Properties

Label 1050.6.g.m.799.1
Level $1050$
Weight $6$
Character 1050.799
Analytic conductor $168.403$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,6,Mod(799,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.799");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(168.403010804\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.6.g.m.799.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{2} +9.00000i q^{3} -16.0000 q^{4} +36.0000 q^{6} -49.0000i q^{7} +64.0000i q^{8} -81.0000 q^{9} +O(q^{10})\) \(q-4.00000i q^{2} +9.00000i q^{3} -16.0000 q^{4} +36.0000 q^{6} -49.0000i q^{7} +64.0000i q^{8} -81.0000 q^{9} +66.0000 q^{11} -144.000i q^{12} +98.0000i q^{13} -196.000 q^{14} +256.000 q^{16} +216.000i q^{17} +324.000i q^{18} +340.000 q^{19} +441.000 q^{21} -264.000i q^{22} -1038.00i q^{23} -576.000 q^{24} +392.000 q^{26} -729.000i q^{27} +784.000i q^{28} +2490.00 q^{29} -7048.00 q^{31} -1024.00i q^{32} +594.000i q^{33} +864.000 q^{34} +1296.00 q^{36} +12238.0i q^{37} -1360.00i q^{38} -882.000 q^{39} +6468.00 q^{41} -1764.00i q^{42} -15412.0i q^{43} -1056.00 q^{44} -4152.00 q^{46} -20604.0i q^{47} +2304.00i q^{48} -2401.00 q^{49} -1944.00 q^{51} -1568.00i q^{52} +32490.0i q^{53} -2916.00 q^{54} +3136.00 q^{56} +3060.00i q^{57} -9960.00i q^{58} -34224.0 q^{59} +35654.0 q^{61} +28192.0i q^{62} +3969.00i q^{63} -4096.00 q^{64} +2376.00 q^{66} -12680.0i q^{67} -3456.00i q^{68} +9342.00 q^{69} -42642.0 q^{71} -5184.00i q^{72} +33734.0i q^{73} +48952.0 q^{74} -5440.00 q^{76} -3234.00i q^{77} +3528.00i q^{78} +85108.0 q^{79} +6561.00 q^{81} -25872.0i q^{82} -106764. i q^{83} -7056.00 q^{84} -61648.0 q^{86} +22410.0i q^{87} +4224.00i q^{88} -34884.0 q^{89} +4802.00 q^{91} +16608.0i q^{92} -63432.0i q^{93} -82416.0 q^{94} +9216.00 q^{96} -18662.0i q^{97} +9604.00i q^{98} -5346.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} + 72 q^{6} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} + 72 q^{6} - 162 q^{9} + 132 q^{11} - 392 q^{14} + 512 q^{16} + 680 q^{19} + 882 q^{21} - 1152 q^{24} + 784 q^{26} + 4980 q^{29} - 14096 q^{31} + 1728 q^{34} + 2592 q^{36} - 1764 q^{39} + 12936 q^{41} - 2112 q^{44} - 8304 q^{46} - 4802 q^{49} - 3888 q^{51} - 5832 q^{54} + 6272 q^{56} - 68448 q^{59} + 71308 q^{61} - 8192 q^{64} + 4752 q^{66} + 18684 q^{69} - 85284 q^{71} + 97904 q^{74} - 10880 q^{76} + 170216 q^{79} + 13122 q^{81} - 14112 q^{84} - 123296 q^{86} - 69768 q^{89} + 9604 q^{91} - 164832 q^{94} + 18432 q^{96} - 10692 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 4.00000i − 0.707107i
\(3\) 9.00000i 0.577350i
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) 36.0000 0.408248
\(7\) − 49.0000i − 0.377964i
\(8\) 64.0000i 0.353553i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 66.0000 0.164461 0.0822304 0.996613i \(-0.473796\pi\)
0.0822304 + 0.996613i \(0.473796\pi\)
\(12\) − 144.000i − 0.288675i
\(13\) 98.0000i 0.160830i 0.996761 + 0.0804151i \(0.0256246\pi\)
−0.996761 + 0.0804151i \(0.974375\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 216.000i 0.181272i 0.995884 + 0.0906362i \(0.0288900\pi\)
−0.995884 + 0.0906362i \(0.971110\pi\)
\(18\) 324.000i 0.235702i
\(19\) 340.000 0.216070 0.108035 0.994147i \(-0.465544\pi\)
0.108035 + 0.994147i \(0.465544\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) − 264.000i − 0.116291i
\(23\) − 1038.00i − 0.409145i −0.978851 0.204573i \(-0.934420\pi\)
0.978851 0.204573i \(-0.0655805\pi\)
\(24\) −576.000 −0.204124
\(25\) 0 0
\(26\) 392.000 0.113724
\(27\) − 729.000i − 0.192450i
\(28\) 784.000i 0.188982i
\(29\) 2490.00 0.549800 0.274900 0.961473i \(-0.411355\pi\)
0.274900 + 0.961473i \(0.411355\pi\)
\(30\) 0 0
\(31\) −7048.00 −1.31723 −0.658615 0.752480i \(-0.728857\pi\)
−0.658615 + 0.752480i \(0.728857\pi\)
\(32\) − 1024.00i − 0.176777i
\(33\) 594.000i 0.0949514i
\(34\) 864.000 0.128179
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 12238.0i 1.46962i 0.678271 + 0.734812i \(0.262730\pi\)
−0.678271 + 0.734812i \(0.737270\pi\)
\(38\) − 1360.00i − 0.152785i
\(39\) −882.000 −0.0928554
\(40\) 0 0
\(41\) 6468.00 0.600911 0.300456 0.953796i \(-0.402861\pi\)
0.300456 + 0.953796i \(0.402861\pi\)
\(42\) − 1764.00i − 0.154303i
\(43\) − 15412.0i − 1.27112i −0.772050 0.635562i \(-0.780768\pi\)
0.772050 0.635562i \(-0.219232\pi\)
\(44\) −1056.00 −0.0822304
\(45\) 0 0
\(46\) −4152.00 −0.289310
\(47\) − 20604.0i − 1.36053i −0.732968 0.680263i \(-0.761866\pi\)
0.732968 0.680263i \(-0.238134\pi\)
\(48\) 2304.00i 0.144338i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −1944.00 −0.104658
\(52\) − 1568.00i − 0.0804151i
\(53\) 32490.0i 1.58877i 0.607417 + 0.794383i \(0.292206\pi\)
−0.607417 + 0.794383i \(0.707794\pi\)
\(54\) −2916.00 −0.136083
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) 3060.00i 0.124748i
\(58\) − 9960.00i − 0.388767i
\(59\) −34224.0 −1.27997 −0.639986 0.768386i \(-0.721060\pi\)
−0.639986 + 0.768386i \(0.721060\pi\)
\(60\) 0 0
\(61\) 35654.0 1.22683 0.613414 0.789762i \(-0.289796\pi\)
0.613414 + 0.789762i \(0.289796\pi\)
\(62\) 28192.0i 0.931422i
\(63\) 3969.00i 0.125988i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) 2376.00 0.0671408
