Properties

Label 1050.6.g.h.799.2
Level $1050$
Weight $6$
Character 1050.799
Analytic conductor $168.403$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,6,Mod(799,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.799");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(168.403010804\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.6.g.h.799.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000i q^{2} +9.00000i q^{3} -16.0000 q^{4} -36.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -81.0000 q^{9} +O(q^{10})\) \(q+4.00000i q^{2} +9.00000i q^{3} -16.0000 q^{4} -36.0000 q^{6} -49.0000i q^{7} -64.0000i q^{8} -81.0000 q^{9} +650.000 q^{11} -144.000i q^{12} -762.000i q^{13} +196.000 q^{14} +256.000 q^{16} -556.000i q^{17} -324.000i q^{18} +2452.00 q^{19} +441.000 q^{21} +2600.00i q^{22} +2950.00i q^{23} +576.000 q^{24} +3048.00 q^{26} -729.000i q^{27} +784.000i q^{28} +674.000 q^{29} -3024.00 q^{31} +1024.00i q^{32} +5850.00i q^{33} +2224.00 q^{34} +1296.00 q^{36} +7730.00i q^{37} +9808.00i q^{38} +6858.00 q^{39} -17016.0 q^{41} +1764.00i q^{42} -21836.0i q^{43} -10400.0 q^{44} -11800.0 q^{46} -23940.0i q^{47} +2304.00i q^{48} -2401.00 q^{49} +5004.00 q^{51} +12192.0i q^{52} -15594.0i q^{53} +2916.00 q^{54} -3136.00 q^{56} +22068.0i q^{57} +2696.00i q^{58} -5608.00 q^{59} +150.000 q^{61} -12096.0i q^{62} +3969.00i q^{63} -4096.00 q^{64} -23400.0 q^{66} -43784.0i q^{67} +8896.00i q^{68} -26550.0 q^{69} -39178.0 q^{71} +5184.00i q^{72} +23570.0i q^{73} -30920.0 q^{74} -39232.0 q^{76} -31850.0i q^{77} +27432.0i q^{78} +17892.0 q^{79} +6561.00 q^{81} -68064.0i q^{82} -38972.0i q^{83} -7056.00 q^{84} +87344.0 q^{86} +6066.00i q^{87} -41600.0i q^{88} -6024.00 q^{89} -37338.0 q^{91} -47200.0i q^{92} -27216.0i q^{93} +95760.0 q^{94} -9216.00 q^{96} +108430. i q^{97} -9604.00i q^{98} -52650.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 72 q^{6} - 162 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} - 72 q^{6} - 162 q^{9} + 1300 q^{11} + 392 q^{14} + 512 q^{16} + 4904 q^{19} + 882 q^{21} + 1152 q^{24} + 6096 q^{26} + 1348 q^{29} - 6048 q^{31} + 4448 q^{34} + 2592 q^{36} + 13716 q^{39} - 34032 q^{41} - 20800 q^{44} - 23600 q^{46} - 4802 q^{49} + 10008 q^{51} + 5832 q^{54} - 6272 q^{56} - 11216 q^{59} + 300 q^{61} - 8192 q^{64} - 46800 q^{66} - 53100 q^{69} - 78356 q^{71} - 61840 q^{74} - 78464 q^{76} + 35784 q^{79} + 13122 q^{81} - 14112 q^{84} + 174688 q^{86} - 12048 q^{89} - 74676 q^{91} + 191520 q^{94} - 18432 q^{96} - 105300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000i 0.707107i
\(3\) 9.00000i 0.577350i
\(4\) −16.0000 −0.500000
\(5\) 0 0
\(6\) −36.0000 −0.408248
\(7\) − 49.0000i − 0.377964i
\(8\) − 64.0000i − 0.353553i
\(9\) −81.0000 −0.333333
\(10\) 0 0
\(11\) 650.000 1.61969 0.809845 0.586645i \(-0.199551\pi\)
0.809845 + 0.586645i \(0.199551\pi\)
\(12\) − 144.000i − 0.288675i
\(13\) − 762.000i − 1.25054i −0.780410 0.625269i \(-0.784989\pi\)
0.780410 0.625269i \(-0.215011\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) − 556.000i − 0.466608i −0.972404 0.233304i \(-0.925046\pi\)
0.972404 0.233304i \(-0.0749538\pi\)
\(18\) − 324.000i − 0.235702i
\(19\) 2452.00 1.55825 0.779124 0.626870i \(-0.215664\pi\)
0.779124 + 0.626870i \(0.215664\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) 2600.00i 1.14529i
\(23\) 2950.00i 1.16279i 0.813620 + 0.581397i \(0.197493\pi\)
−0.813620 + 0.581397i \(0.802507\pi\)
\(24\) 576.000 0.204124
\(25\) 0 0
\(26\) 3048.00 0.884263
\(27\) − 729.000i − 0.192450i
\(28\) 784.000i 0.188982i
\(29\) 674.000 0.148821 0.0744106 0.997228i \(-0.476292\pi\)
0.0744106 + 0.997228i \(0.476292\pi\)
\(30\) 0 0
\(31\) −3024.00 −0.565168 −0.282584 0.959243i \(-0.591192\pi\)
−0.282584 + 0.959243i \(0.591192\pi\)
\(32\) 1024.00i 0.176777i
\(33\) 5850.00i 0.935128i
\(34\) 2224.00 0.329942
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 7730.00i 0.928272i 0.885764 + 0.464136i \(0.153635\pi\)
−0.885764 + 0.464136i \(0.846365\pi\)
\(38\) 9808.00i 1.10185i
\(39\) 6858.00 0.721998
\(40\) 0 0
\(41\) −17016.0 −1.58088 −0.790438 0.612542i \(-0.790147\pi\)
−0.790438 + 0.612542i \(0.790147\pi\)
\(42\) 1764.00i 0.154303i
\(43\) − 21836.0i − 1.80095i −0.434907 0.900476i \(-0.643219\pi\)
0.434907 0.900476i \(-0.356781\pi\)
\(44\) −10400.0 −0.809845
\(45\) 0 0
\(46\) −11800.0 −0.822219
\(47\) − 23940.0i − 1.58081i −0.612585 0.790405i \(-0.709870\pi\)
0.612585 0.790405i \(-0.290130\pi\)
\(48\) 2304.00i 0.144338i
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 5004.00 0.269396
\(52\) 12192.0i 0.625269i
\(53\) − 15594.0i − 0.762549i −0.924462 0.381275i \(-0.875485\pi\)
0.924462 0.381275i \(-0.124515\pi\)
\(54\) 2916.00 0.136083
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 22068.0i 0.899655i
\(58\) 2696.00i 0.105233i
\(59\) −5608.00 −0.209738 −0.104869 0.994486i \(-0.533442\pi\)
−0.104869 + 0.994486i \(0.533442\pi\)
\(60\) 0 0
\(61\) 150.000 0.00516139 0.00258069 0.999997i \(-0.499179\pi\)
0.00258069 + 0.999997i \(0.499179\pi\)
\(62\) − 12096.0i − 0.399634i
\(63\) 3969.00i 0.125988i
\(64\) −4096.00 −0.125000
\(65\) 0 0
\(66\) −23400.0 −0.661235
