) −8.39506e6 −0.719809
\(672\) − 451584.i − 0.0385758i
\(673\) − 5.80603e6i − 0.494130i −0.968999 0.247065i \(-0.920534\pi\)
0.968999 0.247065i \(-0.0794662\pi\)
\(674\) 6.53223e6 0.553875
\(675\) 0 0
\(676\) 9.99538e6 0.841264
\(677\) − 985074.i − 0.0826033i −0.999147 0.0413016i \(-0.986850\pi\)
0.999147 0.0413016i \(-0.0131505\pi\)
\(678\) − 2.55679e6i − 0.213610i
\(679\) 3.87482e6 0.322535
\(680\) 0 0
\(681\) 4.05356e6 0.334942
\(682\) 7.22304e6i 0.594647i
\(683\) − 1.88208e7i − 1.54379i −0.635752 0.771894i \(-0.719310\pi\)
0.635752 0.771894i \(-0.280690\pi\)
\(684\) −1.14566e6 −0.0936304
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) − 9.58077e6i − 0.774477i
\(688\) 4.97562e6i 0.400752i
\(689\) −2.67364e7 −2.14563
\(690\) 0 0
\(691\) −1.93385e7 −1.54073 −0.770366 0.637601i \(-0.779927\pi\)
−0.770366 + 0.637601i \(0.779927\pi\)
\(692\) 1.07014e7i 0.849524i
\(693\) 857304.i 0.0678113i
\(694\) 4.14566e6 0.326735
\(695\) 0 0
\(696\) −853632. −0.0667956
\(697\) 1.27414e7i 0.993423i
\(698\) 1.69199e7i 1.31450i
\(699\) 1.29256e7 1.00059
\(700\) 0 0
\(701\) −1.41489e6 −0.108750 −0.0543748 0.998521i \(-0.517317\pi\)
−0.0543748 + 0.998521i \(0.517317\pi\)
\(702\) − 2.91017e6i − 0.222882i
\(703\) − 4.16718e6i − 0.318019i
\(704\) −884736. −0.0672794
\(705\) 0 0
\(706\) −955224. −0.0721263
\(707\) − 9.04667e6i − 0.680676i
\(708\) − 4.04525e6i − 0.303293i
\(709\) 754906. 0.0563998 0.0281999 0.999602i \(-0.491023\pi\)
0.0281999 + 0.999602i \(0.491023\pi\)
\(710\) 0 0
\(711\) −8.06306e6 −0.598172
\(712\) 2.32896e6i 0.172172i
\(713\) − 1.89605e7i − 1.39677i
\(714\) −2.29673e6 −0.168603
\(715\) 0 0
\(716\) −9.83770e6 −0.717151
\(717\) − 8.98074e6i − 0.652400i
\(718\) 1.06571e7i 0.771486i
\(719\) −1.08854e6 −0.0785279 −0.0392639 0.999229i \(-0.512501\pi\)
−0.0392639 + 0.999229i \(0.512501\pi\)
\(720\) 0 0
\(721\) 3.16501e6 0.226744
\(722\) − 6.77857e6i − 0.483944i
\(723\) 2.05177e6i 0.145976i
\(724\) −8.65098e6 −0.613365
\(725\) 0 0
\(726\) −4.11822e6 −0.289980
\(727\) 755392.i 0.0530074i 0.999649 + 0.0265037i \(0.00843737\pi\)
−0.999649 + 0.0265037i \(0.991563\pi\)
\(728\) − 3.12973e6i − 0.218866i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 2.53057e7 1.75156
\(732\) − 5.59670e6i − 0.386060i
\(733\) 1.56369e6i 0.107495i 0.998555 + 0.0537477i \(0.0171167\pi\)
−0.998555 + 0.0537477i \(0.982883\pi\)
\(734\) −6.84333e6 −0.468843
\(735\) 0 0
\(736\) 2.32243e6 0.158033
\(737\) − 5.17277e6i − 0.350796i
\(738\) 3.17066e6i 0.214294i
\(739\) 1.05544e7 0.710922 0.355461 0.934691i \(-0.384324\pi\)
0.355461 + 0.934691i \(0.384324\pi\)
\(740\) 0 0