\(67\) − 12680.0i − 0.345090i −0.985002 0.172545i \(-0.944801\pi\)
0.985002 0.172545i \(-0.0551990\pi\)
\(68\) − 3456.00i − 0.0906362i
\(69\) 9342.00 0.236220
\(70\) 0 0
\(71\) −42642.0 −1.00390 −0.501951 0.864896i \(-0.667384\pi\)
−0.501951 + 0.864896i \(0.667384\pi\)
\(72\) − 5184.00i − 0.117851i
\(73\) 33734.0i 0.740902i 0.928852 + 0.370451i \(0.120797\pi\)
−0.928852 + 0.370451i \(0.879203\pi\)
\(74\) 48952.0 1.03918
\(75\) 0 0
\(76\) −5440.00 −0.108035
\(77\) − 3234.00i − 0.0621603i
\(78\) 3528.00i 0.0656587i
\(79\) 85108.0 1.53427 0.767137 0.641484i \(-0.221681\pi\)
0.767137 + 0.641484i \(0.221681\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) − 25872.0i − 0.424908i
\(83\) − 106764.i − 1.70110i −0.525895 0.850550i \(-0.676270\pi\)
0.525895 0.850550i \(-0.323730\pi\)
\(84\) −7056.00 −0.109109
\(85\) 0 0
\(86\) −61648.0 −0.898820
\(87\) 22410.0i 0.317427i
\(88\) 4224.00i 0.0581456i
\(89\) −34884.0 −0.466822 −0.233411 0.972378i \(-0.574989\pi\)
−0.233411 + 0.972378i \(0.574989\pi\)
\(90\) 0 0
\(91\) 4802.00 0.0607881
\(92\) 16608.0i 0.204573i
\(93\) − 63432.0i − 0.760503i
\(94\) −82416.0 −0.962037
\(95\) 0 0
\(96\) 9216.00 0.102062
\(97\) − 18662.0i − 0.201386i −0.994918 0.100693i \(-0.967894\pi\)
0.994918 0.100693i \(-0.0321060\pi\)
\(98\) 9604.00i 0.101015i
\(99\) −5346.00 −0.0548202
\(100\) 0 0
\(101\) 153084. 1.49323 0.746614 0.665257i \(-0.231678\pi\)
0.746614 + 0.665257i \(0.231678\pi\)
\(102\) 7776.00i 0.0740041i
\(103\) 35864.0i 0.333093i 0.986034 + 0.166547i \(0.0532616\pi\)
−0.986034 + 0.166547i \(0.946738\pi\)
\(104\) −6272.00 −0.0568621
\(105\) 0 0
\(106\) 129960. 1.12343
\(107\) 95454.0i 0.805999i 0.915200 + 0.403000i \(0.132032\pi\)
−0.915200 + 0.403000i \(0.867968\pi\)
\(108\) 11664.0i 0.0962250i
\(109\) −212222. −1.71090 −0.855449 0.517887i \(-0.826719\pi\)
−0.855449 + 0.517887i \(0.826719\pi\)
\(110\) 0 0
\(111\) −110142. −0.848488
\(112\) − 12544.0i − 0.0944911i
\(113\) 62106.0i 0.457549i 0.973479 + 0.228774i \(0.0734718\pi\)
−0.973479 + 0.228774i \(0.926528\pi\)
\(114\) 12240.0 0.0882103
\(115\) 0 0
\(116\) −39840.0 −0.274900
\(117\) − 7938.00i − 0.0536101i
\(118\) 136896.i 0.905077i
\(119\) 10584.0 0.0685145
\(120\) 0 0
\(121\) −156695. −0.972953
\(122\) − 142616.i − 0.867498i
\(123\) 58212.0i 0.346936i
\(124\) 112768. 0.658615
\(125\) 0 0
\(126\) 15876.0 0.0890871
\(127\) 53044.0i 0.291828i 0.989297 + 0.145914i \(0.0466123\pi\)
−0.989297 + 0.145914i \(0.953388\pi\)
\(128\) 16384.0i 0.0883883i
\(129\) 138708. 0.733884
\(130\) 0 0
\(131\) 69324.0 0.352944 0.176472 0.984306i \(-0.443532\pi\)
0.176472 + 0.984306i \(0.443532\pi\)
\(132\) − 9504.00i − 0.0474757i
\(133\) − 16660.0i − 0.0816669i
\(134\) −50720.0 −0.244015
\(135\) 0 0
\(136\) −13824.0 −0.0640894
\(137\) − 129846.i − 0.591054i −0.955334 0.295527i \(-0.904505\pi\)
0.955334 0.295527i \(-0.0954952\pi\)
\(138\) − 37368.0i − 0.167033i
\(139\) 104356. 0.458121 0.229061 0.973412i \(-0.426435\pi\)
0.229061 + 0.973412i \(0.426435\pi\)
\(140\) 0 0
\(141\) 185436. 0.785500
\(142\) 170568.i 0.709867i
\(143\) 6468.00i 0.0264503i
\(144\) −20736.0 −0.0833333
\(145\) 0 0
\(146\) 134936. 0.523897
\(147\) − 21609.0i − 0.0824786i
\(148\) − 195808.i − 0.734812i
\(149\) −217194. −0.801461 −0.400730 0.916196i \(-0.631244\pi\)
−0.400730 + 0.916196i \(0.631244\pi\)
\(150\) 0 0
\(151\) 221000. 0.788769 0.394385 0.918945i \(-0.370958\pi\)
0.394385 + 0.918945i \(0.370958\pi\)
\(152\) 21760.0i 0.0763924i
\(153\) − 17496.0i − 0.0604241i
\(154\) −12936.0 −0.0439540
\(155\) 0 0
\(156\) 14112.0 0.0464277
\(157\) 378370.i 1.22509i 0.790436 + 0.612544i \(0.209854\pi\)
−0.790436 + 0.612544i \(0.790146\pi\)
\(158\) − 340432.i − 1.08489i
\(159\) −292410. −0.917275
\(160\) 0 0
\(161\) −50862.0 −0.154642
\(162\) − 26244.0i − 0.0785674i
\(163\) 104816.i 0.309000i 0.987993 + 0.154500i \(0.0493767\pi\)
−0.987993 + 0.154500i \(0.950623\pi\)
\(164\) −103488. −0.300456
\(165\) 0 0
\(166\) −427056. −1.20286
\(167\) 426972.i 1.18470i 0.805681 + 0.592350i \(0.201800\pi\)
−0.805681 + 0.592350i \(0.798200\pi\)
\(168\) 28224.0i 0.0771517i
\(169\) 361689. 0.974134
\(170\) 0 0
\(171\) −27540.0 −0.0720234
\(172\) 246592.i 0.635562i
\(173\) 331068.i 0.841012i 0.907290 + 0.420506i \(0.138147\pi\)
−0.907290 + 0.420506i \(0.861853\pi\)
\(174\) 89640.0 0.224455
\(175\) 0 0
\(176\) 16896.0 0.0411152
\(177\) − 308016.i − 0.738993i
\(178\) 139536.i 0.330093i
\(179\) 400194. 0.933551 0.466775 0.884376i \(-0.345416\pi\)
0.466775 + 0.884376i \(0.345416\pi\)
\(180\) 0 0
\(181\) 588098. 1.33430 0.667150 0.744924i \(-0.267514\pi\)
0.667150 + 0.744924i \(0.267514\pi\)
\(182\) − 19208.0i − 0.0429837i
\(183\) 320886.i 0.708309i
\(184\) 66432.0 0.144655
\(185\) 0 0
\(186\) −253728. −0.537757
\(187\) 14256.0i 0.0298122i
\(188\) 329664.i 0.680263i
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 939342. 1.86312 0.931559 0.363590i \(-0.118449\pi\)
0.931559 + 0.363590i \(0.118449\pi\)
\(192\) − 36864.0i − 0.0721688i
\(193\) 338390.i 0.653919i 0.945038 + 0.326960i \(0.106024\pi\)
−0.945038 + 0.326960i \(0.893976\pi\)
\(194\) −74648.0 −0.142401
