Properties

Label 1050.6.a.n.1.1
Level $1050$
Weight $6$
Character 1050.1
Self dual yes
Analytic conductor $168.403$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,6,Mod(1,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4,9,16,0,36,-49,64,81,0,216] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.403010804\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} +36.0000 q^{6} -49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} +216.000 q^{11} +144.000 q^{12} -998.000 q^{13} -196.000 q^{14} +256.000 q^{16} -1302.00 q^{17} +324.000 q^{18} +884.000 q^{19} -441.000 q^{21} +864.000 q^{22} +2268.00 q^{23} +576.000 q^{24} -3992.00 q^{26} +729.000 q^{27} -784.000 q^{28} -1482.00 q^{29} +8360.00 q^{31} +1024.00 q^{32} +1944.00 q^{33} -5208.00 q^{34} +1296.00 q^{36} +4714.00 q^{37} +3536.00 q^{38} -8982.00 q^{39} -9786.00 q^{41} -1764.00 q^{42} -19436.0 q^{43} +3456.00 q^{44} +9072.00 q^{46} -22200.0 q^{47} +2304.00 q^{48} +2401.00 q^{49} -11718.0 q^{51} -15968.0 q^{52} -26790.0 q^{53} +2916.00 q^{54} -3136.00 q^{56} +7956.00 q^{57} -5928.00 q^{58} +28092.0 q^{59} -38866.0 q^{61} +33440.0 q^{62} -3969.00 q^{63} +4096.00 q^{64} +7776.00 q^{66} -23948.0 q^{67} -20832.0 q^{68} +20412.0 q^{69} -20628.0 q^{71} +5184.00 q^{72} -290.000 q^{73} +18856.0 q^{74} +14144.0 q^{76} -10584.0 q^{77} -35928.0 q^{78} -99544.0 q^{79} +6561.00 q^{81} -39144.0 q^{82} -19308.0 q^{83} -7056.00 q^{84} -77744.0 q^{86} -13338.0 q^{87} +13824.0 q^{88} +36390.0 q^{89} +48902.0 q^{91} +36288.0 q^{92} +75240.0 q^{93} -88800.0 q^{94} +9216.00 q^{96} +79078.0 q^{97} +9604.00 q^{98} +17496.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) 36.0000 0.408248
\(7\) −49.0000 −0.377964
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 216.000 0.538235 0.269118 0.963107i \(-0.413268\pi\)
0.269118 + 0.963107i \(0.413268\pi\)
\(12\) 144.000 0.288675
\(13\) −998.000 −1.63784 −0.818921 0.573906i \(-0.805428\pi\)
−0.818921 + 0.573906i \(0.805428\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1302.00 −1.09267 −0.546335 0.837567i \(-0.683977\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(18\) 324.000 0.235702
\(19\) 884.000 0.561783 0.280891 0.959740i \(-0.409370\pi\)
0.280891 + 0.959740i \(0.409370\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 864.000 0.380590
\(23\) 2268.00 0.893971 0.446986 0.894541i \(-0.352498\pi\)
0.446986 + 0.894541i \(0.352498\pi\)
\(24\) 576.000 0.204124
\(25\) 0 0
\(26\) −3992.00 −1.15813
\(27\) 729.000 0.192450
\(28\) −784.000 −0.188982
\(29\) −1482.00 −0.327230 −0.163615 0.986524i \(-0.552315\pi\)
−0.163615 + 0.986524i \(0.552315\pi\)
\(30\) 0 0
\(31\) 8360.00 1.56244 0.781218 0.624259i \(-0.214599\pi\)
0.781218 + 0.624259i \(0.214599\pi\)
\(32\) 1024.00 0.176777
\(33\) 1944.00 0.310750
\(34\) −5208.00 −0.772634
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) 4714.00 0.566090 0.283045 0.959107i \(-0.408655\pi\)
0.283045 + 0.959107i \(0.408655\pi\)
\(38\) 3536.00 0.397240
\(39\) −8982.00 −0.945609
\(40\) 0 0
\(41\) −9786.00 −0.909171 −0.454585 0.890703i \(-0.650213\pi\)
−0.454585 + 0.890703i \(0.650213\pi\)
\(42\) −1764.00 −0.154303
\(43\) −19436.0 −1.60301 −0.801504 0.597989i \(-0.795967\pi\)
−0.801504 + 0.597989i \(0.795967\pi\)
\(44\) 3456.00 0.269118
\(45\) 0 0
\(46\) 9072.00 0.632133
\(47\) −22200.0 −1.46591 −0.732957 0.680275i \(-0.761860\pi\)
−0.732957 + 0.680275i \(0.761860\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −11718.0 −0.630853
\(52\) −15968.0 −0.818921
\(53\) −26790.0 −1.31004 −0.655018 0.755614i \(-0.727339\pi\)
−0.655018 + 0.755614i \(0.727339\pi\)
\(54\) 2916.00 0.136083
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) 7956.00 0.324345
\(58\) −5928.00 −0.231387
\(59\) 28092.0 1.05064 0.525318 0.850906i \(-0.323946\pi\)
0.525318 + 0.850906i \(0.323946\pi\)
\(60\) 0 0
\(61\) −38866.0 −1.33735 −0.668675 0.743555i \(-0.733138\pi\)
−0.668675 + 0.743555i \(0.733138\pi\)
\(62\) 33440.0 1.10481
\(63\) −3969.00 −0.125988
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 7776.00 0.219734