\(741\) −7.94009e6 −0.531227
\(742\) 5.25084e6i 0.350122i
\(743\) 1.73678e7i 1.15418i 0.816682 + 0.577088i \(0.195811\pi\)
−0.816682 + 0.577088i \(0.804189\pi\)
\(744\) −4.81536e6 −0.318931
\(745\) 0 0
\(746\) 1.58660e7 1.04380
\(747\) − 1.56395e6i − 0.102546i
\(748\) 4.49971e6i 0.294056i
\(749\) −7.33001e6 −0.477419
\(750\) 0 0
\(751\) −2.80181e7 −1.81276 −0.906378 0.422467i \(-0.861164\pi\)
−0.906378 + 0.422467i \(0.861164\pi\)
\(752\) − 5.68320e6i − 0.366478i
\(753\) − 1.36491e7i − 0.877239i
\(754\) −5.91614e6 −0.378975
\(755\) 0 0
\(756\) −571536. −0.0363696
\(757\) 1.01979e7i 0.646801i 0.946262 + 0.323401i \(0.104826\pi\)
−0.946262 + 0.323401i \(0.895174\pi\)
\(758\) − 3.31467e6i − 0.209540i
\(759\) −4.40899e6 −0.277802
\(760\) 0 0
\(761\) 2.57535e6 0.161204 0.0806018 0.996746i \(-0.474316\pi\)
0.0806018 + 0.996746i \(0.474316\pi\)
\(762\) − 9.70646e6i − 0.605583i
\(763\) − 3.12747e6i − 0.194483i
\(764\) 670656. 0.0415687
\(765\) 0 0
\(766\) 1.02275e7 0.629790
\(767\) − 2.80358e7i − 1.72078i
\(768\) − 589824.i − 0.0360844i
\(769\) −971234. −0.0592254 −0.0296127 0.999561i \(-0.509427\pi\)
−0.0296127 + 0.999561i \(0.509427\pi\)
\(770\) 0 0
\(771\) −4.10297e6 −0.248578
\(772\) 8.54397e6i 0.515960i
\(773\) − 1.72921e7i − 1.04088i −0.853899 0.520439i \(-0.825768\pi\)
0.853899 0.520439i \(-0.174232\pi\)
\(774\) 6.29726e6 0.377833
\(775\) 0 0
\(776\) 5.06099e6 0.301704
\(777\) − 2.07887e6i − 0.123531i
\(778\) − 1.16714e7i − 0.691313i
\(779\) 8.65082e6 0.510756
\(780\) 0 0
\(781\) −4.45565e6 −0.261387
\(782\) − 1.18117e7i − 0.690712i
\(783\) 1.08038e6i 0.0629755i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 2.92248e6 0.168731
\(787\) 1.65515e7i 0.952576i 0.879289 + 0.476288i \(0.158018\pi\)
−0.879289 + 0.476288i \(0.841982\pi\)
\(788\) 1.31982e7i 0.757179i
\(789\) −6.77387e6 −0.387386
\(790\) 0 0
\(791\) −3.48008e6 −0.197764
\(792\) 1.11974e6i 0.0634316i
\(793\) − 3.87883e7i − 2.19037i
\(794\) 1.00286e7 0.564533
\(795\) 0 0
\(796\) −6.39270e6 −0.357604
\(797\) − 2.91057e6i − 0.162305i −0.996702 0.0811526i \(-0.974140\pi\)
0.996702 0.0811526i \(-0.0258601\pi\)
\(798\) 1.55938e6i 0.0866849i
\(799\) −2.89044e7 −1.60176
\(800\) 0 0
\(801\) 2.94759e6 0.162325
\(802\) 3.96266e6i 0.217546i
\(803\) 62640.0i 0.00342817i
\(804\) 3.44851e6 0.188145
\(805\) 0 0
\(806\) −3.33731e7 −1.80950
\(807\) 1.29314e6i 0.0698974i
\(808\) − 1.18161e7i − 0.636714i
\(809\) 1.16252e7 0.624496 0.312248 0.950001i \(-0.398918\pi\)
0.312248 + 0.950001i \(0.398918\pi\)
\(810\) 0 0
\(811\) 3.09020e7 1.64981 0.824906 0.565270i \(-0.191228\pi\)
0.824906 + 0.565270i \(0.191228\pi\)