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 237942.i 0.436823i 0.975857 + 0.218412i \(0.0700875\pi\)
−0.975857 + 0.218412i \(0.929912\pi\)
\(198\) 21384.0i 0.0387638i
\(199\) −204464. −0.366003 −0.183001 0.983113i \(-0.558581\pi\)
−0.183001 + 0.983113i \(0.558581\pi\)
\(200\) 0 0
\(201\) 114120. 0.199238
\(202\) − 612336.i − 1.05587i
\(203\) − 122010.i − 0.207805i
\(204\) 31104.0 0.0523288
\(205\) 0 0
\(206\) 143456. 0.235532
\(207\) 84078.0i 0.136382i
\(208\) 25088.0i 0.0402076i
\(209\) 22440.0 0.0355351
\(210\) 0 0
\(211\) −348724. −0.539232 −0.269616 0.962968i \(-0.586897\pi\)
−0.269616 + 0.962968i \(0.586897\pi\)
\(212\) − 519840.i − 0.794383i
\(213\) − 383778.i − 0.579604i
\(214\) 381816. 0.569928
\(215\) 0 0
\(216\) 46656.0 0.0680414
\(217\) 345352.i 0.497866i
\(218\) 848888.i 1.20979i
\(219\) −303606. −0.427760
\(220\) 0 0
\(221\) −21168.0 −0.0291541
\(222\) 440568.i 0.599971i
\(223\) 1.47006e6i 1.97957i 0.142554 + 0.989787i \(0.454468\pi\)
−0.142554 + 0.989787i \(0.545532\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 248424. 0.323536
\(227\) 589560.i 0.759387i 0.925112 + 0.379694i \(0.123971\pi\)
−0.925112 + 0.379694i \(0.876029\pi\)
\(228\) − 48960.0i − 0.0623741i
\(229\) 1.04534e6 1.31725 0.658627 0.752469i \(-0.271137\pi\)
0.658627 + 0.752469i \(0.271137\pi\)
\(230\) 0 0
\(231\) 29106.0 0.0358883
\(232\) 159360.i 0.194383i
\(233\) 651222.i 0.785849i 0.919571 + 0.392925i \(0.128537\pi\)
−0.919571 + 0.392925i \(0.871463\pi\)
\(234\) −31752.0 −0.0379080
\(235\) 0 0
\(236\) 547584. 0.639986
\(237\) 765972.i 0.885813i
\(238\) − 42336.0i − 0.0484471i
\(239\) 513462. 0.581452 0.290726 0.956806i \(-0.406103\pi\)
0.290726 + 0.956806i \(0.406103\pi\)
\(240\) 0 0
\(241\) −694714. −0.770484 −0.385242 0.922816i \(-0.625882\pi\)
−0.385242 + 0.922816i \(0.625882\pi\)
\(242\) 626780.i 0.687981i
\(243\) 59049.0i 0.0641500i
\(244\) −570464. −0.613414
\(245\) 0 0
\(246\) 232848. 0.245321
\(247\) 33320.0i 0.0347506i
\(248\) − 451072.i − 0.465711i
\(249\) 960876. 0.982130
\(250\) 0 0
\(251\) −1.39608e6 −1.39870 −0.699352 0.714777i \(-0.746528\pi\)
−0.699352 + 0.714777i \(0.746528\pi\)
\(252\) − 63504.0i − 0.0629941i
\(253\) − 68508.0i − 0.0672884i
\(254\) 212176. 0.206354
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.00520e6i 0.949339i 0.880164 + 0.474670i \(0.157432\pi\)
−0.880164 + 0.474670i \(0.842568\pi\)
\(258\) − 554832.i − 0.518934i
\(259\) 599662. 0.555466
\(260\) 0 0
\(261\) −201690. −0.183267
\(262\) − 277296.i − 0.249569i
\(263\) 1.25301e6i 1.11703i 0.829494 + 0.558515i \(0.188629\pi\)
−0.829494 + 0.558515i \(0.811371\pi\)
\(264\) −38016.0 −0.0335704
\(265\) 0 0
\(266\) −66640.0 −0.0577472
\(267\) − 313956.i − 0.269520i
\(268\) 202880.i 0.172545i
\(269\) 1.76069e6 1.48355 0.741774 0.670650i \(-0.233985\pi\)
0.741774 + 0.670650i \(0.233985\pi\)
\(270\) 0 0
\(271\) 770528. 0.637331 0.318666 0.947867i \(-0.396765\pi\)
0.318666 + 0.947867i \(0.396765\pi\)
\(272\) 55296.0i 0.0453181i
\(273\) 43218.0i 0.0350960i
\(274\) −519384. −0.417938
\(275\) 0 0
\(276\) −149472. −0.118110
\(277\) − 707738.i − 0.554208i −0.960840 0.277104i \(-0.910625\pi\)
0.960840 0.277104i \(-0.0893747\pi\)
\(278\) − 417424.i − 0.323941i
\(279\) 570888. 0.439077
\(280\) 0 0
\(281\) 2.30432e6 1.74091 0.870456 0.492247i \(-0.163824\pi\)
0.870456 + 0.492247i \(0.163824\pi\)
\(282\) − 741744.i − 0.555432i
\(283\) 1.60903e6i 1.19426i 0.802146 + 0.597128i \(0.203692\pi\)
−0.802146 + 0.597128i \(0.796308\pi\)
\(284\) 682272. 0.501951
\(285\) 0 0
\(286\) 25872.0 0.0187032
\(287\) − 316932.i − 0.227123i
\(288\) 82944.0i 0.0589256i
\(289\) 1.37320e6 0.967140
\(290\) 0 0
\(291\) 167958. 0.116270
\(292\) − 539744.i − 0.370451i
\(293\) 517020.i 0.351834i 0.984405 + 0.175917i \(0.0562891\pi\)
−0.984405 + 0.175917i \(0.943711\pi\)
\(294\) −86436.0 −0.0583212
\(295\) 0 0
\(296\) −783232. −0.519590
\(297\) − 48114.0i − 0.0316505i
\(298\) 868776.i 0.566718i
\(299\) 101724. 0.0658030
\(300\) 0 0
\(301\) −755188. −0.480440
\(302\) − 884000.i − 0.557744i
\(303\) 1.37776e6i 0.862116i
\(304\) 87040.0 0.0540176
\(305\) 0 0
\(306\) −69984.0 −0.0427263
\(307\) − 1.35002e6i − 0.817512i −0.912644 0.408756i \(-0.865963\pi\)
0.912644 0.408756i \(-0.134037\pi\)
\(308\) 51744.0i 0.0310802i
\(309\) −322776. −0.192311
\(310\) 0 0
\(311\) 1.34538e6 0.788758 0.394379 0.918948i \(-0.370960\pi\)
0.394379 + 0.918948i \(0.370960\pi\)
\(312\) − 56448.0i − 0.0328293i
\(313\) 256154.i 0.147788i 0.997266 + 0.0738942i \(0.0235427\pi\)
−0.997266 + 0.0738942i \(0.976457\pi\)
\(314\) 1.51348e6 0.866269
\(315\) 0 0
\(316\) −1.36173e6 −0.767137
\(317\) − 1.84629e6i − 1.03193i −0.856609 0.515967i \(-0.827433\pi\)
0.856609 0.515967i \(-0.172567\pi\)
\(318\) 1.16964e6i 0.648611i
\(319\) 164340. 0.0904204
\(320\) 0 0
\(321\) −859086. −0.465344
\(322\) 203448.i 0.109349i
\(323\) 73440.0i 0.0391675i
\(324\) −104976. −0.0555556
\(325\) 0 0
\(326\) 419264. 0.218496
\(327\) − 1.91000e6i − 0.987788i
\(328\) 413952.i 0.212454i
\(329\) −1.00960e6 −0.514231
\(330\) 0 0
\(331\) −3.33238e6 −1.67180 −0.835900 0.548881i \(-0.815054\pi\)
−0.835900 + 0.548881i \(0.815054\pi\)
\(332\) 1.70822e6i 0.850550i