\(67\) − 43784.0i − 1.19159i −0.803135 0.595797i \(-0.796836\pi\)
0.803135 0.595797i \(-0.203164\pi\)
\(68\) 8896.00i 0.233304i
\(69\) −26550.0 −0.671339
\(70\) 0 0
\(71\) −39178.0 −0.922351 −0.461176 0.887309i \(-0.652572\pi\)
−0.461176 + 0.887309i \(0.652572\pi\)
\(72\) 5184.00i 0.117851i
\(73\) 23570.0i 0.517669i 0.965922 + 0.258835i \(0.0833385\pi\)
−0.965922 + 0.258835i \(0.916662\pi\)
\(74\) −30920.0 −0.656387
\(75\) 0 0
\(76\) −39232.0 −0.779124
\(77\) − 31850.0i − 0.612185i
\(78\) 27432.0i 0.510530i
\(79\) 17892.0 0.322546 0.161273 0.986910i \(-0.448440\pi\)
0.161273 + 0.986910i \(0.448440\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) − 68064.0i − 1.11785i
\(83\) − 38972.0i − 0.620951i −0.950581 0.310476i \(-0.899512\pi\)
0.950581 0.310476i \(-0.100488\pi\)
\(84\) −7056.00 −0.109109
\(85\) 0 0
\(86\) 87344.0 1.27346
\(87\) 6066.00i 0.0859220i
\(88\) − 41600.0i − 0.572647i
\(89\) −6024.00 −0.0806139 −0.0403070 0.999187i \(-0.512834\pi\)
−0.0403070 + 0.999187i \(0.512834\pi\)
\(90\) 0 0
\(91\) −37338.0 −0.472659
\(92\) − 47200.0i − 0.581397i
\(93\) − 27216.0i − 0.326300i
\(94\) 95760.0 1.11780
\(95\) 0 0
\(96\) −9216.00 −0.102062
\(97\) 108430.i 1.17009i 0.811000 + 0.585046i \(0.198924\pi\)
−0.811000 + 0.585046i \(0.801076\pi\)
\(98\) − 9604.00i − 0.101015i
\(99\) −52650.0 −0.539896
\(100\) 0 0
\(101\) −70424.0 −0.686938 −0.343469 0.939164i \(-0.611602\pi\)
−0.343469 + 0.939164i \(0.611602\pi\)
\(102\) 20016.0i 0.190492i
\(103\) 31552.0i 0.293045i 0.989207 + 0.146522i \(0.0468080\pi\)
−0.989207 + 0.146522i \(0.953192\pi\)
\(104\) −48768.0 −0.442132
\(105\) 0 0
\(106\) 62376.0 0.539204
\(107\) 108282.i 0.914317i 0.889385 + 0.457159i \(0.151133\pi\)
−0.889385 + 0.457159i \(0.848867\pi\)
\(108\) 11664.0i 0.0962250i
\(109\) 72146.0 0.581629 0.290814 0.956779i \(-0.406074\pi\)
0.290814 + 0.956779i \(0.406074\pi\)
\(110\) 0 0
\(111\) −69570.0 −0.535938
\(112\) − 12544.0i − 0.0944911i
\(113\) − 220906.i − 1.62746i −0.581240 0.813732i \(-0.697432\pi\)
0.581240 0.813732i \(-0.302568\pi\)
\(114\) −88272.0 −0.636152
\(115\) 0 0
\(116\) −10784.0 −0.0744106
\(117\) 61722.0i 0.416846i
\(118\) − 22432.0i − 0.148307i
\(119\) −27244.0 −0.176361
\(120\) 0 0
\(121\) 261449. 1.62339
\(122\) 600.000i 0.00364965i
\(123\) − 153144.i − 0.912719i
\(124\) 48384.0 0.282584
\(125\) 0 0
\(126\) −15876.0 −0.0890871
\(127\) − 239652.i − 1.31847i −0.751935 0.659237i \(-0.770879\pi\)
0.751935 0.659237i \(-0.229121\pi\)
\(128\) − 16384.0i − 0.0883883i
\(129\) 196524. 1.03978
\(130\) 0 0
\(131\) −274172. −1.39587 −0.697935 0.716161i \(-0.745897\pi\)
−0.697935 + 0.716161i \(0.745897\pi\)
\(132\) − 93600.0i − 0.467564i
\(133\) − 120148.i − 0.588962i
\(134\) 175136. 0.842584
\(135\) 0 0
\(136\) −35584.0 −0.164971
\(137\) − 391154.i − 1.78052i −0.455455 0.890259i \(-0.650523\pi\)
0.455455 0.890259i \(-0.349477\pi\)
\(138\) − 106200.i − 0.474708i
\(139\) −339364. −1.48980 −0.744901 0.667175i \(-0.767503\pi\)
−0.744901 + 0.667175i \(0.767503\pi\)
\(140\) 0 0
\(141\) 215460. 0.912681
\(142\) − 156712.i − 0.652201i
\(143\) − 495300.i − 2.02548i
\(144\) −20736.0 −0.0833333
\(145\) 0 0
\(146\) −94280.0 −0.366047
\(147\) − 21609.0i − 0.0824786i
\(148\) − 123680.i − 0.464136i
\(149\) 29334.0 0.108244 0.0541222 0.998534i \(-0.482764\pi\)
0.0541222 + 0.998534i \(0.482764\pi\)
\(150\) 0 0
\(151\) 71608.0 0.255575 0.127788 0.991802i \(-0.459212\pi\)
0.127788 + 0.991802i \(0.459212\pi\)
\(152\) − 156928.i − 0.550924i
\(153\) 45036.0i 0.155536i
\(154\) 127400. 0.432880
\(155\) 0 0
\(156\) −109728. −0.360999
\(157\) 296318.i 0.959420i 0.877427 + 0.479710i \(0.159258\pi\)
−0.877427 + 0.479710i \(0.840742\pi\)
\(158\) 71568.0i 0.228074i
\(159\) 140346. 0.440258
\(160\) 0 0
\(161\) 144550. 0.439494
\(162\) 26244.0i 0.0785674i
\(163\) 480400.i 1.41623i 0.706097 + 0.708115i \(0.250454\pi\)
−0.706097 + 0.708115i \(0.749546\pi\)
\(164\) 272256. 0.790438
\(165\) 0 0
\(166\) 155888. 0.439079
\(167\) 160180.i 0.444444i 0.974996 + 0.222222i \(0.0713310\pi\)
−0.974996 + 0.222222i \(0.928669\pi\)
\(168\) − 28224.0i − 0.0771517i
\(169\) −209351. −0.563843
\(170\) 0 0
\(171\) −198612. −0.519416
\(172\) 349376.i 0.900476i
\(173\) 8984.00i 0.0228220i 0.999935 + 0.0114110i \(0.00363232\pi\)
−0.999935 + 0.0114110i \(0.996368\pi\)
\(174\) −24264.0 −0.0607560
\(175\) 0 0
\(176\) 166400. 0.404922
\(177\) − 50472.0i − 0.121093i
\(178\) − 24096.0i − 0.0570026i
\(179\) −182886. −0.426627 −0.213313 0.976984i \(-0.568425\pi\)
−0.213313 + 0.976984i \(0.568425\pi\)
\(180\) 0 0
\(181\) 138330. 0.313848 0.156924 0.987611i \(-0.449842\pi\)
0.156924 + 0.987611i \(0.449842\pi\)
\(182\) − 149352.i − 0.334220i
\(183\) 1350.00i 0.00297993i
\(184\) 188800. 0.411109
\(185\) 0 0
\(186\) 108864. 0.230729
\(187\) − 361400.i − 0.755760i
\(188\) 383040.i 0.790405i
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 327222. 0.649021 0.324511 0.945882i \(-0.394800\pi\)
0.324511 + 0.945882i \(0.394800\pi\)
\(192\) − 36864.0i − 0.0721688i
\(193\) − 786902.i − 1.52064i −0.649547 0.760322i \(-0.725041\pi\)
0.649547 0.760322i \(-0.274959\pi\)
\(194\) −433720. −0.827380