\(812\) 1.16189e6i 0.0618407i
\(813\) − 6.81746e6i − 0.361740i
\(814\) −4.07290e6 −0.215448
\(815\) 0 0
\(816\) −2.99981e6 −0.157713
\(817\) − 1.71814e7i − 0.900542i
\(818\) − 1.80730e7i − 0.944379i
\(819\) −3.96106e6 −0.206349
\(820\) 0 0
\(821\) −2.22870e7 −1.15397 −0.576984 0.816755i \(-0.695771\pi\)
−0.576984 + 0.816755i \(0.695771\pi\)
\(822\) 9.39276e6i 0.484857i
\(823\) − 1.64895e7i − 0.848610i −0.905519 0.424305i \(-0.860518\pi\)
0.905519 0.424305i \(-0.139482\pi\)
\(824\) 4.13389e6 0.212100
\(825\) 0 0
\(826\) −5.50603e6 −0.280795
\(827\) 2.37457e7i 1.20732i 0.797244 + 0.603658i \(0.206291\pi\)
−0.797244 + 0.603658i \(0.793709\pi\)
\(828\) − 2.93933e6i − 0.148995i
\(829\) −2.60865e7 −1.31835 −0.659173 0.751991i \(-0.729094\pi\)
−0.659173 + 0.751991i \(0.729094\pi\)
\(830\) 0 0
\(831\) 1.04592e7 0.525409
\(832\) − 4.08781e6i − 0.204730i
\(833\) 3.12610e6i 0.156096i
\(834\) 1.07267e7 0.534012
\(835\) 0 0
\(836\) 3.05510e6 0.151186
\(837\) 6.09444e6i 0.300691i
\(838\) − 2.42088e6i − 0.119087i
\(839\) −1.00872e7 −0.494729 −0.247365 0.968922i \(-0.579565\pi\)
−0.247365 + 0.968922i \(0.579565\pi\)
\(840\) 0 0
\(841\) −1.83148e7 −0.892920
\(842\) 1.79957e7i 0.874761i
\(843\) 3.72929e6i 0.180741i
\(844\) −1.39019e7 −0.671765
\(845\) 0 0
\(846\) −7.19280e6 −0.345519
\(847\) 5.60536e6i 0.268469i
\(848\) 6.85824e6i 0.327509i
\(849\) 1.08385e6 0.0516061
\(850\) 0 0
\(851\) 1.06914e7 0.506068
\(852\) − 2.97043e6i − 0.140191i
\(853\) − 2.43630e7i − 1.14646i −0.819395 0.573229i \(-0.805691\pi\)
0.819395 0.573229i \(-0.194309\pi\)
\(854\) −7.61774e6 −0.357422
\(855\) 0 0
\(856\) −9.57389e6 −0.446585
\(857\) − 2.45612e6i − 0.114234i −0.998367 0.0571172i \(-0.981809\pi\)
0.998367 0.0571172i \(-0.0181909\pi\)
\(858\) 7.76045e6i 0.359889i
\(859\) −8.62982e6 −0.399042 −0.199521 0.979894i \(-0.563939\pi\)
−0.199521 + 0.979894i \(0.563939\pi\)
\(860\) 0 0
\(861\) 4.31563e6 0.198397
\(862\) 2.15038e7i 0.985703i
\(863\) 1.05199e7i 0.480824i 0.970671 + 0.240412i \(0.0772825\pi\)
−0.970671 + 0.240412i \(0.922717\pi\)
\(864\) −746496. −0.0340207
\(865\) 0 0
\(866\) 7.94246e6 0.359882
\(867\) 2.47812e6i 0.111963i
\(868\) 6.55424e6i 0.295273i
\(869\) 2.15015e7 0.965872
\(870\) 0 0
\(871\) 2.39001e7 1.06747
\(872\) − 4.08486e6i − 0.181922i
\(873\) − 6.40532e6i − 0.284449i
\(874\) −8.01965e6 −0.355121
\(875\) 0 0
\(876\) −41760.0 −0.00183865
\(877\) 1.14540e7i 0.502872i 0.967874 + 0.251436i \(0.0809028\pi\)
−0.967874 + 0.251436i \(0.919097\pi\)
\(878\) − 1.35491e7i − 0.593163i
\(879\) 1.98143e7 0.864980
\(880\) 0 0