\(67\) −23948.0 −0.651752 −0.325876 0.945413i \(-0.605659\pi\)
−0.325876 + 0.945413i \(0.605659\pi\)
\(68\) −20832.0 −0.546335
\(69\) 20412.0 0.516134
\(70\) 0 0
\(71\) −20628.0 −0.485636 −0.242818 0.970072i \(-0.578072\pi\)
−0.242818 + 0.970072i \(0.578072\pi\)
\(72\) 5184.00 0.117851
\(73\) −290.000 −0.00636929 −0.00318464 0.999995i \(-0.501014\pi\)
−0.00318464 + 0.999995i \(0.501014\pi\)
\(74\) 18856.0 0.400286
\(75\) 0 0
\(76\) 14144.0 0.280891
\(77\) −10584.0 −0.203434
\(78\) −35928.0 −0.668646
\(79\) −99544.0 −1.79452 −0.897258 0.441506i \(-0.854444\pi\)
−0.897258 + 0.441506i \(0.854444\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −39144.0 −0.642881
\(83\) −19308.0 −0.307639 −0.153820 0.988099i \(-0.549158\pi\)
−0.153820 + 0.988099i \(0.549158\pi\)
\(84\) −7056.00 −0.109109
\(85\) 0 0
\(86\) −77744.0 −1.13350
\(87\) −13338.0 −0.188926
\(88\) 13824.0 0.190295
\(89\) 36390.0 0.486975 0.243488 0.969904i \(-0.421708\pi\)
0.243488 + 0.969904i \(0.421708\pi\)
\(90\) 0 0
\(91\) 48902.0 0.619046
\(92\) 36288.0 0.446986
\(93\) 75240.0 0.902072
\(94\) −88800.0 −1.03656
\(95\) 0 0
\(96\) 9216.00 0.102062
\(97\) 79078.0 0.853348 0.426674 0.904405i \(-0.359685\pi\)
0.426674 + 0.904405i \(0.359685\pi\)
\(98\) 9604.00 0.101015
\(99\) 17496.0 0.179412
\(100\) 0 0
\(101\) 184626. 1.80090 0.900450 0.434960i \(-0.143238\pi\)
0.900450 + 0.434960i \(0.143238\pi\)
\(102\) −46872.0 −0.446080
\(103\) −64592.0 −0.599909 −0.299955 0.953953i \(-0.596972\pi\)
−0.299955 + 0.953953i \(0.596972\pi\)
\(104\) −63872.0 −0.579065
\(105\) 0 0
\(106\) −107160. −0.926335
\(107\) −149592. −1.26313 −0.631566 0.775322i \(-0.717588\pi\)
−0.631566 + 0.775322i \(0.717588\pi\)
\(108\) 11664.0 0.0962250
\(109\) −63826.0 −0.514555 −0.257277 0.966338i \(-0.582825\pi\)
−0.257277 + 0.966338i \(0.582825\pi\)
\(110\) 0 0
\(111\) 42426.0 0.326832
\(112\) −12544.0 −0.0944911
\(113\) 71022.0 0.523235 0.261618 0.965172i \(-0.415744\pi\)
0.261618 + 0.965172i \(0.415744\pi\)
\(114\) 31824.0 0.229347
\(115\) 0 0
\(116\) −23712.0 −0.163615
\(117\) −80838.0 −0.545948
\(118\) 112368. 0.742912
\(119\) 63798.0 0.412990
\(120\) 0 0
\(121\) −114395. −0.710303
\(122\) −155464. −0.945650
\(123\) −88074.0 −0.524910
\(124\) 133760. 0.781218
\(125\) 0 0
\(126\) −15876.0 −0.0890871
\(127\) −269624. −1.48337 −0.741685 0.670749i \(-0.765973\pi\)
−0.741685 + 0.670749i \(0.765973\pi\)
\(128\) 16384.0 0.0883883
\(129\) −174924. −0.925497
\(130\) 0 0
\(131\) 81180.0 0.413305 0.206653 0.978414i \(-0.433743\pi\)
0.206653 + 0.978414i \(0.433743\pi\)
\(132\) 31104.0 0.155375
\(133\) −43316.0 −0.212334
\(134\) −95792.0 −0.460858
\(135\) 0 0
\(136\) −83328.0 −0.386317
\(137\) 260910. 1.18765 0.593826 0.804593i \(-0.297617\pi\)
0.593826 + 0.804593i \(0.297617\pi\)
\(138\) 81648.0 0.364962
\(139\) −297964. −1.30806 −0.654029 0.756470i \(-0.726922\pi\)
−0.654029 + 0.756470i \(0.726922\pi\)
\(140\) 0 0
\(141\) −199800. −0.846346
\(142\) −82512.0 −0.343397
\(143\) −215568. −0.881544
\(144\) 20736.0 0.0833333
\(145\) 0 0
\(146\) −1160.00 −0.00450377
\(147\) 21609.0 0.0824786
\(148\) 75424.0 0.283045
\(149\) −398970. −1.47223 −0.736113 0.676859i \(-0.763341\pi\)
−0.736113 + 0.676859i \(0.763341\pi\)
\(150\) 0 0
\(151\) −224968. −0.802931 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(152\) 56576.0 0.198620
\(153\) −105462. −0.364223
\(154\) −42336.0 −0.143849
\(155\) 0 0
\(156\) −143712. −0.472804
\(157\) 233218. 0.755115 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(158\) −398176. −1.26891
\(159\) −241110. −0.756349
\(160\) 0 0
\(161\) −111132. −0.337889
\(162\) 26244.0 0.0785674
\(163\) −466220. −1.37443 −0.687214 0.726455i \(-0.741166\pi\)
−0.687214 + 0.726455i \(0.741166\pi\)
\(164\) −156576. −0.454585
\(165\) 0 0
\(166\) −77232.0 −0.217534
\(167\) 100848. 0.279818 0.139909 0.990164i \(-0.455319\pi\)
0.139909 + 0.990164i \(0.455319\pi\)
\(168\) −28224.0 −0.0771517
\(169\) 624711. 1.68253
\(170\) 0 0
\(171\) 71604.0 0.187261
\(172\) −310976. −0.801504
\(173\) 668838. 1.69905 0.849524 0.527550i \(-0.176889\pi\)
0.849524 + 0.527550i \(0.176889\pi\)