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 423098.i 0.776740i 0.921504 + 0.388370i \(0.126962\pi\)
−0.921504 + 0.388370i \(0.873038\pi\)
\(198\) − 210600.i − 0.381764i
\(199\) −1.02392e6 −1.83288 −0.916439 0.400175i \(-0.868949\pi\)
−0.916439 + 0.400175i \(0.868949\pi\)
\(200\) 0 0
\(201\) 394056. 0.687967
\(202\) − 281696.i − 0.485738i
\(203\) − 33026.0i − 0.0562491i
\(204\) −80064.0 −0.134698
\(205\) 0 0
\(206\) −126208. −0.207214
\(207\) − 238950.i − 0.387598i
\(208\) − 195072.i − 0.312634i
\(209\) 1.59380e6 2.52388
\(210\) 0 0
\(211\) 461516. 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(212\) 249504.i 0.381275i
\(213\) − 352602.i − 0.532520i
\(214\) −433128. −0.646520
\(215\) 0 0
\(216\) −46656.0 −0.0680414
\(217\) 148176.i 0.213613i
\(218\) 288584.i 0.411274i
\(219\) −212130. −0.298877
\(220\) 0 0
\(221\) −423672. −0.583511
\(222\) − 278280.i − 0.378965i
\(223\) − 995048.i − 1.33993i −0.742393 0.669965i \(-0.766309\pi\)
0.742393 0.669965i \(-0.233691\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 883624. 1.15079
\(227\) − 95568.0i − 0.123097i −0.998104 0.0615486i \(-0.980396\pi\)
0.998104 0.0615486i \(-0.0196039\pi\)
\(228\) − 353088.i − 0.449827i
\(229\) 1.04409e6 1.31567 0.657836 0.753161i \(-0.271472\pi\)
0.657836 + 0.753161i \(0.271472\pi\)
\(230\) 0 0
\(231\) 286650. 0.353445
\(232\) − 43136.0i − 0.0526163i
\(233\) 1.16941e6i 1.41116i 0.708629 + 0.705581i \(0.249314\pi\)
−0.708629 + 0.705581i \(0.750686\pi\)
\(234\) −246888. −0.294754
\(235\) 0 0
\(236\) 89728.0 0.104869
\(237\) 161028.i 0.186222i
\(238\) − 108976.i − 0.124706i
\(239\) 27342.0 0.0309625 0.0154812 0.999880i \(-0.495072\pi\)
0.0154812 + 0.999880i \(0.495072\pi\)
\(240\) 0 0
\(241\) −907714. −1.00671 −0.503357 0.864078i \(-0.667902\pi\)
−0.503357 + 0.864078i \(0.667902\pi\)
\(242\) 1.04580e6i 1.14791i
\(243\) 59049.0i 0.0641500i
\(244\) −2400.00 −0.00258069
\(245\) 0 0
\(246\) 612576. 0.645390
\(247\) − 1.86842e6i − 1.94865i
\(248\) 193536.i 0.199817i
\(249\) 350748. 0.358506
\(250\) 0 0
\(251\) 44088.0 0.0441709 0.0220854 0.999756i \(-0.492969\pi\)
0.0220854 + 0.999756i \(0.492969\pi\)
\(252\) − 63504.0i − 0.0629941i
\(253\) 1.91750e6i 1.88336i
\(254\) 958608. 0.932302
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) − 829200.i − 0.783117i −0.920153 0.391558i \(-0.871936\pi\)
0.920153 0.391558i \(-0.128064\pi\)
\(258\) 786096.i 0.735235i
\(259\) 378770. 0.350854
\(260\) 0 0
\(261\) −54594.0 −0.0496071
\(262\) − 1.09669e6i − 0.987029i
\(263\) − 1.31947e6i − 1.17627i −0.808761 0.588137i \(-0.799861\pi\)
0.808761 0.588137i \(-0.200139\pi\)
\(264\) 374400. 0.330618
\(265\) 0 0
\(266\) 480592. 0.416459
\(267\) − 54216.0i − 0.0465425i
\(268\) 700544.i 0.595797i
\(269\) 783788. 0.660416 0.330208 0.943908i \(-0.392881\pi\)
0.330208 + 0.943908i \(0.392881\pi\)
\(270\) 0 0
\(271\) 955080. 0.789981 0.394990 0.918685i \(-0.370748\pi\)
0.394990 + 0.918685i \(0.370748\pi\)
\(272\) − 142336.i − 0.116652i
\(273\) − 336042.i − 0.272890i
\(274\) 1.56462e6 1.25902
\(275\) 0 0
\(276\) 424800. 0.335669
\(277\) 1.91273e6i 1.49780i 0.662682 + 0.748901i \(0.269418\pi\)
−0.662682 + 0.748901i \(0.730582\pi\)
\(278\) − 1.35746e6i − 1.05345i
\(279\) 244944. 0.188389
\(280\) 0 0
\(281\) −1.02620e6 −0.775295 −0.387648 0.921808i \(-0.626712\pi\)
−0.387648 + 0.921808i \(0.626712\pi\)
\(282\) 861840.i 0.645363i
\(283\) − 1.74668e6i − 1.29642i −0.761461 0.648211i \(-0.775518\pi\)
0.761461 0.648211i \(-0.224482\pi\)
\(284\) 626848. 0.461176
\(285\) 0 0
\(286\) 1.98120e6 1.43223
\(287\) 833784.i 0.597515i
\(288\) − 82944.0i − 0.0589256i
\(289\) 1.11072e6 0.782277
\(290\) 0 0
\(291\) −975870. −0.675553
\(292\) − 377120.i − 0.258835i
\(293\) − 2.23212e6i − 1.51897i −0.650526 0.759484i \(-0.725452\pi\)
0.650526 0.759484i \(-0.274548\pi\)
\(294\) 86436.0 0.0583212
\(295\) 0 0
\(296\) 494720. 0.328194
\(297\) − 473850.i − 0.311709i
\(298\) 117336.i 0.0765404i
\(299\) 2.24790e6 1.45412
\(300\) 0 0
\(301\) −1.06996e6 −0.680696
\(302\) 286432.i 0.180719i
\(303\) − 633816.i − 0.396604i
\(304\) 627712. 0.389562
\(305\) 0 0
\(306\) −180144. −0.109981
\(307\) 1.85324e6i 1.12224i 0.827735 + 0.561119i \(0.189629\pi\)
−0.827735 + 0.561119i \(0.810371\pi\)
\(308\) 509600.i 0.306092i
\(309\) −283968. −0.169189
\(310\) 0 0
\(311\) −450956. −0.264383 −0.132191 0.991224i \(-0.542201\pi\)
−0.132191 + 0.991224i \(0.542201\pi\)
\(312\) − 438912.i − 0.255265i
\(313\) − 1.60263e6i − 0.924642i −0.886713 0.462321i \(-0.847017\pi\)
0.886713 0.462321i \(-0.152983\pi\)
\(314\) −1.18527e6 −0.678413
\(315\) 0 0
\(316\) −286272. −0.161273
\(317\) − 20862.0i − 0.0116602i −0.999983 0.00583012i \(-0.998144\pi\)
0.999983 0.00583012i \(-0.00185580\pi\)
\(318\) 561384.i 0.311309i
\(319\) 438100. 0.241044
\(320\) 0 0
\(321\) −974538. −0.527881
\(322\) 578200.i 0.310770i
\(323\) − 1.36331e6i − 0.727091i
\(324\) −104976. −0.0555556
\(325\) 0 0
\(326\) −1.92160e6 −1.00143
\(327\) 649314.i 0.335804i
\(328\) 1.08902e6i 0.558924i
\(329\) −1.17306e6 −0.597490
\(330\) 0 0
\(331\) 2.07621e6 1.04160 0.520801 0.853678i \(-0.325633\pi\)
0.520801 + 0.853678i \(0.325633\pi\)
\(332\) 623552.i 0.310476i