\(881\) −1.18134e7 −0.512786 −0.256393 0.966573i \(-0.582534\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(882\) 777924.i 0.0336718i
\(883\) 4.63221e6i 0.199934i 0.994991 + 0.0999670i \(0.0318737\pi\)
−0.994991 + 0.0999670i \(0.968126\pi\)
\(884\) −2.07903e7 −0.894810
\(885\) 0 0
\(886\) −8.56378e6 −0.366506
\(887\) − 4.47728e7i − 1.91075i −0.295388 0.955377i \(-0.595449\pi\)
0.295388 0.955377i \(-0.404551\pi\)
\(888\) − 2.71526e6i − 0.115553i
\(889\) −1.32116e7 −0.560661
\(890\) 0 0
\(891\) 1.41718e6 0.0598039
\(892\) 1.00265e7i 0.421927i
\(893\) 1.96248e7i 0.823525i
\(894\) 1.43629e7 0.601034
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) − 2.03712e7i − 0.845347i
\(898\) 2.79123e7i 1.15506i
\(899\) 1.23895e7 0.511276
\(900\) 0 0
\(901\) 3.48806e7 1.43144
\(902\) − 8.45510e6i − 0.346021i
\(903\) − 8.57128e6i − 0.349805i
\(904\) −4.54541e6 −0.184992
\(905\) 0 0
\(906\) −8.09885e6 −0.327795
\(907\) 2.08357e7i 0.840986i 0.907296 + 0.420493i \(0.138143\pi\)
−0.907296 + 0.420493i \(0.861857\pi\)
\(908\) − 7.20634e6i − 0.290068i
\(909\) −1.49547e7 −0.600300
\(910\) 0 0
\(911\) 5.27869e6 0.210732 0.105366 0.994434i \(-0.466399\pi\)
0.105366 + 0.994434i \(0.466399\pi\)
\(912\) 2.03674e6i 0.0810863i
\(913\) 4.17053e6i 0.165582i
\(914\) −2.07200e7 −0.820396
\(915\) 0 0
\(916\) −1.70325e7 −0.670717
\(917\) − 3.97782e6i − 0.156215i
\(918\) 3.79663e6i 0.148693i
\(919\) −2.51286e7 −0.981477 −0.490738 0.871307i \(-0.663273\pi\)
−0.490738 + 0.871307i \(0.663273\pi\)
\(920\) 0 0
\(921\) −998100. −0.0387726
\(922\) − 3.13200e7i − 1.21337i
\(923\) − 2.05867e7i − 0.795396i
\(924\) 1.52410e6 0.0587263
\(925\) 0 0
\(926\) −661280. −0.0253430
\(927\) − 5.23195e6i − 0.199970i
\(928\) 1.51757e6i 0.0578467i
\(929\) −1.38042e7 −0.524774 −0.262387 0.964963i \(-0.584510\pi\)
−0.262387 + 0.964963i \(0.584510\pi\)
\(930\) 0 0
\(931\) 2.12248e6 0.0802547
\(932\) − 2.29788e7i − 0.866540i
\(933\) 8.19547e6i 0.308226i
\(934\) −7.17317e6 −0.269057
\(935\) 0 0
\(936\) −5.17363e6 −0.193022
\(937\) 4.73307e7i 1.76114i 0.473915 + 0.880570i \(0.342840\pi\)
−0.473915 + 0.880570i \(0.657160\pi\)
\(938\) − 4.69381e6i − 0.174188i
\(939\) 2.81023e7 1.04011
\(940\) 0 0
\(941\) −3.25570e7 −1.19859 −0.599295 0.800528i \(-0.704552\pi\)
−0.599295 + 0.800528i \(0.704552\pi\)
\(942\) 8.39585e6i 0.308274i
\(943\) 2.21946e7i 0.812773i
\(944\) −7.19155e6 −0.262659
\(945\) 0 0
\(946\) −1.67927e7 −0.610088
\(947\) 5.27117e6i 0.190999i 0.995429 + 0.0954997i \(0.0304449\pi\)
−0.995429 + 0.0954997i \(0.969555\pi\)
\(948\) 1.43343e7i 0.518032i
\(949\) −289420. −0.0104319
\(950\) 0 0
\(951\) 2.49019e7 0.892857
\(952\) 4.08307e6i 0.146014i