\(333\) − 991278.i − 0.489875i
\(334\) 1.70789e6 0.837709
\(335\) 0 0
\(336\) 112896. 0.0545545
\(337\) 1.63481e6i 0.784136i 0.919936 + 0.392068i \(0.128240\pi\)
−0.919936 + 0.392068i \(0.871760\pi\)
\(338\) − 1.44676e6i − 0.688816i
\(339\) −558954. −0.264166
\(340\) 0 0
\(341\) −465168. −0.216633
\(342\) 110160.i 0.0509282i
\(343\) 117649.i 0.0539949i
\(344\) 986368. 0.449410
\(345\) 0 0
\(346\) 1.32427e6 0.594685
\(347\) 841530.i 0.375185i 0.982247 + 0.187593i \(0.0600685\pi\)
−0.982247 + 0.187593i \(0.939932\pi\)
\(348\) − 358560.i − 0.158713i
\(349\) 977242. 0.429476 0.214738 0.976672i \(-0.431110\pi\)
0.214738 + 0.976672i \(0.431110\pi\)
\(350\) 0 0
\(351\) 71442.0 0.0309518
\(352\) − 67584.0i − 0.0290728i
\(353\) 3.45857e6i 1.47727i 0.674106 + 0.738634i \(0.264529\pi\)
−0.674106 + 0.738634i \(0.735471\pi\)
\(354\) −1.23206e6 −0.522547
\(355\) 0 0
\(356\) 558144. 0.233411
\(357\) 95256.0i 0.0395569i
\(358\) − 1.60078e6i − 0.660120i
\(359\) 3.47301e6 1.42223 0.711115 0.703076i \(-0.248190\pi\)
0.711115 + 0.703076i \(0.248190\pi\)
\(360\) 0 0
\(361\) −2.36050e6 −0.953314
\(362\) − 2.35239e6i − 0.943492i
\(363\) − 1.41026e6i − 0.561734i
\(364\) −76832.0 −0.0303941
\(365\) 0 0
\(366\) 1.28354e6 0.500850
\(367\) − 3.11994e6i − 1.20915i −0.796548 0.604575i \(-0.793343\pi\)
0.796548 0.604575i \(-0.206657\pi\)
\(368\) − 265728.i − 0.102286i
\(369\) −523908. −0.200304
\(370\) 0 0
\(371\) 1.59201e6 0.600497
\(372\) 1.01491e6i 0.380252i
\(373\) − 2.01673e6i − 0.750543i −0.926915 0.375272i \(-0.877549\pi\)
0.926915 0.375272i \(-0.122451\pi\)
\(374\) 57024.0 0.0210804
\(375\) 0 0
\(376\) 1.31866e6 0.481019
\(377\) 244020.i 0.0884244i
\(378\) 142884.i 0.0514344i
\(379\) 5.38083e6 1.92420 0.962102 0.272690i \(-0.0879134\pi\)
0.962102 + 0.272690i \(0.0879134\pi\)
\(380\) 0 0
\(381\) −477396. −0.168487
\(382\) − 3.75737e6i − 1.31742i
\(383\) 807432.i 0.281261i 0.990062 + 0.140630i \(0.0449129\pi\)
−0.990062 + 0.140630i \(0.955087\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 1.35356e6 0.462391
\(387\) 1.24837e6i 0.423708i
\(388\) 298592.i 0.100693i
\(389\) −891390. −0.298671 −0.149336 0.988787i \(-0.547714\pi\)
−0.149336 + 0.988787i \(0.547714\pi\)
\(390\) 0 0
\(391\) 224208. 0.0741667
\(392\) − 153664.i − 0.0505076i
\(393\) 623916.i 0.203772i
\(394\) 951768. 0.308881
\(395\) 0 0
\(396\) 85536.0 0.0274101
\(397\) − 1.12345e6i − 0.357749i −0.983872 0.178875i \(-0.942754\pi\)
0.983872 0.178875i \(-0.0572457\pi\)
\(398\) 817856.i 0.258803i
\(399\) 149940. 0.0471504
\(400\) 0 0
\(401\) 1.72037e6 0.534271 0.267136 0.963659i \(-0.413923\pi\)
0.267136 + 0.963659i \(0.413923\pi\)
\(402\) − 456480.i − 0.140882i
\(403\) − 690704.i − 0.211850i
\(404\) −2.44934e6 −0.746614
\(405\) 0 0
\(406\) −488040. −0.146940
\(407\) 807708.i 0.241695i
\(408\) − 124416.i − 0.0370021i
\(409\) −77246.0 −0.0228332 −0.0114166 0.999935i \(-0.503634\pi\)
−0.0114166 + 0.999935i \(0.503634\pi\)
\(410\) 0 0
\(411\) 1.16861e6 0.341245
\(412\) − 573824.i − 0.166547i
\(413\) 1.67698e6i 0.483784i
\(414\) 336312. 0.0964365
\(415\) 0 0
\(416\) 100352. 0.0284310
\(417\) 939204.i 0.264496i
\(418\) − 89760.0i − 0.0251271i
\(419\) 5.20615e6 1.44871 0.724356 0.689427i \(-0.242137\pi\)
0.724356 + 0.689427i \(0.242137\pi\)
\(420\) 0 0
\(421\) 1.71847e6 0.472539 0.236270 0.971688i \(-0.424075\pi\)
0.236270 + 0.971688i \(0.424075\pi\)
\(422\) 1.39490e6i 0.381295i
\(423\) 1.66892e6i 0.453509i
\(424\) −2.07936e6 −0.561714
\(425\) 0 0
\(426\) −1.53511e6 −0.409842
\(427\) − 1.74705e6i − 0.463697i
\(428\) − 1.52726e6i − 0.403000i
\(429\) −58212.0 −0.0152711
\(430\) 0 0
\(431\) −580626. −0.150558 −0.0752789 0.997163i \(-0.523985\pi\)
−0.0752789 + 0.997163i \(0.523985\pi\)
\(432\) − 186624.i − 0.0481125i
\(433\) 4.15087e6i 1.06395i 0.846761 + 0.531973i \(0.178549\pi\)
−0.846761 + 0.531973i \(0.821451\pi\)
\(434\) 1.38141e6 0.352045
\(435\) 0 0
\(436\) 3.39555e6 0.855449
\(437\) − 352920.i − 0.0884042i
\(438\) 1.21442e6i 0.302472i
\(439\) −3.88407e6 −0.961891 −0.480946 0.876750i \(-0.659707\pi\)
−0.480946 + 0.876750i \(0.659707\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 84672.0i 0.0206150i
\(443\) − 2.31499e6i − 0.560453i −0.959934 0.280226i \(-0.909590\pi\)
0.959934 0.280226i \(-0.0904095\pi\)
\(444\) 1.76227e6 0.424244
\(445\) 0 0
\(446\) 5.88022e6 1.39977
\(447\) − 1.95475e6i − 0.462723i
\(448\) 200704.i 0.0472456i
\(449\) 1.92281e6 0.450113 0.225056 0.974346i \(-0.427743\pi\)
0.225056 + 0.974346i \(0.427743\pi\)
\(450\) 0 0
\(451\) 426888. 0.0988263
\(452\) − 993696.i − 0.228774i
\(453\) 1.98900e6i 0.455396i
\(454\) 2.35824e6 0.536968
\(455\) 0 0
\(456\) −195840. −0.0441051
\(457\) − 6.86215e6i − 1.53699i −0.639858 0.768493i \(-0.721007\pi\)
0.639858 0.768493i \(-0.278993\pi\)
\(458\) − 4.18137e6i − 0.931440i
\(459\) 157464. 0.0348859
\(460\) 0 0
\(461\) 2.97167e6 0.651250 0.325625 0.945499i \(-0.394425\pi\)
0.325625 + 0.945499i \(0.394425\pi\)
\(462\) − 116424.i − 0.0253768i
\(463\) 4.87423e6i 1.05670i 0.849025 + 0.528352i \(0.177190\pi\)
−0.849025 + 0.528352i \(0.822810\pi\)
\(464\) 637440. 0.137450
\(465\) 0 0
\(466\) 2.60489e6 0.555679