\(174\) −53352.0 −0.133591
\(175\) 0 0
\(176\) 55296.0 0.134559
\(177\) 252828. 0.606585
\(178\) 145560. 0.344344
\(179\) −614856. −1.43430 −0.717151 0.696917i \(-0.754554\pi\)
−0.717151 + 0.696917i \(0.754554\pi\)
\(180\) 0 0
\(181\) 540686. 1.22673 0.613365 0.789800i \(-0.289816\pi\)
0.613365 + 0.789800i \(0.289816\pi\)
\(182\) 195608. 0.437732
\(183\) −349794. −0.772120
\(184\) 145152. 0.316066
\(185\) 0 0
\(186\) 300960. 0.637862
\(187\) −281232. −0.588113
\(188\) −355200. −0.732957
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) −41916.0 −0.0831374 −0.0415687 0.999136i \(-0.513236\pi\)
−0.0415687 + 0.999136i \(0.513236\pi\)
\(192\) 36864.0 0.0721688
\(193\) 533998. 1.03192 0.515960 0.856612i \(-0.327435\pi\)
0.515960 + 0.856612i \(0.327435\pi\)
\(194\) 316312. 0.603408
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −824886. −1.51436 −0.757179 0.653208i \(-0.773423\pi\)
−0.757179 + 0.653208i \(0.773423\pi\)
\(198\) 69984.0 0.126863
\(199\) −399544. −0.715207 −0.357604 0.933873i \(-0.616406\pi\)
−0.357604 + 0.933873i \(0.616406\pi\)
\(200\) 0 0
\(201\) −215532. −0.376289
\(202\) 738504. 1.27343
\(203\) 72618.0 0.123681
\(204\) −187488. −0.315426
\(205\) 0 0
\(206\) −258368. −0.424200
\(207\) 183708. 0.297990
\(208\) −255488. −0.409461
\(209\) 190944. 0.302371
\(210\) 0 0
\(211\) 868868. 1.34353 0.671765 0.740764i \(-0.265536\pi\)
0.671765 + 0.740764i \(0.265536\pi\)
\(212\) −428640. −0.655018
\(213\) −185652. −0.280382
\(214\) −598368. −0.893170
\(215\) 0 0
\(216\) 46656.0 0.0680414
\(217\) −409640. −0.590545
\(218\) −255304. −0.363845
\(219\) −2610.00 −0.00367731
\(220\) 0 0
\(221\) 1.29940e6 1.78962
\(222\) 169704. 0.231105
\(223\) 626656. 0.843853 0.421927 0.906630i \(-0.361354\pi\)
0.421927 + 0.906630i \(0.361354\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 284088. 0.369983
\(227\) 450396. 0.580136 0.290068 0.957006i \(-0.406322\pi\)
0.290068 + 0.957006i \(0.406322\pi\)
\(228\) 127296. 0.162173
\(229\) −1.06453e6 −1.34143 −0.670717 0.741714i \(-0.734013\pi\)
−0.670717 + 0.741714i \(0.734013\pi\)
\(230\) 0 0
\(231\) −95256.0 −0.117453
\(232\) −94848.0 −0.115693
\(233\) −1.43618e6 −1.73308 −0.866540 0.499108i \(-0.833661\pi\)
−0.866540 + 0.499108i \(0.833661\pi\)
\(234\) −323352. −0.386043
\(235\) 0 0
\(236\) 449472. 0.525318
\(237\) −895896. −1.03606
\(238\) 255192. 0.292028
\(239\) −997860. −1.12999 −0.564995 0.825094i \(-0.691122\pi\)
−0.564995 + 0.825094i \(0.691122\pi\)
\(240\) 0 0
\(241\) −227974. −0.252838 −0.126419 0.991977i \(-0.540348\pi\)
−0.126419 + 0.991977i \(0.540348\pi\)
\(242\) −457580. −0.502260
\(243\) 59049.0 0.0641500
\(244\) −621856. −0.668675
\(245\) 0 0
\(246\) −352296. −0.371168
\(247\) −882232. −0.920111
\(248\) 535040. 0.552404
\(249\) −173772. −0.177616
\(250\) 0 0
\(251\) 1.51657e6 1.51942 0.759712 0.650260i \(-0.225340\pi\)
0.759712 + 0.650260i \(0.225340\pi\)
\(252\) −63504.0 −0.0629941
\(253\) 489888. 0.481167
\(254\) −1.07850e6 −1.04890
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −455886. −0.430550 −0.215275 0.976553i \(-0.569065\pi\)
−0.215275 + 0.976553i \(0.569065\pi\)
\(258\) −699696. −0.654425
\(259\) −230986. −0.213962
\(260\) 0 0
\(261\) −120042. −0.109077
\(262\) 324720. 0.292251
\(263\) 752652. 0.670973 0.335486 0.942045i \(-0.391099\pi\)
0.335486 + 0.942045i \(0.391099\pi\)
\(264\) 124416. 0.109867
\(265\) 0 0
\(266\) −173264. −0.150143
\(267\) 327510. 0.281155
\(268\) −383168. −0.325876
\(269\) 143682. 0.121066 0.0605329 0.998166i \(-0.480720\pi\)
0.0605329 + 0.998166i \(0.480720\pi\)
\(270\) 0 0
\(271\) 757496. 0.626552 0.313276 0.949662i \(-0.398574\pi\)
0.313276 + 0.949662i \(0.398574\pi\)
\(272\) −333312. −0.273167
\(273\) 440118. 0.357407
\(274\) 1.04364e6 0.839797
\(275\) 0 0
\(276\) 326592. 0.258067
\(277\) 1.16214e6 0.910035 0.455018 0.890482i \(-0.349633\pi\)
0.455018 + 0.890482i \(0.349633\pi\)
\(278\) −1.19186e6 −0.924936
\(279\) 677160. 0.520812
\(280\) 0 0
\(281\) −414366. −0.313053 −0.156527 0.987674i \(-0.550030\pi\)
−0.156527 + 0.987674i \(0.550030\pi\)
\(282\) −799200. −0.598457