\(953\) 8.20579e6i 0.292677i 0.989235 + 0.146338i \(0.0467488\pi\)
−0.989235 + 0.146338i \(0.953251\pi\)
\(954\) 8.67996e6 0.308778
\(955\) 0 0
\(956\) −1.59658e7 −0.564995
\(957\) − 2.88101e6i − 0.101687i
\(958\) 2.63863e7i 0.928890i
\(959\) 1.27846e7 0.448890
\(960\) 0 0
\(961\) 4.12604e7 1.44120
\(962\) − 1.88183e7i − 0.655605i
\(963\) 1.21170e7i 0.421044i
\(964\) 3.64758e6 0.126419
\(965\) 0 0
\(966\) −4.00075e6 −0.137943
\(967\) 1.18118e7i 0.406210i 0.979157 + 0.203105i \(0.0651032\pi\)
−0.979157 + 0.203105i \(0.934897\pi\)
\(968\) 7.32128e6i 0.251130i
\(969\) 1.03587e7 0.354402
\(970\) 0 0
\(971\) −3.67702e7 −1.25155 −0.625774 0.780004i \(-0.715217\pi\)
−0.625774 + 0.780004i \(0.715217\pi\)
\(972\) 944784.i 0.0320750i
\(973\) − 1.46002e7i − 0.494399i
\(974\) −2.38957e7 −0.807091
\(975\) 0 0
\(976\) −9.94970e6 −0.334338
\(977\) 1.85183e7i 0.620674i 0.950627 + 0.310337i \(0.100442\pi\)
−0.950627 + 0.310337i \(0.899558\pi\)
\(978\) 1.67839e7i 0.561108i
\(979\) −7.86024e6 −0.262107
\(980\) 0 0
\(981\) −5.16991e6 −0.171518
\(982\) 1.52506e6i 0.0504670i
\(983\) 2.72169e7i 0.898370i 0.893439 + 0.449185i \(0.148286\pi\)
−0.893439 + 0.449185i \(0.851714\pi\)
\(984\) 5.63674e6 0.185584
\(985\) 0 0
\(986\) 7.71826e6 0.252829
\(987\) 9.79020e6i 0.319889i
\(988\) 1.41157e7i 0.460056i
\(989\) 4.40808e7 1.43304
\(990\) 0 0
\(991\) 1.63398e7 0.528522 0.264261 0.964451i \(-0.414872\pi\)
0.264261 + 0.964451i \(0.414872\pi\)
\(992\) 8.56064e6i 0.276202i
\(993\) − 2.90031e7i − 0.933409i
\(994\) −4.04309e6 −0.129792
\(995\) 0 0
\(996\) −2.78035e6 −0.0888079
\(997\) 3.02062e7i 0.962406i 0.876609 + 0.481203i \(0.159800\pi\)
−0.876609 + 0.481203i \(0.840200\pi\)
\(998\) − 6.17403e6i − 0.196220i
\(999\) −3.43651e6 −0.108944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.g.o.799.2 2
5.2 odd 4 42.6.a.a.1.1 1
5.3 odd 4 1050.6.a.n.1.1 1
5.4 even 2 inner 1050.6.g.o.799.1 2
15.2 even 4 126.6.a.k.1.1 1
20.7 even 4 336.6.a.j.1.1 1
35.2 odd 12 294.6.e.r.67.1 2
35.12 even 12 294.6.e.h.67.1 2
35.17 even 12 294.6.e.h.79.1 2
35.27 even 4 294.6.a.h.1.1 1
35.32 odd 12 294.6.e.r.79.1 2
60.47 odd 4 1008.6.a.x.1.1 1
105.62 odd 4 882.6.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.a.1.1 1 5.2 odd 4
126.6.a.k.1.1 1 15.2 even 4
294.6.a.h.1.1 1 35.27 even 4
294.6.e.h.67.1 2 35.12 even 12
294.6.e.h.79.1 2 35.17 even 12
294.6.e.r.67.1 2 35.2 odd 12
294.6.e.r.79.1 2 35.32 odd 12
336.6.a.j.1.1 1 20.7 even 4
882.6.a.o.1.1 1 105.62 odd 4
1008.6.a.x.1.1 1 60.47 odd 4
1050.6.a.n.1.1 1 5.3 odd 4
1050.6.g.o.799.1 2 5.4 even 2 inner
1050.6.g.o.799.2 2 1.1 even 1 trivial