\(333\) − 626130.i − 0.309424i
\(334\) −640720. −0.314269
\(335\) 0 0
\(336\) 112896. 0.0545545
\(337\) 1.20508e6i 0.578019i 0.957326 + 0.289009i \(0.0933259\pi\)
−0.957326 + 0.289009i \(0.906674\pi\)
\(338\) − 837404.i − 0.398697i
\(339\) 1.98815e6 0.939617
\(340\) 0 0
\(341\) −1.96560e6 −0.915396
\(342\) − 794448.i − 0.367282i
\(343\) 117649.i 0.0539949i
\(344\) −1.39750e6 −0.636732
\(345\) 0 0
\(346\) −35936.0 −0.0161376
\(347\) − 876642.i − 0.390840i −0.980720 0.195420i \(-0.937393\pi\)
0.980720 0.195420i \(-0.0626069\pi\)
\(348\) − 97056.0i − 0.0429610i
\(349\) 1.29593e6 0.569532 0.284766 0.958597i \(-0.408084\pi\)
0.284766 + 0.958597i \(0.408084\pi\)
\(350\) 0 0
\(351\) −555498. −0.240666
\(352\) 665600.i 0.286323i
\(353\) 3.99040e6i 1.70443i 0.523192 + 0.852215i \(0.324741\pi\)
−0.523192 + 0.852215i \(0.675259\pi\)
\(354\) 201888. 0.0856253
\(355\) 0 0
\(356\) 96384.0 0.0403070
\(357\) − 245196.i − 0.101822i
\(358\) − 731544.i − 0.301671i
\(359\) −4.06452e6 −1.66446 −0.832229 0.554432i \(-0.812936\pi\)
−0.832229 + 0.554432i \(0.812936\pi\)
\(360\) 0 0
\(361\) 3.53620e6 1.42814
\(362\) 553320.i 0.221924i
\(363\) 2.35304e6i 0.937266i
\(364\) 597408. 0.236329
\(365\) 0 0
\(366\) −5400.00 −0.00210713
\(367\) − 1.67243e6i − 0.648162i −0.946029 0.324081i \(-0.894945\pi\)
0.946029 0.324081i \(-0.105055\pi\)
\(368\) 755200.i 0.290698i
\(369\) 1.37830e6 0.526959
\(370\) 0 0
\(371\) −764106. −0.288216
\(372\) 435456.i 0.163150i
\(373\) − 3.16769e6i − 1.17888i −0.807812 0.589441i \(-0.799348\pi\)
0.807812 0.589441i \(-0.200652\pi\)
\(374\) 1.44560e6 0.534403
\(375\) 0 0
\(376\) −1.53216e6 −0.558901
\(377\) − 513588.i − 0.186106i
\(378\) − 142884.i − 0.0514344i
\(379\) 4.20388e6 1.50332 0.751662 0.659548i \(-0.229252\pi\)
0.751662 + 0.659548i \(0.229252\pi\)
\(380\) 0 0
\(381\) 2.15687e6 0.761222
\(382\) 1.30889e6i 0.458927i
\(383\) 342616.i 0.119347i 0.998218 + 0.0596734i \(0.0190059\pi\)
−0.998218 + 0.0596734i \(0.980994\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 3.14761e6 1.07526
\(387\) 1.76872e6i 0.600317i
\(388\) − 1.73488e6i − 0.585046i
\(389\) 3.83959e6 1.28650 0.643252 0.765654i \(-0.277585\pi\)
0.643252 + 0.765654i \(0.277585\pi\)
\(390\) 0 0
\(391\) 1.64020e6 0.542569
\(392\) 153664.i 0.0505076i
\(393\) − 2.46755e6i − 0.805906i
\(394\) −1.69239e6 −0.549238
\(395\) 0 0
\(396\) 842400. 0.269948
\(397\) 3.43894e6i 1.09509i 0.836777 + 0.547543i \(0.184437\pi\)
−0.836777 + 0.547543i \(0.815563\pi\)
\(398\) − 4.09568e6i − 1.29604i
\(399\) 1.08133e6 0.340038
\(400\) 0 0
\(401\) −3.89421e6 −1.20937 −0.604684 0.796466i \(-0.706701\pi\)
−0.604684 + 0.796466i \(0.706701\pi\)
\(402\) 1.57622e6i 0.486466i
\(403\) 2.30429e6i 0.706764i
\(404\) 1.12678e6 0.343469
\(405\) 0 0
\(406\) 132104. 0.0397741
\(407\) 5.02450e6i 1.50351i
\(408\) − 320256.i − 0.0952460i
\(409\) 1.64679e6 0.486778 0.243389 0.969929i \(-0.421741\pi\)
0.243389 + 0.969929i \(0.421741\pi\)
\(410\) 0 0
\(411\) 3.52039e6 1.02798
\(412\) − 504832.i − 0.146522i
\(413\) 274792.i 0.0792737i
\(414\) 955800. 0.274073
\(415\) 0 0
\(416\) 780288. 0.221066
\(417\) − 3.05428e6i − 0.860138i
\(418\) 6.37520e6i 1.78465i
\(419\) 1.67659e6 0.466544 0.233272 0.972412i \(-0.425057\pi\)
0.233272 + 0.972412i \(0.425057\pi\)
\(420\) 0 0
\(421\) −566742. −0.155840 −0.0779202 0.996960i \(-0.524828\pi\)
−0.0779202 + 0.996960i \(0.524828\pi\)
\(422\) 1.84606e6i 0.504621i
\(423\) 1.93914e6i 0.526936i
\(424\) −998016. −0.269602
\(425\) 0 0
\(426\) 1.41041e6 0.376548
\(427\) − 7350.00i − 0.00195082i
\(428\) − 1.73251e6i − 0.457159i
\(429\) 4.45770e6 1.16941
\(430\) 0 0
\(431\) 6.68468e6 1.73335 0.866677 0.498870i \(-0.166251\pi\)
0.866677 + 0.498870i \(0.166251\pi\)
\(432\) − 186624.i − 0.0481125i
\(433\) − 6.91337e6i − 1.77203i −0.463661 0.886013i \(-0.653464\pi\)
0.463661 0.886013i \(-0.346536\pi\)
\(434\) −592704. −0.151047
\(435\) 0 0
\(436\) −1.15434e6 −0.290814
\(437\) 7.23340e6i 1.81192i
\(438\) − 848520.i − 0.211338i
\(439\) 4.56281e6 1.12998 0.564990 0.825098i \(-0.308880\pi\)
0.564990 + 0.825098i \(0.308880\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) − 1.69469e6i − 0.412605i
\(443\) − 4.59760e6i − 1.11307i −0.830825 0.556534i \(-0.812131\pi\)
0.830825 0.556534i \(-0.187869\pi\)
\(444\) 1.11312e6 0.267969
\(445\) 0 0
\(446\) 3.98019e6 0.947473
\(447\) 264006.i 0.0624950i
\(448\) 200704.i 0.0472456i
\(449\) −1.70658e6 −0.399494 −0.199747 0.979848i \(-0.564012\pi\)
−0.199747 + 0.979848i \(0.564012\pi\)
\(450\) 0 0
\(451\) −1.10604e7 −2.56053
\(452\) 3.53450e6i 0.813732i
\(453\) 644472.i 0.147557i
\(454\) 382272. 0.0870428
\(455\) 0 0
\(456\) 1.41235e6 0.318076
\(457\) − 6.93916e6i − 1.55423i −0.629356 0.777117i \(-0.716681\pi\)
0.629356 0.777117i \(-0.283319\pi\)
\(458\) 4.17634e6i 0.930320i
\(459\) −405324. −0.0897988
\(460\) 0 0
\(461\) −2.61805e6 −0.573753 −0.286877 0.957968i \(-0.592617\pi\)
−0.286877 + 0.957968i \(0.592617\pi\)
\(462\) 1.14660e6i 0.249923i
\(463\) − 7.13602e6i − 1.54705i −0.633767 0.773524i \(-0.718492\pi\)
0.633767 0.773524i \(-0.281508\pi\)
\(464\) 172544. 0.0372053
\(465\) 0 0
\(466\) −4.67764e6 −0.997843