\(467\) 8.17301e6i 1.73416i 0.498167 + 0.867081i \(0.334007\pi\)
−0.498167 + 0.867081i \(0.665993\pi\)
\(468\) 127008.i 0.0268050i
\(469\) −621320. −0.130432
\(470\) 0 0
\(471\) −3.40533e6 −0.707305
\(472\) − 2.19034e6i − 0.452539i
\(473\) − 1.01719e6i − 0.209050i
\(474\) 3.06389e6 0.626364
\(475\) 0 0
\(476\) −169344. −0.0342572
\(477\) − 2.63169e6i − 0.529589i
\(478\) − 2.05385e6i − 0.411148i
\(479\) −2.34397e6 −0.466782 −0.233391 0.972383i \(-0.574982\pi\)
−0.233391 + 0.972383i \(0.574982\pi\)
\(480\) 0 0
\(481\) −1.19932e6 −0.236360
\(482\) 2.77886e6i 0.544814i
\(483\) − 457758.i − 0.0892829i
\(484\) 2.50712e6 0.486476
\(485\) 0 0
\(486\) 236196. 0.0453609
\(487\) − 316928.i − 0.0605534i −0.999542 0.0302767i \(-0.990361\pi\)
0.999542 0.0302767i \(-0.00963884\pi\)
\(488\) 2.28186e6i 0.433749i
\(489\) −943344. −0.178401
\(490\) 0 0
\(491\) −5.20041e6 −0.973495 −0.486748 0.873543i \(-0.661817\pi\)
−0.486748 + 0.873543i \(0.661817\pi\)
\(492\) − 931392.i − 0.173468i
\(493\) 537840.i 0.0996634i
\(494\) 133280. 0.0245724
\(495\) 0 0
\(496\) −1.80429e6 −0.329308
\(497\) 2.08946e6i 0.379440i
\(498\) − 3.84350e6i − 0.694471i
\(499\) 4.86773e6 0.875135 0.437568 0.899185i \(-0.355840\pi\)
0.437568 + 0.899185i \(0.355840\pi\)
\(500\) 0 0
\(501\) −3.84275e6 −0.683987
\(502\) 5.58432e6i 0.989034i
\(503\) 426888.i 0.0752305i 0.999292 + 0.0376153i \(0.0119761\pi\)
−0.999292 + 0.0376153i \(0.988024\pi\)
\(504\) −254016. −0.0445435
\(505\) 0 0
\(506\) −274032. −0.0475801
\(507\) 3.25520e6i 0.562416i
\(508\) − 848704.i − 0.145914i
\(509\) 9.41621e6 1.61095 0.805474 0.592631i \(-0.201911\pi\)
0.805474 + 0.592631i \(0.201911\pi\)
\(510\) 0 0
\(511\) 1.65297e6 0.280035
\(512\) − 262144.i − 0.0441942i
\(513\) − 247860.i − 0.0415827i
\(514\) 4.02082e6 0.671284
\(515\) 0 0
\(516\) −2.21933e6 −0.366942
\(517\) − 1.35986e6i − 0.223753i
\(518\) − 2.39865e6i − 0.392773i
\(519\) −2.97961e6 −0.485558
\(520\) 0 0
\(521\) 1.84039e6 0.297041 0.148520 0.988909i \(-0.452549\pi\)
0.148520 + 0.988909i \(0.452549\pi\)
\(522\) 806760.i 0.129589i
\(523\) − 979108.i − 0.156522i −0.996933 0.0782612i \(-0.975063\pi\)
0.996933 0.0782612i \(-0.0249368\pi\)
\(524\) −1.10918e6 −0.176472
\(525\) 0 0
\(526\) 5.01204e6 0.789860
\(527\) − 1.52237e6i − 0.238777i
\(528\) 152064.i 0.0237379i
\(529\) 5.35890e6 0.832600
\(530\) 0 0
\(531\) 2.77214e6 0.426658
\(532\) 266560.i 0.0408334i
\(533\) 633864.i 0.0966447i
\(534\) −1.25582e6 −0.190579
\(535\) 0 0
\(536\) 811520. 0.122008
\(537\) 3.60175e6i 0.538986i
\(538\) − 7.04275e6i − 1.04903i
\(539\) −158466. −0.0234944
\(540\) 0 0
\(541\) 5.96117e6 0.875666 0.437833 0.899056i \(-0.355746\pi\)
0.437833 + 0.899056i \(0.355746\pi\)
\(542\) − 3.08211e6i − 0.450661i
\(543\) 5.29288e6i 0.770358i
\(544\) 221184. 0.0320447
\(545\) 0 0
\(546\) 172872. 0.0248166
\(547\) − 8.73025e6i − 1.24755i −0.781604 0.623775i \(-0.785598\pi\)
0.781604 0.623775i \(-0.214402\pi\)
\(548\) 2.07754e6i 0.295527i
\(549\) −2.88797e6 −0.408943
\(550\) 0 0
\(551\) 846600. 0.118795
\(552\) 597888.i 0.0835165i
\(553\) − 4.17029e6i − 0.579901i
\(554\) −2.83095e6 −0.391885
\(555\) 0 0
\(556\) −1.66970e6 −0.229061
\(557\) 3.01066e6i 0.411172i 0.978639 + 0.205586i \(0.0659101\pi\)
−0.978639 + 0.205586i \(0.934090\pi\)
\(558\) − 2.28355e6i − 0.310474i
\(559\) 1.51038e6 0.204435
\(560\) 0 0
\(561\) −128304. −0.0172121
\(562\) − 9.21727e6i − 1.23101i
\(563\) 1.17573e7i 1.56327i 0.623733 + 0.781637i \(0.285615\pi\)
−0.623733 + 0.781637i \(0.714385\pi\)
\(564\) −2.96698e6 −0.392750
\(565\) 0 0
\(566\) 6.43611e6 0.844467
\(567\) − 321489.i − 0.0419961i
\(568\) − 2.72909e6i − 0.354933i
\(569\) −1.31578e7 −1.70374 −0.851870 0.523754i \(-0.824531\pi\)
−0.851870 + 0.523754i \(0.824531\pi\)
\(570\) 0 0
\(571\) −1.03344e7 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(572\) − 103488.i − 0.0132251i
\(573\) 8.45408e6i 1.07567i
\(574\) −1.26773e6 −0.160600
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) 7.88133e6i 0.985508i 0.870169 + 0.492754i \(0.164010\pi\)
−0.870169 + 0.492754i \(0.835990\pi\)
\(578\) − 5.49280e6i − 0.683872i
\(579\) −3.04551e6 −0.377541
\(580\) 0 0
\(581\) −5.23144e6 −0.642955
\(582\) − 671832.i − 0.0822154i
\(583\) 2.14434e6i 0.261290i
\(584\) −2.15898e6 −0.261948
\(585\) 0 0
\(586\) 2.06808e6 0.248784
\(587\) 554568.i 0.0664293i 0.999448 + 0.0332146i \(0.0105745\pi\)
−0.999448 + 0.0332146i \(0.989426\pi\)
\(588\) 345744.i 0.0412393i
\(589\) −2.39632e6 −0.284614
\(590\) 0 0
\(591\) −2.14148e6 −0.252200
\(592\) 3.13293e6i 0.367406i
\(593\) − 9.20369e6i − 1.07479i −0.843329 0.537397i \(-0.819408\pi\)
0.843329 0.537397i \(-0.180592\pi\)
\(594\) −192456. −0.0223803
\(595\) 0 0
\(596\) 3.47510e6 0.400730
\(597\) − 1.84018e6i − 0.211312i
\(598\) − 406896.i − 0.0465297i
\(599\) −8.54295e6 −0.972839 −0.486419 0.873725i \(-0.661697\pi\)
−0.486419 + 0.873725i \(0.661697\pi\)
\(600\) 0 0
\(601\) −9.61555e6 −1.08590 −0.542948 0.839767i \(-0.682692\pi\)
−0.542948 + 0.839767i \(0.682692\pi\)
\(602\) 3.02075e6i 0.339722i
\(603\) 1.02708e6i 0.115030i
\(604\) −3.53600e6 −0.394385
\(605\) 0 0
\(606\) 5.51102e6 0.609608
\(607\) − 2.21264e6i − 0.243747i −0.992546 0.121873i \(-0.961110\pi\)