\(283\) −120428. −0.0893843 −0.0446922 0.999001i \(-0.514231\pi\)
−0.0446922 + 0.999001i \(0.514231\pi\)
\(284\) −330048. −0.242818
\(285\) 0 0
\(286\) −862272. −0.623346
\(287\) 479514. 0.343634
\(288\) 82944.0 0.0589256
\(289\) 275347. 0.193926
\(290\) 0 0
\(291\) 711702. 0.492681
\(292\) −4640.00 −0.00318464
\(293\) −2.20159e6 −1.49819 −0.749094 0.662463i \(-0.769511\pi\)
−0.749094 + 0.662463i \(0.769511\pi\)
\(294\) 86436.0 0.0583212
\(295\) 0 0
\(296\) 301696. 0.200143
\(297\) 157464. 0.103583
\(298\) −1.59588e6 −1.04102
\(299\) −2.26346e6 −1.46418
\(300\) 0 0
\(301\) 952364. 0.605880
\(302\) −899872. −0.567758
\(303\) 1.66163e6 1.03975
\(304\) 226304. 0.140446
\(305\) 0 0
\(306\) −421848. −0.257545
\(307\) −110900. −0.0671561 −0.0335781 0.999436i \(-0.510690\pi\)
−0.0335781 + 0.999436i \(0.510690\pi\)
\(308\) −169344. −0.101717
\(309\) −581328. −0.346358
\(310\) 0 0
\(311\) −910608. −0.533864 −0.266932 0.963715i \(-0.586010\pi\)
−0.266932 + 0.963715i \(0.586010\pi\)
\(312\) −574848. −0.334323
\(313\) −3.12247e6 −1.80152 −0.900758 0.434322i \(-0.856988\pi\)
−0.900758 + 0.434322i \(0.856988\pi\)
\(314\) 932872. 0.533947
\(315\) 0 0
\(316\) −1.59270e6 −0.897258
\(317\) 2.76688e6 1.54647 0.773237 0.634117i \(-0.218636\pi\)
0.773237 + 0.634117i \(0.218636\pi\)
\(318\) −964440. −0.534820
\(319\) −320112. −0.176127
\(320\) 0 0
\(321\) −1.34633e6 −0.729270
\(322\) −444528. −0.238924
\(323\) −1.15097e6 −0.613842
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) −1.86488e6 −0.971867
\(327\) −574434. −0.297078
\(328\) −626304. −0.321440
\(329\) 1.08780e6 0.554063
\(330\) 0 0
\(331\) 3.22257e6 1.61671 0.808356 0.588694i \(-0.200358\pi\)
0.808356 + 0.588694i \(0.200358\pi\)
\(332\) −308928. −0.153820
\(333\) 381834. 0.188697
\(334\) 403392. 0.197861
\(335\) 0 0
\(336\) −112896. −0.0545545
\(337\) −1.63306e6 −0.783298 −0.391649 0.920115i \(-0.628095\pi\)
−0.391649 + 0.920115i \(0.628095\pi\)
\(338\) 2.49884e6 1.18973
\(339\) 639198. 0.302090
\(340\) 0 0
\(341\) 1.80576e6 0.840958
\(342\) 286416. 0.132413
\(343\) −117649. −0.0539949
\(344\) −1.24390e6 −0.566749
\(345\) 0 0
\(346\) 2.67535e6 1.20141
\(347\) −1.03642e6 −0.462073 −0.231036 0.972945i \(-0.574212\pi\)
−0.231036 + 0.972945i \(0.574212\pi\)
\(348\) −213408. −0.0944632
\(349\) −4.22999e6 −1.85898 −0.929491 0.368844i \(-0.879754\pi\)
−0.929491 + 0.368844i \(0.879754\pi\)
\(350\) 0 0
\(351\) −727542. −0.315203
\(352\) 221184. 0.0951474
\(353\) −238806. −0.102002 −0.0510010 0.998699i \(-0.516241\pi\)
−0.0510010 + 0.998699i \(0.516241\pi\)
\(354\) 1.01131e6 0.428921
\(355\) 0 0
\(356\) 582240. 0.243488
\(357\) 574182. 0.238440
\(358\) −2.45942e6 −1.01421
\(359\) −2.66428e6 −1.09105 −0.545523 0.838096i \(-0.683669\pi\)
−0.545523 + 0.838096i \(0.683669\pi\)
\(360\) 0 0
\(361\) −1.69464e6 −0.684400
\(362\) 2.16274e6 0.867429
\(363\) −1.02956e6 −0.410094
\(364\) 782432. 0.309523
\(365\) 0 0
\(366\) −1.39918e6 −0.545971
\(367\) 1.71083e6 0.663044 0.331522 0.943448i \(-0.392438\pi\)
0.331522 + 0.943448i \(0.392438\pi\)
\(368\) 580608. 0.223493
\(369\) −792666. −0.303057
\(370\) 0 0
\(371\) 1.31271e6 0.495147
\(372\) 1.20384e6 0.451036
\(373\) 3.96649e6 1.47616 0.738081 0.674712i \(-0.235732\pi\)
0.738081 + 0.674712i \(0.235732\pi\)
\(374\) −1.12493e6 −0.415859
\(375\) 0 0
\(376\) −1.42080e6 −0.518279
\(377\) 1.47904e6 0.535951
\(378\) −142884. −0.0514344
\(379\) 828668. 0.296335 0.148167 0.988962i \(-0.452663\pi\)
0.148167 + 0.988962i \(0.452663\pi\)
\(380\) 0 0
\(381\) −2.42662e6 −0.856424
\(382\) −167664. −0.0587870
\(383\) 2.55686e6 0.890657 0.445329 0.895367i \(-0.353087\pi\)
0.445329 + 0.895367i \(0.353087\pi\)
\(384\) 147456. 0.0510310
\(385\) 0 0
\(386\) 2.13599e6 0.729678
\(387\) −1.57432e6 −0.534336
\(388\) 1.26525e6 0.426674
\(389\) 2.91785e6 0.977664 0.488832 0.872378i \(-0.337423\pi\)
0.488832 + 0.872378i \(0.337423\pi\)
\(390\) 0 0
\(391\) −2.95294e6 −0.976815
\(392\) 153664. 0.0505076
\(393\) 730620. 0.238622
\(394\) −3.29954e6 −1.07081
\(395\) 0 0
\(396\) 279936. 0.0897059