\(467\) − 2.17398e6i − 0.461278i −0.973039 0.230639i \(-0.925918\pi\)
0.973039 0.230639i \(-0.0740816\pi\)
\(468\) − 987552.i − 0.208423i
\(469\) −2.14542e6 −0.450380
\(470\) 0 0
\(471\) −2.66686e6 −0.553922
\(472\) 358912.i 0.0741537i
\(473\) − 1.41934e7i − 2.91698i
\(474\) −644112. −0.131679
\(475\) 0 0
\(476\) 435904. 0.0881807
\(477\) 1.26311e6i 0.254183i
\(478\) 109368.i 0.0218938i
\(479\) 4.63294e6 0.922609 0.461305 0.887242i \(-0.347381\pi\)
0.461305 + 0.887242i \(0.347381\pi\)
\(480\) 0 0
\(481\) 5.89026e6 1.16084
\(482\) − 3.63086e6i − 0.711855i
\(483\) 1.30095e6i 0.253742i
\(484\) −4.18318e6 −0.811696
\(485\) 0 0
\(486\) −236196. −0.0453609
\(487\) − 4.56645e6i − 0.872481i −0.899830 0.436241i \(-0.856310\pi\)
0.899830 0.436241i \(-0.143690\pi\)
\(488\) − 9600.00i − 0.00182483i
\(489\) −4.32360e6 −0.817661
\(490\) 0 0
\(491\) −5.31429e6 −0.994813 −0.497407 0.867518i \(-0.665714\pi\)
−0.497407 + 0.867518i \(0.665714\pi\)
\(492\) 2.45030e6i 0.456360i
\(493\) − 374744.i − 0.0694412i
\(494\) 7.47370e6 1.37790
\(495\) 0 0
\(496\) −774144. −0.141292
\(497\) 1.91972e6i 0.348616i
\(498\) 1.40299e6i 0.253502i
\(499\) 2.46314e6 0.442831 0.221415 0.975180i \(-0.428932\pi\)
0.221415 + 0.975180i \(0.428932\pi\)
\(500\) 0 0
\(501\) −1.44162e6 −0.256600
\(502\) 176352.i 0.0312335i
\(503\) − 2.79924e6i − 0.493310i −0.969103 0.246655i \(-0.920669\pi\)
0.969103 0.246655i \(-0.0793315\pi\)
\(504\) 254016. 0.0445435
\(505\) 0 0
\(506\) −7.67000e6 −1.33174
\(507\) − 1.88416e6i − 0.325535i
\(508\) 3.83443e6i 0.659237i
\(509\) −1.99914e6 −0.342018 −0.171009 0.985269i \(-0.554703\pi\)
−0.171009 + 0.985269i \(0.554703\pi\)
\(510\) 0 0
\(511\) 1.15493e6 0.195661
\(512\) 262144.i 0.0441942i
\(513\) − 1.78751e6i − 0.299885i
\(514\) 3.31680e6 0.553747
\(515\) 0 0
\(516\) −3.14438e6 −0.519890
\(517\) − 1.55610e7i − 2.56042i
\(518\) 1.51508e6i 0.248091i
\(519\) −80856.0 −0.0131763
\(520\) 0 0
\(521\) 3.52160e6 0.568390 0.284195 0.958767i \(-0.408274\pi\)
0.284195 + 0.958767i \(0.408274\pi\)
\(522\) − 218376.i − 0.0350775i
\(523\) − 2.60685e6i − 0.416737i −0.978050 0.208369i \(-0.933185\pi\)
0.978050 0.208369i \(-0.0668153\pi\)
\(524\) 4.38675e6 0.697935
\(525\) 0 0
\(526\) 5.27786e6 0.831752
\(527\) 1.68134e6i 0.263712i
\(528\) 1.49760e6i 0.233782i
\(529\) −2.26616e6 −0.352088
\(530\) 0 0
\(531\) 454248. 0.0699128
\(532\) 1.92237e6i 0.294481i
\(533\) 1.29662e7i 1.97694i
\(534\) 216864. 0.0329105
\(535\) 0 0
\(536\) −2.80218e6 −0.421292
\(537\) − 1.64597e6i − 0.246313i
\(538\) 3.13515e6i 0.466985i
\(539\) −1.56065e6 −0.231384
\(540\) 0 0
\(541\) −1.37441e6 −0.201894 −0.100947 0.994892i \(-0.532187\pi\)
−0.100947 + 0.994892i \(0.532187\pi\)
\(542\) 3.82032e6i 0.558601i
\(543\) 1.24497e6i 0.181200i
\(544\) 569344. 0.0824855
\(545\) 0 0
\(546\) 1.34417e6 0.192962
\(547\) − 8.78398e6i − 1.25523i −0.778524 0.627614i \(-0.784032\pi\)
0.778524 0.627614i \(-0.215968\pi\)
\(548\) 6.25846e6i 0.890259i
\(549\) −12150.0 −0.00172046
\(550\) 0 0
\(551\) 1.65265e6 0.231900
\(552\) 1.69920e6i 0.237354i
\(553\) − 876708.i − 0.121911i
\(554\) −7.65092e6 −1.05911
\(555\) 0 0
\(556\) 5.42982e6 0.744901
\(557\) 6.29262e6i 0.859396i 0.902973 + 0.429698i \(0.141380\pi\)
−0.902973 + 0.429698i \(0.858620\pi\)
\(558\) 979776.i 0.133211i
\(559\) −1.66390e7 −2.25216
\(560\) 0 0
\(561\) 3.25260e6 0.436338
\(562\) − 4.10481e6i − 0.548216i
\(563\) − 4.86582e6i − 0.646971i −0.946233 0.323485i \(-0.895145\pi\)
0.946233 0.323485i \(-0.104855\pi\)
\(564\) −3.44736e6 −0.456340
\(565\) 0 0
\(566\) 6.98670e6 0.916709
\(567\) − 321489.i − 0.0419961i
\(568\) 2.50739e6i 0.326100i
\(569\) 4.46383e6 0.577998 0.288999 0.957329i \(-0.406678\pi\)
0.288999 + 0.957329i \(0.406678\pi\)
\(570\) 0 0
\(571\) 8.17054e6 1.04872 0.524361 0.851496i \(-0.324304\pi\)
0.524361 + 0.851496i \(0.324304\pi\)
\(572\) 7.92480e6i 1.01274i
\(573\) 2.94500e6i 0.374713i
\(574\) −3.33514e6 −0.422507
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) − 5.50343e6i − 0.688167i −0.938939 0.344084i \(-0.888190\pi\)
0.938939 0.344084i \(-0.111810\pi\)
\(578\) 4.44288e6i 0.553153i
\(579\) 7.08212e6 0.877944
\(580\) 0 0
\(581\) −1.90963e6 −0.234697
\(582\) − 3.90348e6i − 0.477688i
\(583\) − 1.01361e7i − 1.23509i
\(584\) 1.50848e6 0.183024
\(585\) 0 0
\(586\) 8.92848e6 1.07407
\(587\) 8.14251e6i 0.975356i 0.873024 + 0.487678i \(0.162156\pi\)
−0.873024 + 0.487678i \(0.837844\pi\)
\(588\) 345744.i 0.0412393i
\(589\) −7.41485e6 −0.880672
\(590\) 0 0
\(591\) −3.80788e6 −0.448451
\(592\) 1.97888e6i 0.232068i
\(593\) 2.73136e6i 0.318964i 0.987201 + 0.159482i \(0.0509824\pi\)
−0.987201 + 0.159482i \(0.949018\pi\)
\(594\) 1.89540e6 0.220412
\(595\) 0 0
\(596\) −469344. −0.0541222
\(597\) − 9.21528e6i − 1.05821i
\(598\) 8.99160e6i 1.02822i
\(599\) −1.23733e6 −0.140902 −0.0704510 0.997515i \(-0.522444\pi\)
−0.0704510 + 0.997515i \(0.522444\pi\)
\(600\) 0 0
\(601\) −1.59756e7 −1.80414 −0.902071 0.431587i \(-0.857954\pi\)
−0.902071 + 0.431587i \(0.857954\pi\)
\(602\) − 4.27986e6i − 0.481324i
\(603\) 3.54650e6i 0.397198i
\(604\) −1.14573e6 −0.127788
\(605\) 0 0
\(606\) 2.53526e6 0.280441
\(607\) − 1.88275e6i − 0.207406i −0.994608 0.103703i \(-0.966931\pi\)
