Properties

Label 1050.6.a.o
Level $1050$
Weight $6$
Character orbit 1050.a
Self dual yes
Analytic conductor $168.403$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,6,Mod(1,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.403010804\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} + 36 q^{6} + 49 q^{7} + 64 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{2} + 9 q^{3} + 16 q^{4} + 36 q^{6} + 49 q^{7} + 64 q^{8} + 81 q^{9} - 470 q^{11} + 144 q^{12} + 1158 q^{13} + 196 q^{14} + 256 q^{16} - 1204 q^{17} + 324 q^{18} - 2644 q^{19} + 441 q^{21} - 1880 q^{22} + 1190 q^{23} + 576 q^{24} + 4632 q^{26} + 729 q^{27} + 784 q^{28} + 3614 q^{29} + 5616 q^{31} + 1024 q^{32} - 4230 q^{33} - 4816 q^{34} + 1296 q^{36} + 6478 q^{37} - 10576 q^{38} + 10422 q^{39} + 2856 q^{41} + 1764 q^{42} + 13492 q^{43} - 7520 q^{44} + 4760 q^{46} + 18372 q^{47} + 2304 q^{48} + 2401 q^{49} - 10836 q^{51} + 18528 q^{52} + 4374 q^{53} + 2916 q^{54} + 3136 q^{56} - 23796 q^{57} + 14456 q^{58} + 30248 q^{59} + 19542 q^{61} + 22464 q^{62} + 3969 q^{63} + 4096 q^{64} - 16920 q^{66} - 54328 q^{67} - 19264 q^{68} + 10710 q^{69} - 10730 q^{71} + 5184 q^{72} - 35374 q^{73} + 25912 q^{74} - 42304 q^{76} - 23030 q^{77} + 41688 q^{78} - 49956 q^{79} + 6561 q^{81} + 11424 q^{82} + 26948 q^{83} + 7056 q^{84} + 53968 q^{86} + 32526 q^{87} - 30080 q^{88} + 100776 q^{89} + 56742 q^{91} + 19040 q^{92} + 50544 q^{93} + 73488 q^{94} + 9216 q^{96} - 77134 q^{97} + 9604 q^{98} - 38070 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 9.00000 16.0000 0 36.0000 49.0000 64.0000 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.6.a.o 1
5.b even 2 1 42.6.a.b 1
5.c odd 4 2 1050.6.g.l 2
15.d odd 2 1 126.6.a.h 1
20.d odd 2 1 336.6.a.o 1
35.c odd 2 1 294.6.a.f 1
35.i odd 6 2 294.6.e.k 2
35.j even 6 2 294.6.e.o 2
60.h even 2 1 1008.6.a.g 1
105.g even 2 1 882.6.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.a.b 1 5.b even 2 1
126.6.a.h 1 15.d odd 2 1
294.6.a.f 1 35.c odd 2 1
294.6.e.k 2 35.i odd 6 2
294.6.e.o 2 35.j even 6 2
336.6.a.o 1 20.d odd 2 1
882.6.a.v 1 105.g even 2 1
1008.6.a.g 1 60.h even 2 1
1050.6.a.o 1 1.a even 1 1 trivial
1050.6.g.l 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(1050))\):

\( T_{11} + 470 \) Copy content Toggle raw display
\( T_{13} - 1158 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T - 9 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 49 \) Copy content Toggle raw display
$11$ \( T + 470 \) Copy content Toggle raw display
$13$ \( T - 1158 \) Copy content Toggle raw display
$17$ \( T + 1204 \) Copy content Toggle raw display
$19$ \( T + 2644 \) Copy content Toggle raw display
$23$ \( T - 1190 \) Copy content Toggle raw display
$29$ \( T - 3614 \) Copy content Toggle raw display
$31$ \( T - 5616 \) Copy content Toggle raw display
$37$ \( T - 6478 \) Copy content Toggle raw display
$41$ \( T - 2856 \) Copy content Toggle raw display
$43$ \( T - 13492 \) Copy content Toggle raw display
$47$ \( T - 18372 \) Copy content Toggle raw display
$53$ \( T - 4374 \) Copy content Toggle raw display
$59$ \( T - 30248 \) Copy content Toggle raw display
$61$ \( T - 19542 \) Copy content Toggle raw display
$67$ \( T + 54328 \) Copy content Toggle raw display
$71$ \( T + 10730 \) Copy content Toggle raw display
$73$ \( T + 35374 \) Copy content Toggle raw display
$79$ \( T + 49956 \) Copy content Toggle raw display
$83$ \( T - 26948 \) Copy content Toggle raw display
$89$ \( T - 100776 \) Copy content Toggle raw display
$97$ \( T + 77134 \) Copy content Toggle raw display
show more
show less