\(397\) −2.50715e6 −0.798370 −0.399185 0.916870i \(-0.630707\pi\)
−0.399185 + 0.916870i \(0.630707\pi\)
\(398\) −1.59818e6 −0.505728
\(399\) −389844. −0.122591
\(400\) 0 0
\(401\) 990666. 0.307657 0.153828 0.988098i \(-0.450840\pi\)
0.153828 + 0.988098i \(0.450840\pi\)
\(402\) −862128. −0.266077
\(403\) −8.34328e6 −2.55902
\(404\) 2.95402e6 0.900450
\(405\) 0 0
\(406\) 290472. 0.0874559
\(407\) 1.01822e6 0.304689
\(408\) −749952. −0.223040
\(409\) 4.51824e6 1.33555 0.667777 0.744362i \(-0.267246\pi\)
0.667777 + 0.744362i \(0.267246\pi\)
\(410\) 0 0
\(411\) 2.34819e6 0.685691
\(412\) −1.03347e6 −0.299955
\(413\) −1.37651e6 −0.397103
\(414\) 734832. 0.210711
\(415\) 0 0
\(416\) −1.02195e6 −0.289532
\(417\) −2.68168e6 −0.755207
\(418\) 763776. 0.213809
\(419\) 605220. 0.168414 0.0842070 0.996448i \(-0.473164\pi\)
0.0842070 + 0.996448i \(0.473164\pi\)
\(420\) 0 0
\(421\) 4.49893e6 1.23710 0.618549 0.785746i \(-0.287721\pi\)
0.618549 + 0.785746i \(0.287721\pi\)
\(422\) 3.47547e6 0.950020
\(423\) −1.79820e6 −0.488638
\(424\) −1.71456e6 −0.463167
\(425\) 0 0
\(426\) −742608. −0.198260
\(427\) 1.90443e6 0.505471
\(428\) −2.39347e6 −0.631566
\(429\) −1.94011e6 −0.508960
\(430\) 0 0
\(431\) 5.37594e6 1.39400 0.696998 0.717074i \(-0.254519\pi\)
0.696998 + 0.717074i \(0.254519\pi\)
\(432\) 186624. 0.0481125
\(433\) 1.98561e6 0.508950 0.254475 0.967079i \(-0.418097\pi\)
0.254475 + 0.967079i \(0.418097\pi\)
\(434\) −1.63856e6 −0.417578
\(435\) 0 0
\(436\) −1.02122e6 −0.257277
\(437\) 2.00491e6 0.502217
\(438\) −10440.0 −0.00260025
\(439\) 3.38727e6 0.838859 0.419429 0.907788i \(-0.362230\pi\)
0.419429 + 0.907788i \(0.362230\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 5.19758e6 1.26545
\(443\) −2.14094e6 −0.518318 −0.259159 0.965835i \(-0.583445\pi\)
−0.259159 + 0.965835i \(0.583445\pi\)
\(444\) 678816. 0.163416
\(445\) 0 0
\(446\) 2.50662e6 0.596695
\(447\) −3.59073e6 −0.849990
\(448\) −200704. −0.0472456
\(449\) −6.97808e6 −1.63350 −0.816752 0.576990i \(-0.804227\pi\)
−0.816752 + 0.576990i \(0.804227\pi\)
\(450\) 0 0
\(451\) −2.11378e6 −0.489348
\(452\) 1.13635e6 0.261618
\(453\) −2.02471e6 −0.463573
\(454\) 1.80158e6 0.410218
\(455\) 0 0
\(456\) 509184. 0.114673
\(457\) 5.17999e6 1.16021 0.580107 0.814540i \(-0.303011\pi\)
0.580107 + 0.814540i \(0.303011\pi\)
\(458\) −4.25812e6 −0.948537
\(459\) −949158. −0.210284
\(460\) 0 0
\(461\) −7.83001e6 −1.71597 −0.857985 0.513674i \(-0.828284\pi\)
−0.857985 + 0.513674i \(0.828284\pi\)
\(462\) −381024. −0.0830515
\(463\) −165320. −0.0358404 −0.0179202 0.999839i \(-0.505704\pi\)
−0.0179202 + 0.999839i \(0.505704\pi\)
\(464\) −379392. −0.0818075
\(465\) 0 0
\(466\) −5.74471e6 −1.22547
\(467\) 1.79329e6 0.380504 0.190252 0.981735i \(-0.439070\pi\)
0.190252 + 0.981735i \(0.439070\pi\)
\(468\) −1.29341e6 −0.272974
\(469\) 1.17345e6 0.246339
\(470\) 0 0
\(471\) 2.09896e6 0.435966
\(472\) 1.79789e6 0.371456
\(473\) −4.19818e6 −0.862795
\(474\) −3.58358e6 −0.732608
\(475\) 0 0
\(476\) 1.02077e6 0.206495
\(477\) −2.16999e6 −0.436678
\(478\) −3.99144e6 −0.799024
\(479\) −6.59657e6 −1.31365 −0.656824 0.754044i \(-0.728101\pi\)
−0.656824 + 0.754044i \(0.728101\pi\)
\(480\) 0 0
\(481\) −4.70457e6 −0.927166
\(482\) −911896. −0.178784
\(483\) −1.00019e6 −0.195080
\(484\) −1.83032e6 −0.355151
\(485\) 0 0
\(486\) 236196. 0.0453609
\(487\) 5.97393e6 1.14140 0.570700 0.821159i \(-0.306672\pi\)
0.570700 + 0.821159i \(0.306672\pi\)
\(488\) −2.48742e6 −0.472825
\(489\) −4.19598e6 −0.793526
\(490\) 0 0
\(491\) 381264. 0.0713710 0.0356855 0.999363i \(-0.488639\pi\)
0.0356855 + 0.999363i \(0.488639\pi\)
\(492\) −1.40918e6 −0.262455
\(493\) 1.92956e6 0.357554
\(494\) −3.52893e6 −0.650617
\(495\) 0 0
\(496\) 2.14016e6 0.390609
\(497\) 1.01077e6 0.183553
\(498\) −695088. −0.125593
\(499\) 1.54351e6 0.277497 0.138748 0.990328i \(-0.455692\pi\)
0.138748 + 0.990328i \(0.455692\pi\)
\(500\) 0 0
\(501\) 907632. 0.161553
\(502\) 6.06629e6 1.07439
\(503\) 4.02300e6 0.708974 0.354487 0.935061i \(-0.384656\pi\)
0.354487 + 0.935061i \(0.384656\pi\)
\(504\) −254016. −0.0445435
\(505\) 0 0