0.994608 0.103703i \(-0.0330692\pi\)
\(608\) 2.51085e6i 0.275462i
\(609\) 297234. 0.0324755
\(610\) 0 0
\(611\) −1.82423e7 −1.97686
\(612\) − 720576.i − 0.0777681i
\(613\) 9.82804e6i 1.05637i 0.849130 + 0.528185i \(0.177127\pi\)
−0.849130 + 0.528185i \(0.822873\pi\)
\(614\) −7.41294e6 −0.793542
\(615\) 0 0
\(616\) −2.03840e6 −0.216440
\(617\) − 8.21262e6i − 0.868498i −0.900793 0.434249i \(-0.857014\pi\)
0.900793 0.434249i \(-0.142986\pi\)
\(618\) − 1.13587e6i − 0.119635i
\(619\) −6.98465e6 −0.732686 −0.366343 0.930480i \(-0.619390\pi\)
−0.366343 + 0.930480i \(0.619390\pi\)
\(620\) 0 0
\(621\) 2.15055e6 0.223780
\(622\) − 1.80382e6i − 0.186947i
\(623\) 295176.i 0.0304692i
\(624\) 1.75565e6 0.180499
\(625\) 0 0
\(626\) 6.41054e6 0.653820
\(627\) 1.43442e7i 1.45716i
\(628\) − 4.74109e6i − 0.479710i
\(629\) 4.29788e6 0.433139
\(630\) 0 0
\(631\) 1.26789e7 1.26767 0.633837 0.773467i \(-0.281479\pi\)
0.633837 + 0.773467i \(0.281479\pi\)
\(632\) − 1.14509e6i − 0.114037i
\(633\) 4.15364e6i 0.412022i
\(634\) 83448.0 0.00824504
\(635\) 0 0
\(636\) −2.24554e6 −0.220129
\(637\) 1.82956e6i 0.178648i
\(638\) 1.75240e6i 0.170444i
\(639\) 3.17342e6 0.307450
\(640\) 0 0
\(641\) −1.40324e7 −1.34892 −0.674460 0.738311i \(-0.735624\pi\)
−0.674460 + 0.738311i \(0.735624\pi\)
\(642\) − 3.89815e6i − 0.373268i
\(643\) − 1.30368e6i − 0.124349i −0.998065 0.0621745i \(-0.980196\pi\)
0.998065 0.0621745i \(-0.0198035\pi\)
\(644\) −2.31280e6 −0.219747
\(645\) 0 0
\(646\) 5.45325e6 0.514131
\(647\) 1.57110e6i 0.147551i 0.997275 + 0.0737757i \(0.0235049\pi\)
−0.997275 + 0.0737757i \(0.976495\pi\)
\(648\) − 419904.i − 0.0392837i
\(649\) −3.64520e6 −0.339711
\(650\) 0 0
\(651\) −1.33358e6 −0.123330
\(652\) − 7.68640e6i − 0.708115i
\(653\) 8.34115e6i 0.765496i 0.923853 + 0.382748i \(0.125022\pi\)
−0.923853 + 0.382748i \(0.874978\pi\)
\(654\) −2.59726e6 −0.237449
\(655\) 0 0
\(656\) −4.35610e6 −0.395219
\(657\) − 1.90917e6i − 0.172556i
\(658\) − 4.69224e6i − 0.422489i
\(659\) −6.18334e6 −0.554638 −0.277319 0.960778i \(-0.589446\pi\)
−0.277319 + 0.960778i \(0.589446\pi\)
\(660\) 0 0
\(661\) 928966. 0.0826982 0.0413491 0.999145i \(-0.486834\pi\)
0.0413491 + 0.999145i \(0.486834\pi\)
\(662\) 8.30485e6i 0.736524i
\(663\) − 3.81305e6i − 0.336890i
\(664\) −2.49421e6 −0.219539
\(665\) 0 0
\(666\) 2.50452e6 0.218796
\(667\) 1.98830e6i 0.173048i
\(668\) − 2.56288e6i − 0.222222i
\(669\) 8.95543e6 0.773609
\(670\) 0 0
\(671\) 97500.0 0.00835985
\(672\) 451584.i 0.0385758i
\(673\) − 1.79131e7i − 1.52452i −0.647272 0.762259i \(-0.724090\pi\)
0.647272 0.762259i \(-0.275910\pi\)
\(674\) −4.82033e6 −0.408721
\(675\) 0 0
\(676\) 3.34962e6 0.281922
\(677\) − 4.96397e6i − 0.416253i −0.978102 0.208126i \(-0.933263\pi\)
0.978102 0.208126i \(-0.0667366\pi\)
\(678\) 7.95262e6i 0.664409i
\(679\) 5.31307e6 0.442253
\(680\) 0 0
\(681\) 860112. 0.0710701
\(682\) − 7.86240e6i − 0.647283i
\(683\) − 89526.0i − 0.00734340i −0.999993 0.00367170i \(-0.998831\pi\)
0.999993 0.00367170i \(-0.00116874\pi\)
\(684\) 3.17779e6 0.259708
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) 9.39677e6i 0.759603i
\(688\) − 5.59002e6i − 0.450238i
\(689\) −1.18826e7 −0.953596
\(690\) 0 0
\(691\) −142396. −0.0113450 −0.00567248 0.999984i \(-0.501806\pi\)
−0.00567248 + 0.999984i \(0.501806\pi\)
\(692\) − 143744.i − 0.0114110i
\(693\) 2.57985e6i 0.204062i
\(694\) 3.50657e6 0.276365
\(695\) 0 0
\(696\) 388224. 0.0303780
\(697\) 9.46090e6i 0.737650i
\(698\) 5.18372e6i 0.402720i
\(699\) −1.05247e7 −0.814735
\(700\) 0 0
\(701\) 1.03935e7 0.798852 0.399426 0.916765i \(-0.369209\pi\)
0.399426 + 0.916765i \(0.369209\pi\)
\(702\) − 2.22199e6i − 0.170177i
\(703\) 1.89540e7i 1.44648i
\(704\) −2.66240e6 −0.202461
\(705\) 0 0
\(706\) −1.59616e7 −1.20521
\(707\) 3.45078e6i 0.259638i
\(708\) 807552.i 0.0605463i
\(709\) −4.65503e6 −0.347782 −0.173891 0.984765i \(-0.555634\pi\)
−0.173891 + 0.984765i \(0.555634\pi\)
\(710\) 0 0
\(711\) −1.44925e6 −0.107515
\(712\) 385536.i 0.0285013i
\(713\) − 8.92080e6i − 0.657173i
\(714\) 980784. 0.0719992
\(715\) 0 0
\(716\) 2.92618e6 0.213313
\(717\) 246078.i 0.0178762i
\(718\) − 1.62581e7i − 1.17695i
\(719\) 6.72134e6 0.484880 0.242440 0.970166i \(-0.422052\pi\)
0.242440 + 0.970166i \(0.422052\pi\)
\(720\) 0 0
\(721\) 1.54605e6 0.110760
\(722\) 1.41448e7i 1.00984i
\(723\) − 8.16943e6i − 0.581227i
\(724\) −2.21328e6 −0.156924
\(725\) 0 0
\(726\) −9.41216e6 −0.662747
\(727\) − 1.24076e7i − 0.870670i −0.900269 0.435335i \(-0.856630\pi\)
0.900269 0.435335i \(-0.143370\pi\)
\(728\) 2.38963e6i 0.167110i
\(729\) −531441. −0.0370370
\(730\) 0 0
\(731\) −1.21408e7 −0.840339
\(732\) − 21600.0i − 0.00148996i
\(733\) − 1.35958e7i − 0.934641i −0.884088 0.467321i \(-0.845219\pi\)
0.884088 0.467321i \(-0.154781\pi\)
\(734\) 6.68973e6 0.458319
\(735\) 0 0
\(736\) −3.02080e6 −0.205555
\(737\) − 2.84596e7i − 1.93001i
\(738\) 5.51318e6i 0.372616i
\(739\) −2.56819e6 −0.172988 −0.0864941 0.996252i \(-0.527566\pi\)
−0.0864941 + 0.996252i \(0.527566\pi\)
\(740\) 0 0
\(741\) 1.68158e7 1.12505
\(742\) − 3.05642e6i − 0.203800i
\(743\) 2.02133e7i 1.34327i 0.740880 + 0.671637i \(0.234409\pi\)