0.992546 0.121873i \(-0.0388902\pi\)
\(608\) − 348160.i − 0.0381962i
\(609\) 1.09809e6 0.119976
\(610\) 0 0
\(611\) 2.01919e6 0.218814
\(612\) 279936.i 0.0302121i
\(613\) − 7.96215e6i − 0.855814i −0.903823 0.427907i \(-0.859251\pi\)
0.903823 0.427907i \(-0.140749\pi\)
\(614\) −5.40008e6 −0.578068
\(615\) 0 0
\(616\) 206976. 0.0219770
\(617\) 1.37397e7i 1.45299i 0.687170 + 0.726497i \(0.258853\pi\)
−0.687170 + 0.726497i \(0.741147\pi\)
\(618\) 1.29110e6i 0.135985i
\(619\) 8.70113e6 0.912744 0.456372 0.889789i \(-0.349149\pi\)
0.456372 + 0.889789i \(0.349149\pi\)
\(620\) 0 0
\(621\) −756702. −0.0787401
\(622\) − 5.38152e6i − 0.557736i
\(623\) 1.70932e6i 0.176442i
\(624\) −225792. −0.0232138
\(625\) 0 0
\(626\) 1.02462e6 0.104502
\(627\) 201960.i 0.0205162i
\(628\) − 6.05392e6i − 0.612544i
\(629\) −2.64341e6 −0.266402
\(630\) 0 0
\(631\) 445412. 0.0445337 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(632\) 5.44691e6i 0.542447i
\(633\) − 3.13852e6i − 0.311326i
\(634\) −7.38516e6 −0.729687
\(635\) 0 0
\(636\) 4.67856e6 0.458637
\(637\) − 235298.i − 0.0229757i
\(638\) − 657360.i − 0.0639369i
\(639\) 3.45400e6 0.334634
\(640\) 0 0
\(641\) −8.00119e6 −0.769147 −0.384573 0.923094i \(-0.625651\pi\)
−0.384573 + 0.923094i \(0.625651\pi\)
\(642\) 3.43634e6i 0.329048i
\(643\) − 1.58402e7i − 1.51090i −0.655209 0.755448i \(-0.727419\pi\)
0.655209 0.755448i \(-0.272581\pi\)
\(644\) 813792. 0.0773212
\(645\) 0 0
\(646\) 293760. 0.0276956
\(647\) − 1.30187e6i − 0.122266i −0.998130 0.0611331i \(-0.980529\pi\)
0.998130 0.0611331i \(-0.0194714\pi\)
\(648\) 419904.i 0.0392837i
\(649\) −2.25878e6 −0.210505
\(650\) 0 0
\(651\) −3.10817e6 −0.287443
\(652\) − 1.67706e6i − 0.154500i
\(653\) 7.34149e6i 0.673753i 0.941549 + 0.336877i \(0.109371\pi\)
−0.941549 + 0.336877i \(0.890629\pi\)
\(654\) −7.63999e6 −0.698471
\(655\) 0 0
\(656\) 1.65581e6 0.150228
\(657\) − 2.73245e6i − 0.246967i
\(658\) 4.03838e6i 0.363616i
\(659\) 6.18934e6 0.555176 0.277588 0.960700i \(-0.410465\pi\)
0.277588 + 0.960700i \(0.410465\pi\)
\(660\) 0 0
\(661\) −1.96690e7 −1.75097 −0.875484 0.483248i \(-0.839457\pi\)
−0.875484 + 0.483248i \(0.839457\pi\)
\(662\) 1.33295e7i 1.18214i
\(663\) − 190512.i − 0.0168321i
\(664\) 6.83290e6 0.601429
\(665\) 0 0
\(666\) −3.96511e6 −0.346394
\(667\) − 2.58462e6i − 0.224948i
\(668\) − 6.83155e6i − 0.592350i
\(669\) −1.32305e7 −1.14291
\(670\) 0 0
\(671\) 2.35316e6 0.201765
\(672\) − 451584.i − 0.0385758i
\(673\) 7.18259e6i 0.611285i 0.952146 + 0.305642i \(0.0988712\pi\)
−0.952146 + 0.305642i \(0.901129\pi\)
\(674\) 6.53922e6 0.554468
\(675\) 0 0
\(676\) −5.78702e6 −0.487067
\(677\) 1.89192e7i 1.58647i 0.608917 + 0.793234i \(0.291604\pi\)
−0.608917 + 0.793234i \(0.708396\pi\)
\(678\) 2.23582e6i 0.186794i
\(679\) −914438. −0.0761167
\(680\) 0 0
\(681\) −5.30604e6 −0.438432
\(682\) 1.86067e6i 0.153182i
\(683\) 2.12204e7i 1.74061i 0.492512 + 0.870306i \(0.336079\pi\)
−0.492512 + 0.870306i \(0.663921\pi\)
\(684\) 440640. 0.0360117
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) 9.40808e6i 0.760517i
\(688\) − 3.94547e6i − 0.317781i
\(689\) −3.18402e6 −0.255522
\(690\) 0 0
\(691\) 1.63276e7 1.30085 0.650424 0.759571i \(-0.274591\pi\)
0.650424 + 0.759571i \(0.274591\pi\)
\(692\) − 5.29709e6i − 0.420506i
\(693\) 261954.i 0.0207201i
\(694\) 3.36612e6 0.265296
\(695\) 0 0
\(696\) −1.43424e6 −0.112227
\(697\) 1.39709e6i 0.108929i
\(698\) − 3.90897e6i − 0.303685i
\(699\) −5.86100e6 −0.453710
\(700\) 0 0
\(701\) −5.40470e6 −0.415409 −0.207705 0.978192i \(-0.566599\pi\)
−0.207705 + 0.978192i \(0.566599\pi\)
\(702\) − 285768.i − 0.0218862i
\(703\) 4.16092e6i 0.317542i
\(704\) −270336. −0.0205576
\(705\) 0 0
\(706\) 1.38343e7 1.04459
\(707\) − 7.50112e6i − 0.564387i
\(708\) 4.92826e6i 0.369496i
\(709\) −2.21195e7 −1.65257 −0.826284 0.563253i \(-0.809550\pi\)
−0.826284 + 0.563253i \(0.809550\pi\)
\(710\) 0 0
\(711\) −6.89375e6 −0.511424
\(712\) − 2.23258e6i − 0.165046i
\(713\) 7.31582e6i 0.538939i
\(714\) 381024. 0.0279709
\(715\) 0 0
\(716\) −6.40310e6 −0.466775
\(717\) 4.62116e6i 0.335701i
\(718\) − 1.38920e7i − 1.00567i
\(719\) −2.55819e7 −1.84548 −0.922742 0.385418i \(-0.874057\pi\)
−0.922742 + 0.385418i \(0.874057\pi\)
\(720\) 0 0
\(721\) 1.75734e6 0.125897
\(722\) 9.44200e6i 0.674095i
\(723\) − 6.25243e6i − 0.444839i
\(724\) −9.40957e6 −0.667150
\(725\) 0 0
\(726\) −5.64102e6 −0.397206
\(727\) 9.29438e6i 0.652205i 0.945334 + 0.326103i \(0.105735\pi\)
−0.945334 + 0.326103i \(0.894265\pi\)
\(728\) 307328.i 0.0214918i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) 3.32899e6 0.230420
\(732\) − 5.13418e6i − 0.354155i
\(733\) 3.40699e6i 0.234213i 0.993119 + 0.117107i \(0.0373619\pi\)
−0.993119 + 0.117107i \(0.962638\pi\)
\(734\) −1.24797e7 −0.854999
\(735\) 0 0
\(736\) −1.06291e6 −0.0723274
\(737\) − 836880.i − 0.0567537i
\(738\) 2.09563e6i 0.141636i
\(739\) −2.18135e7 −1.46932 −0.734658 0.678438i \(-0.762657\pi\)
−0.734658 + 0.678438i \(0.762657\pi\)
\(740\) 0 0
\(741\) −299880. −0.0200633
\(742\) − 6.36804e6i − 0.424616i
\(743\) 3.79246e6i 0.252028i 0.992028 + 0.126014i \(0.0402185\pi\)
−0.992028 + 0.126014i \(0.959782\pi\)