\(506\) 1.95955e6 0.340236
\(507\) 5.62240e6 0.971408
\(508\) −4.31398e6 −0.741685
\(509\) −1.94715e6 −0.333123 −0.166562 0.986031i \(-0.553266\pi\)
−0.166562 + 0.986031i \(0.553266\pi\)
\(510\) 0 0
\(511\) 14210.0 0.00240736
\(512\) 262144. 0.0441942
\(513\) 644436. 0.108115
\(514\) −1.82354e6 −0.304445
\(515\) 0 0
\(516\) −2.79878e6 −0.462749
\(517\) −4.79520e6 −0.789006
\(518\) −923944. −0.151294
\(519\) 6.01954e6 0.980946
\(520\) 0 0
\(521\) 7.38569e6 1.19206 0.596028 0.802963i \(-0.296745\pi\)
0.596028 + 0.802963i \(0.296745\pi\)
\(522\) −480168. −0.0771289
\(523\) 329740. 0.0527130 0.0263565 0.999653i \(-0.491610\pi\)
0.0263565 + 0.999653i \(0.491610\pi\)
\(524\) 1.29888e6 0.206653
\(525\) 0 0
\(526\) 3.01061e6 0.474449
\(527\) −1.08847e7 −1.70722
\(528\) 497664. 0.0776875
\(529\) −1.29252e6 −0.200816
\(530\) 0 0
\(531\) 2.27545e6 0.350212
\(532\) −693056. −0.106167
\(533\) 9.76643e6 1.48908
\(534\) 1.31004e6 0.198807
\(535\) 0 0
\(536\) −1.53267e6 −0.230429
\(537\) −5.53370e6 −0.828095
\(538\) 574728. 0.0856065
\(539\) 518616. 0.0768907
\(540\) 0 0
\(541\) 87086.0 0.0127925 0.00639625 0.999980i \(-0.497964\pi\)
0.00639625 + 0.999980i \(0.497964\pi\)
\(542\) 3.02998e6 0.443039
\(543\) 4.86617e6 0.708252
\(544\) −1.33325e6 −0.193158
\(545\) 0 0
\(546\) 1.76047e6 0.252725
\(547\) −6.91531e6 −0.988196 −0.494098 0.869406i \(-0.664502\pi\)
−0.494098 + 0.869406i \(0.664502\pi\)
\(548\) 4.17456e6 0.593826
\(549\) −3.14815e6 −0.445784
\(550\) 0 0
\(551\) −1.31009e6 −0.183832
\(552\) 1.30637e6 0.182481
\(553\) 4.87766e6 0.678263
\(554\) 4.64855e6 0.643492
\(555\) 0 0
\(556\) −4.76742e6 −0.654029
\(557\) 1.52258e6 0.207942 0.103971 0.994580i \(-0.466845\pi\)
0.103971 + 0.994580i \(0.466845\pi\)
\(558\) 2.70864e6 0.368270
\(559\) 1.93971e7 2.62548
\(560\) 0 0
\(561\) −2.53109e6 −0.339547
\(562\) −1.65746e6 −0.221362
\(563\) 7.86462e6 1.04570 0.522850 0.852425i \(-0.324869\pi\)
0.522850 + 0.852425i \(0.324869\pi\)
\(564\) −3.19680e6 −0.423173
\(565\) 0 0
\(566\) −481712. −0.0632043
\(567\) −321489. −0.0419961
\(568\) −1.32019e6 −0.171698
\(569\) −1.46321e6 −0.189464 −0.0947321 0.995503i \(-0.530199\pi\)
−0.0947321 + 0.995503i \(0.530199\pi\)
\(570\) 0 0
\(571\) 9.19855e6 1.18067 0.590336 0.807158i \(-0.298995\pi\)
0.590336 + 0.807158i \(0.298995\pi\)
\(572\) −3.44909e6 −0.440772
\(573\) −377244. −0.0479994
\(574\) 1.91806e6 0.242986
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) −3.28939e6 −0.411317 −0.205658 0.978624i \(-0.565934\pi\)
−0.205658 + 0.978624i \(0.565934\pi\)
\(578\) 1.10139e6 0.137126
\(579\) 4.80598e6 0.595780
\(580\) 0 0
\(581\) 946092. 0.116277
\(582\) 2.84681e6 0.348378
\(583\) −5.78664e6 −0.705107
\(584\) −18560.0 −0.00225188
\(585\) 0 0
\(586\) −8.80634e6 −1.05938
\(587\) −5.12929e6 −0.614416 −0.307208 0.951642i \(-0.599395\pi\)
−0.307208 + 0.951642i \(0.599395\pi\)
\(588\) 345744. 0.0412393
\(589\) 7.39024e6 0.877749
\(590\) 0 0
\(591\) −7.42397e6 −0.874315
\(592\) 1.20678e6 0.141522
\(593\) 2.75433e6 0.321647 0.160823 0.986983i \(-0.448585\pi\)
0.160823 + 0.986983i \(0.448585\pi\)
\(594\) 629856. 0.0732445
\(595\) 0 0
\(596\) −6.38352e6 −0.736113
\(597\) −3.59590e6 −0.412925
\(598\) −9.05386e6 −1.03533
\(599\) −9.88616e6 −1.12580 −0.562899 0.826525i \(-0.690314\pi\)
−0.562899 + 0.826525i \(0.690314\pi\)
\(600\) 0 0
\(601\) 1.37039e7 1.54760 0.773798 0.633433i \(-0.218355\pi\)
0.773798 + 0.633433i \(0.218355\pi\)
\(602\) 3.80946e6 0.428422
\(603\) −1.93979e6 −0.217251
\(604\) −3.59949e6 −0.401466
\(605\) 0 0
\(606\) 6.64654e6 0.735214
\(607\) 7.85310e6 0.865107 0.432553 0.901608i \(-0.357613\pi\)
0.432553 + 0.901608i \(0.357613\pi\)
\(608\) 905216. 0.0993101
\(609\) 653562. 0.0714075
\(610\) 0 0
\(611\) 2.21556e7 2.40094
\(612\) −1.68739e6 −0.182112
\(613\) −1.46977e7 −1.57978 −0.789892 0.613246i \(-0.789864\pi\)
−0.789892 + 0.613246i \(0.789864\pi\)
\(614\) −443600. −0.0474865
\(615\) 0 0
\(616\) −677376. −0.0719247
\(617\) −6.28370e6 −0.664511 −0.332256 0.943189i \(-0.607810\pi\)
−0.332256 + 0.943189i \(0.607810\pi\)
\(618\) −2.32531e6 −0.244912