−0.740880 + 0.671637i \(0.765591\pi\)
\(744\) −1.74182e6 −0.115364
\(745\) 0 0
\(746\) 1.26707e7 0.833595
\(747\) 3.15673e6i 0.206984i
\(748\) 5.78240e6i 0.377880i
\(749\) 5.30582e6 0.345579
\(750\) 0 0
\(751\) 7.04813e6 0.456010 0.228005 0.973660i \(-0.426780\pi\)
0.228005 + 0.973660i \(0.426780\pi\)
\(752\) − 6.12864e6i − 0.395202i
\(753\) 396792.i 0.0255021i
\(754\) 2.05435e6 0.131597
\(755\) 0 0
\(756\) 571536. 0.0363696
\(757\) − 2.04120e7i − 1.29463i −0.762223 0.647315i \(-0.775892\pi\)
0.762223 0.647315i \(-0.224108\pi\)
\(758\) 1.68155e7i 1.06301i
\(759\) −1.72575e7 −1.08736
\(760\) 0 0
\(761\) −5.07974e6 −0.317965 −0.158983 0.987281i \(-0.550821\pi\)
−0.158983 + 0.987281i \(0.550821\pi\)
\(762\) 8.62747e6i 0.538265i
\(763\) − 3.53515e6i − 0.219835i
\(764\) −5.23555e6 −0.324511
\(765\) 0 0
\(766\) −1.37046e6 −0.0843909
\(767\) 4.27330e6i 0.262286i
\(768\) 589824.i 0.0360844i
\(769\) −2.33898e7 −1.42630 −0.713149 0.701012i \(-0.752732\pi\)
−0.713149 + 0.701012i \(0.752732\pi\)
\(770\) 0 0
\(771\) 7.46280e6 0.452133
\(772\) 1.25904e7i 0.760322i
\(773\) 1.11253e6i 0.0669672i 0.999439 + 0.0334836i \(0.0106602\pi\)
−0.999439 + 0.0334836i \(0.989340\pi\)
\(774\) −7.07486e6 −0.424488
\(775\) 0 0
\(776\) 6.93952e6 0.413690
\(777\) 3.40893e6i 0.202566i
\(778\) 1.53584e7i 0.909696i
\(779\) −4.17232e7 −2.46340
\(780\) 0 0
\(781\) −2.54657e7 −1.49392
\(782\) 6.56080e6i 0.383654i
\(783\) − 491346.i − 0.0286407i
\(784\) −614656. −0.0357143
\(785\) 0 0
\(786\) 9.87019e6 0.569861
\(787\) 2.00812e6i 0.115572i 0.998329 + 0.0577859i \(0.0184041\pi\)
−0.998329 + 0.0577859i \(0.981596\pi\)
\(788\) − 6.76957e6i − 0.388370i
\(789\) 1.18752e7 0.679123
\(790\) 0 0
\(791\) −1.08244e7 −0.615124
\(792\) 3.36960e6i 0.190882i
\(793\) − 114300.i − 0.00645451i
\(794\) −1.37558e7 −0.774343
\(795\) 0 0
\(796\) 1.63827e7 0.916439
\(797\) 3.00897e7i 1.67792i 0.544191 + 0.838961i \(0.316837\pi\)
−0.544191 + 0.838961i \(0.683163\pi\)
\(798\) 4.32533e6i 0.240443i
\(799\) −1.33106e7 −0.737619
\(800\) 0 0
\(801\) 487944. 0.0268713
\(802\) − 1.55768e7i − 0.855152i
\(803\) 1.53205e7i 0.838463i
\(804\) −6.30490e6 −0.343984
\(805\) 0 0
\(806\) −9.21715e6 −0.499757
\(807\) 7.05409e6i 0.381292i
\(808\) 4.50714e6i 0.242869i
\(809\) 1.88207e6 0.101103 0.0505515 0.998721i \(-0.483902\pi\)
0.0505515 + 0.998721i \(0.483902\pi\)
\(810\) 0 0
\(811\) 4.88220e6 0.260654 0.130327 0.991471i \(-0.458397\pi\)
0.130327 + 0.991471i \(0.458397\pi\)
\(812\) 528416.i 0.0281246i
\(813\) 8.59572e6i 0.456096i
\(814\) −2.00980e7 −1.06314
\(815\) 0 0
\(816\) 1.28102e6 0.0673491
\(817\) − 5.35419e7i − 2.80633i
\(818\) 6.58718e6i 0.344204i
\(819\) 3.02438e6 0.157553
\(820\) 0 0
\(821\) 8.37096e6 0.433429 0.216714 0.976235i \(-0.430466\pi\)
0.216714 + 0.976235i \(0.430466\pi\)
\(822\) 1.40815e7i 0.726893i
\(823\) 2.02090e7i 1.04003i 0.854157 + 0.520015i \(0.174074\pi\)
−0.854157 + 0.520015i \(0.825926\pi\)
\(824\) 2.01933e6 0.103607
\(825\) 0 0
\(826\) −1.09917e6 −0.0560549
\(827\) − 1.31059e7i − 0.666352i −0.942865 0.333176i \(-0.891880\pi\)
0.942865 0.333176i \(-0.108120\pi\)
\(828\) 3.82320e6i 0.193799i
\(829\) −3.18667e7 −1.61046 −0.805232 0.592960i \(-0.797959\pi\)
−0.805232 + 0.592960i \(0.797959\pi\)
\(830\) 0 0
\(831\) −1.72146e7 −0.864756
\(832\) 3.12115e6i 0.156317i
\(833\) 1.33496e6i 0.0666583i
\(834\) 1.22171e7 0.608209
\(835\) 0 0
\(836\) −2.55008e7 −1.26194
\(837\) 2.20450e6i 0.108767i
\(838\) 6.70637e6i 0.329896i
\(839\) −9.94742e6 −0.487872 −0.243936 0.969791i \(-0.578439\pi\)
−0.243936 + 0.969791i \(0.578439\pi\)
\(840\) 0 0
\(841\) −2.00569e7 −0.977852
\(842\) − 2.26697e6i − 0.110196i
\(843\) − 9.23582e6i − 0.447617i
\(844\) −7.38426e6 −0.356821
\(845\) 0 0
\(846\) −7.75656e6 −0.372600
\(847\) − 1.28110e7i − 0.613585i
\(848\) − 3.99206e6i − 0.190637i
\(849\) 1.57201e7 0.748489
\(850\) 0 0
\(851\) −2.28035e7 −1.07939
\(852\) 5.64163e6i 0.266260i
\(853\) 6.52611e6i 0.307102i 0.988141 + 0.153551i \(0.0490709\pi\)
−0.988141 + 0.153551i \(0.950929\pi\)
\(854\) 29400.0 0.00137944
\(855\) 0 0
\(856\) 6.93005e6 0.323260
\(857\) − 8.76238e6i − 0.407540i −0.979019 0.203770i \(-0.934681\pi\)
0.979019 0.203770i \(-0.0653194\pi\)
\(858\) 1.78308e7i 0.826899i
\(859\) −6.47942e6 −0.299608 −0.149804 0.988716i \(-0.547864\pi\)
−0.149804 + 0.988716i \(0.547864\pi\)
\(860\) 0 0
\(861\) −7.50406e6 −0.344975
\(862\) 2.67387e7i 1.22567i
\(863\) 1.83417e7i 0.838323i 0.907912 + 0.419162i \(0.137676\pi\)
−0.907912 + 0.419162i \(0.862324\pi\)
\(864\) 746496. 0.0340207
\(865\) 0 0
\(866\) 2.76535e7 1.25301
\(867\) 9.99649e6i 0.451648i
\(868\) − 2.37082e6i − 0.106807i
\(869\) 1.16298e7 0.522424
\(870\) 0 0
\(871\) −3.33634e7 −1.49013
\(872\) − 4.61734e6i − 0.205637i
\(873\) − 8.78283e6i − 0.390031i
\(874\) −2.89336e7 −1.28122
\(875\) 0 0
\(876\) 3.39408e6 0.149438
\(877\) 2.69065e7i 1.18129i 0.806930 + 0.590647i \(0.201127\pi\)
−0.806930 + 0.590647i \(0.798873\pi\)
\(878\) 1.82512e7i 0.799017i
\(879\) 2.00891e7 0.876976
\(880\) 0 0
\(881\) −1.52174e7 −0.660542 −0.330271 0.943886i \(-0.607140\pi\)
−0.330271 + 0.943886i \(0.607140\pi\)
\(882\) 777924.i 0.0336718i