\(744\) 4.05965e6 0.268878
\(745\) 0 0
\(746\) −8.06692e6 −0.530714
\(747\) 8.64788e6i 0.567033i
\(748\) − 228096.i − 0.0149061i
\(749\) 4.67725e6 0.304639
\(750\) 0 0
\(751\) −2.01483e7 −1.30358 −0.651790 0.758400i \(-0.725982\pi\)
−0.651790 + 0.758400i \(0.725982\pi\)
\(752\) − 5.27462e6i − 0.340132i
\(753\) − 1.25647e7i − 0.807542i
\(754\) 976080. 0.0625255
\(755\) 0 0
\(756\) 571536. 0.0363696
\(757\) − 1.18427e7i − 0.751126i −0.926797 0.375563i \(-0.877449\pi\)
0.926797 0.375563i \(-0.122551\pi\)
\(758\) − 2.15233e7i − 1.36062i
\(759\) 616572. 0.0388490
\(760\) 0 0
\(761\) 2.97791e6 0.186402 0.0932008 0.995647i \(-0.470290\pi\)
0.0932008 + 0.995647i \(0.470290\pi\)
\(762\) 1.90958e6i 0.119138i
\(763\) 1.03989e7i 0.646659i
\(764\) −1.50295e7 −0.931559
\(765\) 0 0
\(766\) 3.22973e6 0.198881
\(767\) − 3.35395e6i − 0.205858i
\(768\) 589824.i 0.0360844i
\(769\) 2.02441e7 1.23447 0.617237 0.786777i \(-0.288252\pi\)
0.617237 + 0.786777i \(0.288252\pi\)
\(770\) 0 0
\(771\) −9.04684e6 −0.548101
\(772\) − 5.41424e6i − 0.326960i
\(773\) − 7.37953e6i − 0.444202i −0.975024 0.222101i \(-0.928709\pi\)
0.975024 0.222101i \(-0.0712914\pi\)
\(774\) 4.99349e6 0.299607
\(775\) 0 0
\(776\) 1.19437e6 0.0712006
\(777\) 5.39696e6i 0.320698i
\(778\) 3.56556e6i 0.211193i
\(779\) 2.19912e6 0.129839
\(780\) 0 0
\(781\) −2.81437e6 −0.165103
\(782\) − 896832.i − 0.0524438i
\(783\) − 1.81521e6i − 0.105809i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 2.49566e6 0.144089
\(787\) − 1.36289e7i − 0.784377i −0.919885 0.392188i \(-0.871718\pi\)
0.919885 0.392188i \(-0.128282\pi\)
\(788\) − 3.80707e6i − 0.218412i
\(789\) −1.12771e7 −0.644918
\(790\) 0 0
\(791\) 3.04319e6 0.172937
\(792\) − 342144.i − 0.0193819i
\(793\) 3.49409e6i 0.197311i
\(794\) −4.49382e6 −0.252967
\(795\) 0 0
\(796\) 3.27142e6 0.183001
\(797\) 1.49548e7i 0.833938i 0.908921 + 0.416969i \(0.136908\pi\)
−0.908921 + 0.416969i \(0.863092\pi\)
\(798\) − 599760.i − 0.0333404i
\(799\) 4.45046e6 0.246626
\(800\) 0 0
\(801\) 2.82560e6 0.155607
\(802\) − 6.88150e6i − 0.377787i
\(803\) 2.22644e6i 0.121849i
\(804\) −1.82592e6 −0.0996189
\(805\) 0 0
\(806\) −2.76282e6 −0.149801
\(807\) 1.58462e7i 0.856527i
\(808\) 9.79738e6i 0.527936i
\(809\) −2.87242e7 −1.54304 −0.771519 0.636206i \(-0.780503\pi\)
−0.771519 + 0.636206i \(0.780503\pi\)
\(810\) 0 0
\(811\) −1.52265e7 −0.812922 −0.406461 0.913668i \(-0.633237\pi\)
−0.406461 + 0.913668i \(0.633237\pi\)
\(812\) 1.95216e6i 0.103902i
\(813\) 6.93475e6i 0.367963i
\(814\) 3.23083e6 0.170904
\(815\) 0 0
\(816\) −497664. −0.0261644
\(817\) − 5.24008e6i − 0.274652i
\(818\) 308984.i 0.0161455i
\(819\) −388962. −0.0202627
\(820\) 0 0
\(821\) −3.31001e7 −1.71384 −0.856921 0.515447i \(-0.827626\pi\)
−0.856921 + 0.515447i \(0.827626\pi\)
\(822\) − 4.67446e6i − 0.241297i
\(823\) − 1.35915e7i − 0.699470i −0.936849 0.349735i \(-0.886272\pi\)
0.936849 0.349735i \(-0.113728\pi\)
\(824\) −2.29530e6 −0.117766
\(825\) 0 0
\(826\) 6.70790e6 0.342087
\(827\) − 3.13936e6i − 0.159616i −0.996810 0.0798082i \(-0.974569\pi\)
0.996810 0.0798082i \(-0.0254308\pi\)
\(828\) − 1.34525e6i − 0.0681909i
\(829\) −1.27081e7 −0.642234 −0.321117 0.947040i \(-0.604058\pi\)
−0.321117 + 0.947040i \(0.604058\pi\)
\(830\) 0 0
\(831\) 6.36964e6 0.319972
\(832\) − 401408.i − 0.0201038i
\(833\) − 518616.i − 0.0258960i
\(834\) 3.75682e6 0.187027
\(835\) 0 0
\(836\) −359040. −0.0177675
\(837\) 5.13799e6i 0.253501i
\(838\) − 2.08246e7i − 1.02439i
\(839\) 2.98312e7 1.46307 0.731536 0.681803i \(-0.238804\pi\)
0.731536 + 0.681803i \(0.238804\pi\)
\(840\) 0 0
\(841\) −1.43110e7 −0.697720
\(842\) − 6.87390e6i − 0.334136i
\(843\) 2.07389e7i 1.00512i
\(844\) 5.57958e6 0.269616
\(845\) 0 0
\(846\) 6.67570e6 0.320679
\(847\) 7.67806e6i 0.367742i
\(848\) 8.31744e6i 0.397192i
\(849\) −1.44813e7 −0.689504
\(850\) 0 0
\(851\) 1.27030e7 0.601290
\(852\) 6.14045e6i 0.289802i
\(853\) − 1.92215e7i − 0.904515i −0.891888 0.452257i \(-0.850619\pi\)
0.891888 0.452257i \(-0.149381\pi\)
\(854\) −6.98818e6 −0.327884
\(855\) 0 0
\(856\) −6.10906e6 −0.284964
\(857\) 2.65655e7i 1.23556i 0.786349 + 0.617782i \(0.211969\pi\)
−0.786349 + 0.617782i \(0.788031\pi\)
\(858\) 232848.i 0.0107983i
\(859\) 9.16844e6 0.423948 0.211974 0.977275i \(-0.432011\pi\)
0.211974 + 0.977275i \(0.432011\pi\)
\(860\) 0 0
\(861\) 2.85239e6 0.131130
\(862\) 2.32250e6i 0.106460i
\(863\) − 2.92196e7i − 1.33551i −0.744381 0.667755i \(-0.767255\pi\)
0.744381 0.667755i \(-0.232745\pi\)
\(864\) −746496. −0.0340207
\(865\) 0 0
\(866\) 1.66035e7 0.752324
\(867\) 1.23588e7i 0.558379i
\(868\) − 5.52563e6i − 0.248933i
\(869\) 5.61713e6 0.252328
\(870\) 0 0
\(871\) 1.24264e6 0.0555009
\(872\) − 1.35822e7i − 0.604894i
\(873\) 1.51162e6i 0.0671286i
\(874\) −1.41168e6 −0.0625112
\(875\) 0 0
\(876\) 4.85770e6 0.213880
\(877\) − 9.71286e6i − 0.426430i −0.977005 0.213215i \(-0.931606\pi\)
0.977005 0.213215i \(-0.0683936\pi\)
\(878\) 1.55363e7i 0.680160i
\(879\) −4.65318e6 −0.203132
\(880\) 0 0
\(881\) 1.65372e7 0.717833 0.358917 0.933370i \(-0.383146\pi\)
0.358917 + 0.933370i \(0.383146\pi\)
\(882\) − 777924.i − 0.0336718i