\(619\) −2.26692e6 −0.237799 −0.118900 0.992906i \(-0.537937\pi\)
−0.118900 + 0.992906i \(0.537937\pi\)
\(620\) 0 0
\(621\) 1.65337e6 0.172045
\(622\) −3.64243e6 −0.377499
\(623\) −1.78311e6 −0.184059
\(624\) −2.29939e6 −0.236402
\(625\) 0 0
\(626\) −1.24899e7 −1.27386
\(627\) 1.71850e6 0.174574
\(628\) 3.73149e6 0.377557
\(629\) −6.13763e6 −0.618549
\(630\) 0 0
\(631\) −1.17477e7 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(632\) −6.37082e6 −0.634457
\(633\) 7.81981e6 0.775688
\(634\) 1.10675e7 1.09352
\(635\) 0 0
\(636\) −3.85776e6 −0.378175
\(637\) −2.39620e6 −0.233978
\(638\) −1.28045e6 −0.124540
\(639\) −1.67087e6 −0.161879
\(640\) 0 0
\(641\) 5.93231e6 0.570268 0.285134 0.958488i \(-0.407962\pi\)
0.285134 + 0.958488i \(0.407962\pi\)
\(642\) −5.38531e6 −0.515672
\(643\) 6.94443e6 0.662383 0.331191 0.943564i \(-0.392549\pi\)
0.331191 + 0.943564i \(0.392549\pi\)
\(644\) −1.77811e6 −0.168945
\(645\) 0 0
\(646\) −4.60387e6 −0.434052
\(647\) 4.97050e6 0.466809 0.233404 0.972380i \(-0.425013\pi\)
0.233404 + 0.972380i \(0.425013\pi\)
\(648\) 419904. 0.0392837
\(649\) 6.06787e6 0.565490
\(650\) 0 0
\(651\) −3.68676e6 −0.340951
\(652\) −7.45952e6 −0.687214
\(653\) 1.83355e7 1.68271 0.841354 0.540484i \(-0.181759\pi\)
0.841354 + 0.540484i \(0.181759\pi\)
\(654\) −2.29774e6 −0.210066
\(655\) 0 0
\(656\) −2.50522e6 −0.227293
\(657\) −23490.0 −0.00212310
\(658\) 4.35120e6 0.391782
\(659\) 9.01402e6 0.808546 0.404273 0.914638i \(-0.367525\pi\)
0.404273 + 0.914638i \(0.367525\pi\)
\(660\) 0 0
\(661\) 699398. 0.0622617 0.0311308 0.999515i \(-0.490089\pi\)
0.0311308 + 0.999515i \(0.490089\pi\)
\(662\) 1.28903e7 1.14319
\(663\) 1.16946e7 1.03324
\(664\) −1.23571e6 −0.108767
\(665\) 0 0
\(666\) 1.52734e6 0.133429
\(667\) −3.36118e6 −0.292534
\(668\) 1.61357e6 0.139909
\(669\) 5.63990e6 0.487199
\(670\) 0 0
\(671\) −8.39506e6 −0.719809
\(672\) −451584. −0.0385758
\(673\) 5.80603e6 0.494130 0.247065 0.968999i \(-0.420534\pi\)
0.247065 + 0.968999i \(0.420534\pi\)
\(674\) −6.53223e6 −0.553875
\(675\) 0 0
\(676\) 9.99538e6 0.841264
\(677\) −985074. −0.0826033 −0.0413016 0.999147i \(-0.513150\pi\)
−0.0413016 + 0.999147i \(0.513150\pi\)
\(678\) 2.55679e6 0.213610
\(679\) −3.87482e6 −0.322535
\(680\) 0 0
\(681\) 4.05356e6 0.334942
\(682\) 7.22304e6 0.594647
\(683\) 1.88208e7 1.54379 0.771894 0.635752i \(-0.219310\pi\)
0.771894 + 0.635752i \(0.219310\pi\)
\(684\) 1.14566e6 0.0936304
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) −9.58077e6 −0.774477
\(688\) −4.97562e6 −0.400752
\(689\) 2.67364e7 2.14563
\(690\) 0 0
\(691\) −1.93385e7 −1.54073 −0.770366 0.637601i \(-0.779927\pi\)
−0.770366 + 0.637601i \(0.779927\pi\)
\(692\) 1.07014e7 0.849524
\(693\) −857304. −0.0678113
\(694\) −4.14566e6 −0.326735
\(695\) 0 0
\(696\) −853632. −0.0667956
\(697\) 1.27414e7 0.993423
\(698\) −1.69199e7 −1.31450
\(699\) −1.29256e7 −1.00059
\(700\) 0 0
\(701\) −1.41489e6 −0.108750 −0.0543748 0.998521i \(-0.517317\pi\)
−0.0543748 + 0.998521i \(0.517317\pi\)
\(702\) −2.91017e6 −0.222882
\(703\) 4.16718e6 0.318019
\(704\) 884736. 0.0672794
\(705\) 0 0
\(706\) −955224. −0.0721263
\(707\) −9.04667e6 −0.680676
\(708\) 4.04525e6 0.303293
\(709\) −754906. −0.0563998 −0.0281999 0.999602i \(-0.508977\pi\)
−0.0281999 + 0.999602i \(0.508977\pi\)
\(710\) 0 0
\(711\) −8.06306e6 −0.598172
\(712\) 2.32896e6 0.172172
\(713\) 1.89605e7 1.39677
\(714\) 2.29673e6 0.168603
\(715\) 0 0
\(716\) −9.83770e6 −0.717151
\(717\) −8.98074e6 −0.652400
\(718\) −1.06571e7 −0.771486
\(719\) 1.08854e6 0.0785279 0.0392639 0.999229i \(-0.487499\pi\)
0.0392639 + 0.999229i \(0.487499\pi\)
\(720\) 0 0
\(721\) 3.16501e6 0.226744
\(722\) −6.77857e6 −0.483944
\(723\) −2.05177e6 −0.145976
\(724\) 8.65098e6 0.613365
\(725\) 0 0
\(726\) −4.11822e6 −0.289980
\(727\) 755392. 0.0530074 0.0265037 0.999649i \(-0.491563\pi\)
0.0265037 + 0.999649i \(0.491563\pi\)
\(728\) 3.12973e6 0.218866
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.53057e7 1.75156
\(732\) −5.59670e6 −0.386060
\(733\) −1.56369e6 −0.107495 −0.0537477 0.998555i \(-0.517117\pi\)