\(883\) 2.61520e7i 1.12877i 0.825513 + 0.564383i \(0.190886\pi\)
−0.825513 + 0.564383i \(0.809114\pi\)
\(884\) 6.77875e6 0.291756
\(885\) 0 0
\(886\) 1.83904e7 0.787058
\(887\) − 1.08021e7i − 0.460997i −0.973073 0.230499i \(-0.925964\pi\)
0.973073 0.230499i \(-0.0740357\pi\)
\(888\) 4.45248e6i 0.189483i
\(889\) −1.17429e7 −0.498337
\(890\) 0 0
\(891\) 4.26465e6 0.179965
\(892\) 1.59208e7i 0.669965i
\(893\) − 5.87009e7i − 2.46329i
\(894\) −1.05602e6 −0.0441906
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) 2.02311e7i 0.839534i
\(898\) − 6.82631e6i − 0.282485i
\(899\) −2.03818e6 −0.0841090
\(900\) 0 0
\(901\) −8.67026e6 −0.355812
\(902\) − 4.42416e7i − 1.81057i
\(903\) − 9.62968e6i − 0.393000i
\(904\) −1.41380e7 −0.575395
\(905\) 0 0
\(906\) −2.57789e6 −0.104338
\(907\) − 9.84167e6i − 0.397238i −0.980077 0.198619i \(-0.936354\pi\)
0.980077 0.198619i \(-0.0636456\pi\)
\(908\) 1.52909e6i 0.0615486i
\(909\) 5.70434e6 0.228979
\(910\) 0 0
\(911\) 2.72509e7 1.08789 0.543945 0.839121i \(-0.316930\pi\)
0.543945 + 0.839121i \(0.316930\pi\)
\(912\) 5.64941e6i 0.224914i
\(913\) − 2.53318e7i − 1.00575i
\(914\) 2.77566e7 1.09901
\(915\) 0 0
\(916\) −1.67054e7 −0.657836
\(917\) 1.34344e7i 0.527589i
\(918\) − 1.62130e6i − 0.0634974i
\(919\) −2.86432e7 −1.11875 −0.559374 0.828916i \(-0.688958\pi\)
−0.559374 + 0.828916i \(0.688958\pi\)
\(920\) 0 0
\(921\) −1.66791e7 −0.647924
\(922\) − 1.04722e7i − 0.405705i
\(923\) 2.98536e7i 1.15343i
\(924\) −4.58640e6 −0.176723
\(925\) 0 0
\(926\) 2.85441e7 1.09393
\(927\) − 2.55571e6i − 0.0976816i
\(928\) 690176.i 0.0263081i
\(929\) −6.78492e6 −0.257932 −0.128966 0.991649i \(-0.541166\pi\)
−0.128966 + 0.991649i \(0.541166\pi\)
\(930\) 0 0
\(931\) −5.88725e6 −0.222607
\(932\) − 1.87106e7i − 0.705581i
\(933\) − 4.05860e6i − 0.152641i
\(934\) 8.69590e6 0.326173
\(935\) 0 0
\(936\) 3.95021e6 0.147377
\(937\) 3.00308e7i 1.11742i 0.829362 + 0.558712i \(0.188704\pi\)
−0.829362 + 0.558712i \(0.811296\pi\)
\(938\) − 8.58166e6i − 0.318467i
\(939\) 1.44237e7 0.533842
\(940\) 0 0
\(941\) 2.30725e7 0.849415 0.424707 0.905331i \(-0.360377\pi\)
0.424707 + 0.905331i \(0.360377\pi\)
\(942\) − 1.06674e7i − 0.391682i
\(943\) − 5.01972e7i − 1.83823i
\(944\) −1.43565e6 −0.0524346
\(945\) 0 0
\(946\) 5.67736e7 2.06262
\(947\) 2.71433e7i 0.983531i 0.870728 + 0.491765i \(0.163648\pi\)
−0.870728 + 0.491765i \(0.836352\pi\)
\(948\) − 2.57645e6i − 0.0931109i
\(949\) 1.79603e7 0.647365
\(950\) 0 0
\(951\) 187758. 0.00673205
\(952\) 1.74362e6i 0.0623532i
\(953\) 1.61552e7i 0.576209i 0.957599 + 0.288104i \(0.0930250\pi\)
−0.957599 + 0.288104i \(0.906975\pi\)
\(954\) −5.05246e6 −0.179735
\(955\) 0 0
\(956\) −437472. −0.0154812
\(957\) 3.94290e6i 0.139167i
\(958\) 1.85318e7i 0.652383i
\(959\) −1.91665e7 −0.672973
\(960\) 0 0
\(961\) −1.94846e7 −0.680585
\(962\) 2.35610e7i 0.820837i
\(963\) − 8.77084e6i − 0.304772i
\(964\) 1.45234e7 0.503357
\(965\) 0 0
\(966\) −5.20380e6 −0.179423
\(967\) − 3.80323e7i − 1.30793i −0.756523 0.653967i \(-0.773103\pi\)
0.756523 0.653967i \(-0.226897\pi\)
\(968\) − 1.67327e7i − 0.573956i
\(969\) 1.22698e7 0.419786
\(970\) 0 0
\(971\) −2.23104e7 −0.759379 −0.379689 0.925114i \(-0.623969\pi\)
−0.379689 + 0.925114i \(0.623969\pi\)
\(972\) − 944784.i − 0.0320750i
\(973\) 1.66288e7i 0.563093i
\(974\) 1.82658e7 0.616937
\(975\) 0 0
\(976\) 38400.0 0.00129035
\(977\) 3.06930e7i 1.02873i 0.857570 + 0.514367i \(0.171973\pi\)
−0.857570 + 0.514367i \(0.828027\pi\)
\(978\) − 1.72944e7i − 0.578174i
\(979\) −3.91560e6 −0.130569
\(980\) 0 0
\(981\) −5.84383e6 −0.193876
\(982\) − 2.12572e7i − 0.703439i
\(983\) 1.52706e7i 0.504048i 0.967721 + 0.252024i \(0.0810961\pi\)
−0.967721 + 0.252024i \(0.918904\pi\)
\(984\) −9.80122e6 −0.322695
\(985\) 0 0
\(986\) 1.49898e6 0.0491024
\(987\) − 1.05575e7i − 0.344961i
\(988\) 2.98948e7i 0.974323i
\(989\) 6.44162e7 2.09413
\(990\) 0 0
\(991\) 3.16279e7 1.02303 0.511513 0.859276i \(-0.329085\pi\)
0.511513 + 0.859276i \(0.329085\pi\)
\(992\) − 3.09658e6i − 0.0999085i
\(993\) 1.86859e7i 0.601369i
\(994\) −7.67889e6 −0.246509
\(995\) 0 0
\(996\) −5.61197e6 −0.179253
\(997\) − 3.55842e7i − 1.13376i −0.823802 0.566878i \(-0.808151\pi\)
0.823802 0.566878i \(-0.191849\pi\)
\(998\) 9.85256e6i 0.313129i
\(999\) 5.63517e6 0.178646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.g.h.799.2 2
5.2 odd 4 1050.6.a.f.1.1 1
5.3 odd 4 42.6.a.e.1.1 1
5.4 even 2 inner 1050.6.g.h.799.1 2
15.8 even 4 126.6.a.a.1.1 1
20.3 even 4 336.6.a.q.1.1 1
35.3 even 12 294.6.e.c.79.1 2
35.13 even 4 294.6.a.k.1.1 1
35.18 odd 12 294.6.e.d.79.1 2
35.23 odd 12 294.6.e.d.67.1 2
35.33 even 12 294.6.e.c.67.1 2
60.23 odd 4 1008.6.a.d.1.1 1
105.83 odd 4 882.6.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.e.1.1 1 5.3 odd 4
126.6.a.a.1.1 1 15.8 even 4
294.6.a.k.1.1 1 35.13 even 4
294.6.e.c.67.1 2 35.33 even 12
294.6.e.c.79.1 2 35.3 even 12
294.6.e.d.67.1 2 35.23 odd 12
294.6.e.d.79.1 2 35.18 odd 12
336.6.a.q.1.1 1 20.3 even 4
882.6.a.j.1.1 1 105.83 odd 4
1008.6.a.d.1.1 1 60.23 odd 4
1050.6.a.f.1.1 1 5.2 odd 4
1050.6.g.h.799.1 2 5.4 even 2 inner
1050.6.g.h.799.2 2 1.1 even 1 trivial