\(883\) − 2.39487e7i − 1.03367i −0.856086 0.516833i \(-0.827111\pi\)
0.856086 0.516833i \(-0.172889\pi\)
\(884\) 338688. 0.0145770
\(885\) 0 0
\(886\) −9.25994e6 −0.396300
\(887\) 4.62846e6i 0.197527i 0.995111 + 0.0987637i \(0.0314888\pi\)
−0.995111 + 0.0987637i \(0.968511\pi\)
\(888\) − 7.04909e6i − 0.299986i
\(889\) 2.59916e6 0.110301
\(890\) 0 0
\(891\) 433026. 0.0182734
\(892\) − 2.35209e7i − 0.989787i
\(893\) − 7.00536e6i − 0.293969i
\(894\) −7.81898e6 −0.327195
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) 915516.i 0.0379914i
\(898\) − 7.69126e6i − 0.318278i
\(899\) −1.75495e7 −0.724212
\(900\) 0 0
\(901\) −7.01784e6 −0.287999
\(902\) − 1.70755e6i − 0.0698808i
\(903\) − 6.79669e6i − 0.277382i
\(904\) −3.97478e6 −0.161768
\(905\) 0 0
\(906\) 7.95600e6 0.322014
\(907\) − 2.06126e7i − 0.831983i −0.909369 0.415991i \(-0.863435\pi\)
0.909369 0.415991i \(-0.136565\pi\)
\(908\) − 9.43296e6i − 0.379694i
\(909\) −1.23998e7 −0.497743
\(910\) 0 0
\(911\) −3.46749e6 −0.138427 −0.0692133 0.997602i \(-0.522049\pi\)
−0.0692133 + 0.997602i \(0.522049\pi\)
\(912\) 783360.i 0.0311870i
\(913\) − 7.04642e6i − 0.279764i
\(914\) −2.74486e7 −1.08681
\(915\) 0 0
\(916\) −1.67255e7 −0.658627
\(917\) − 3.39688e6i − 0.133400i
\(918\) − 629856.i − 0.0246680i
\(919\) 3.61227e7 1.41088 0.705442 0.708767i \(-0.250748\pi\)
0.705442 + 0.708767i \(0.250748\pi\)
\(920\) 0 0
\(921\) 1.21502e7 0.471991
\(922\) − 1.18867e7i − 0.460504i
\(923\) − 4.17892e6i − 0.161458i
\(924\) −465696. −0.0179441
\(925\) 0 0
\(926\) 1.94969e7 0.747203
\(927\) − 2.90498e6i − 0.111031i
\(928\) − 2.54976e6i − 0.0971917i
\(929\) −1.29366e7 −0.491792 −0.245896 0.969296i \(-0.579082\pi\)
−0.245896 + 0.969296i \(0.579082\pi\)
\(930\) 0 0
\(931\) −816340. −0.0308672
\(932\) − 1.04196e7i − 0.392925i
\(933\) 1.21084e7i 0.455390i
\(934\) 3.26920e7 1.22624
\(935\) 0 0
\(936\) 508032. 0.0189540
\(937\) − 5.01394e7i − 1.86565i −0.360332 0.932824i \(-0.617336\pi\)
0.360332 0.932824i \(-0.382664\pi\)
\(938\) 2.48528e6i 0.0922292i
\(939\) −2.30539e6 −0.0853257
\(940\) 0 0
\(941\) −1.05568e7 −0.388651 −0.194325 0.980937i \(-0.562252\pi\)
−0.194325 + 0.980937i \(0.562252\pi\)
\(942\) 1.36213e7i 0.500140i
\(943\) − 6.71378e6i − 0.245860i
\(944\) −8.76134e6 −0.319993
\(945\) 0 0
\(946\) −4.06877e6 −0.147821
\(947\) 3.14684e6i 0.114025i 0.998373 + 0.0570124i \(0.0181575\pi\)
−0.998373 + 0.0570124i \(0.981843\pi\)
\(948\) − 1.22556e7i − 0.442906i
\(949\) −3.30593e6 −0.119159
\(950\) 0 0
\(951\) 1.66166e7 0.595787
\(952\) 677376.i 0.0242235i
\(953\) 5.22829e7i 1.86478i 0.361455 + 0.932389i \(0.382280\pi\)
−0.361455 + 0.932389i \(0.617720\pi\)
\(954\) −1.05268e7 −0.374476
\(955\) 0 0
\(956\) −8.21539e6 −0.290726
\(957\) 1.47906e6i 0.0522043i
\(958\) 9.37589e6i 0.330064i
\(959\) −6.36245e6 −0.223397
\(960\) 0 0
\(961\) 2.10452e7 0.735095
\(962\) 4.79730e6i 0.167132i
\(963\) − 7.73177e6i − 0.268666i
\(964\) 1.11154e7 0.385242
\(965\) 0 0
\(966\) −1.83103e6 −0.0631325
\(967\) 2.48235e7i 0.853682i 0.904327 + 0.426841i \(0.140374\pi\)
−0.904327 + 0.426841i \(0.859626\pi\)
\(968\) − 1.00285e7i − 0.343991i
\(969\) −660960. −0.0226134
\(970\) 0 0
\(971\) 1.33077e7 0.452956 0.226478 0.974016i \(-0.427279\pi\)
0.226478 + 0.974016i \(0.427279\pi\)
\(972\) − 944784.i − 0.0320750i
\(973\) − 5.11344e6i − 0.173154i
\(974\) −1.26771e6 −0.0428177
\(975\) 0 0
\(976\) 9.12742e6 0.306707
\(977\) − 8.17705e6i − 0.274069i −0.990566 0.137035i \(-0.956243\pi\)
0.990566 0.137035i \(-0.0437571\pi\)
\(978\) 3.77338e6i 0.126149i
\(979\) −2.30234e6 −0.0767739
\(980\) 0 0
\(981\) 1.71900e7 0.570299
\(982\) 2.08016e7i 0.688365i
\(983\) − 1.32465e7i − 0.437238i −0.975810 0.218619i \(-0.929845\pi\)
0.975810 0.218619i \(-0.0701552\pi\)
\(984\) −3.72557e6 −0.122661
\(985\) 0 0
\(986\) 2.15136e6 0.0704727
\(987\) − 9.08636e6i − 0.296891i
\(988\) − 533120.i − 0.0173753i
\(989\) −1.59977e7 −0.520075
\(990\) 0 0
\(991\) −1.48550e7 −0.480494 −0.240247 0.970712i \(-0.577228\pi\)
−0.240247 + 0.970712i \(0.577228\pi\)
\(992\) 7.21715e6i 0.232856i
\(993\) − 2.99914e7i − 0.965215i
\(994\) 8.35783e6 0.268304
\(995\) 0 0
\(996\) −1.53740e7 −0.491065
\(997\) 3.33769e6i 0.106343i 0.998585 + 0.0531714i \(0.0169330\pi\)
−0.998585 + 0.0531714i \(0.983067\pi\)
\(998\) − 1.94709e7i − 0.618814i
\(999\) 8.92150e6 0.282829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.g.m.799.1 2
5.2 odd 4 42.6.a.f.1.1 1
5.3 odd 4 1050.6.a.a.1.1 1
5.4 even 2 inner 1050.6.g.m.799.2 2
15.2 even 4 126.6.a.b.1.1 1
20.7 even 4 336.6.a.g.1.1 1
35.2 odd 12 294.6.e.b.67.1 2
35.12 even 12 294.6.e.f.67.1 2
35.17 even 12 294.6.e.f.79.1 2
35.27 even 4 294.6.a.i.1.1 1
35.32 odd 12 294.6.e.b.79.1 2
60.47 odd 4 1008.6.a.k.1.1 1
105.62 odd 4 882.6.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.f.1.1 1 5.2 odd 4
126.6.a.b.1.1 1 15.2 even 4
294.6.a.i.1.1 1 35.27 even 4
294.6.e.b.67.1 2 35.2 odd 12
294.6.e.b.79.1 2 35.32 odd 12
294.6.e.f.67.1 2 35.12 even 12
294.6.e.f.79.1 2 35.17 even 12
336.6.a.g.1.1 1 20.7 even 4
882.6.a.i.1.1 1 105.62 odd 4
1008.6.a.k.1.1 1 60.47 odd 4
1050.6.a.a.1.1 1 5.3 odd 4
1050.6.g.m.799.1 2 1.1 even 1 trivial
1050.6.g.m.799.2 2 5.4 even 2 inner