−0.0537477 + 0.998555i \(0.517117\pi\)
\(734\) 6.84333e6 0.468843
\(735\) 0 0
\(736\) 2.32243e6 0.158033
\(737\) −5.17277e6 −0.350796
\(738\) −3.17066e6 −0.214294
\(739\) −1.05544e7 −0.710922 −0.355461 0.934691i \(-0.615676\pi\)
−0.355461 + 0.934691i \(0.615676\pi\)
\(740\) 0 0
\(741\) −7.94009e6 −0.531227
\(742\) 5.25084e6 0.350122
\(743\) −1.73678e7 −1.15418 −0.577088 0.816682i \(-0.695811\pi\)
−0.577088 + 0.816682i \(0.695811\pi\)
\(744\) 4.81536e6 0.318931
\(745\) 0 0
\(746\) 1.58660e7 1.04380
\(747\) −1.56395e6 −0.102546
\(748\) −4.49971e6 −0.294056
\(749\) 7.33001e6 0.477419
\(750\) 0 0
\(751\) −2.80181e7 −1.81276 −0.906378 0.422467i \(-0.861164\pi\)
−0.906378 + 0.422467i \(0.861164\pi\)
\(752\) −5.68320e6 −0.366478
\(753\) 1.36491e7 0.877239
\(754\) 5.91614e6 0.378975
\(755\) 0 0
\(756\) −571536. −0.0363696
\(757\) 1.01979e7 0.646801 0.323401 0.946262i \(-0.395174\pi\)
0.323401 + 0.946262i \(0.395174\pi\)
\(758\) 3.31467e6 0.209540
\(759\) 4.40899e6 0.277802
\(760\) 0 0
\(761\) 2.57535e6 0.161204 0.0806018 0.996746i \(-0.474316\pi\)
0.0806018 + 0.996746i \(0.474316\pi\)
\(762\) −9.70646e6 −0.605583
\(763\) 3.12747e6 0.194483
\(764\) −670656. −0.0415687
\(765\) 0 0
\(766\) 1.02275e7 0.629790
\(767\) −2.80358e7 −1.72078
\(768\) 589824. 0.0360844
\(769\) 971234. 0.0592254 0.0296127 0.999561i \(-0.490573\pi\)
0.0296127 + 0.999561i \(0.490573\pi\)
\(770\) 0 0
\(771\) −4.10297e6 −0.248578
\(772\) 8.54397e6 0.515960
\(773\) 1.72921e7 1.04088 0.520439 0.853899i \(-0.325768\pi\)
0.520439 + 0.853899i \(0.325768\pi\)
\(774\) −6.29726e6 −0.377833
\(775\) 0 0
\(776\) 5.06099e6 0.301704
\(777\) −2.07887e6 −0.123531
\(778\) 1.16714e7 0.691313
\(779\) −8.65082e6 −0.510756
\(780\) 0 0
\(781\) −4.45565e6 −0.261387
\(782\) −1.18117e7 −0.690712
\(783\) −1.08038e6 −0.0629755
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 2.92248e6 0.168731
\(787\) 1.65515e7 0.952576 0.476288 0.879289i \(-0.341982\pi\)
0.476288 + 0.879289i \(0.341982\pi\)
\(788\) −1.31982e7 −0.757179
\(789\) 6.77387e6 0.387386
\(790\) 0 0
\(791\) −3.48008e6 −0.197764
\(792\) 1.11974e6 0.0634316
\(793\) 3.87883e7 2.19037
\(794\) −1.00286e7 −0.564533
\(795\) 0 0
\(796\) −6.39270e6 −0.357604
\(797\) −2.91057e6 −0.162305 −0.0811526 0.996702i \(-0.525860\pi\)
−0.0811526 + 0.996702i \(0.525860\pi\)
\(798\) −1.55938e6 −0.0866849
\(799\) 2.89044e7 1.60176
\(800\) 0 0
\(801\) 2.94759e6 0.162325
\(802\) 3.96266e6 0.217546
\(803\) −62640.0 −0.00342817
\(804\) −3.44851e6 −0.188145
\(805\) 0 0
\(806\) −3.33731e7 −1.80950
\(807\) 1.29314e6 0.0698974
\(808\) 1.18161e7 0.636714
\(809\) −1.16252e7 −0.624496 −0.312248 0.950001i \(-0.601082\pi\)
−0.312248 + 0.950001i \(0.601082\pi\)
\(810\) 0 0
\(811\) 3.09020e7 1.64981 0.824906 0.565270i \(-0.191228\pi\)
0.824906 + 0.565270i \(0.191228\pi\)
\(812\) 1.16189e6 0.0618407
\(813\) 6.81746e6 0.361740
\(814\) 4.07290e6 0.215448
\(815\) 0 0
\(816\) −2.99981e6 −0.157713
\(817\) −1.71814e7 −0.900542
\(818\) 1.80730e7 0.944379
\(819\) 3.96106e6 0.206349
\(820\) 0 0
\(821\) −2.22870e7 −1.15397 −0.576984 0.816755i \(-0.695771\pi\)
−0.576984 + 0.816755i \(0.695771\pi\)
\(822\) 9.39276e6 0.484857
\(823\) 1.64895e7 0.848610 0.424305 0.905519i \(-0.360518\pi\)
0.424305 + 0.905519i \(0.360518\pi\)
\(824\) −4.13389e6 −0.212100
\(825\) 0 0
\(826\) −5.50603e6 −0.280795
\(827\) 2.37457e7 1.20732 0.603658 0.797244i \(-0.293709\pi\)
0.603658 + 0.797244i \(0.293709\pi\)
\(828\) 2.93933e6 0.148995
\(829\) 2.60865e7 1.31835 0.659173 0.751991i \(-0.270906\pi\)
0.659173 + 0.751991i \(0.270906\pi\)
\(830\) 0 0
\(831\) 1.04592e7 0.525409
\(832\) −4.08781e6 −0.204730
\(833\) −3.12610e6 −0.156096
\(834\) −1.07267e7 −0.534012
\(835\) 0 0
\(836\) 3.05510e6 0.151186
\(837\) 6.09444e6 0.300691
\(838\) 2.42088e6 0.119087
\(839\) 1.00872e7 0.494729 0.247365 0.968922i \(-0.420435\pi\)
0.247365 + 0.968922i \(0.420435\pi\)
\(840\) 0 0
\(841\) −1.83148e7 −0.892920
\(842\) 1.79957e7 0.874761
\(843\) −3.72929e6 −0.180741
\(844\) 1.39019e7 0.671765
\(845\) 0 0
\(846\) −7.19280e6 −0.345519
\(847\) 5.60536e6 0.268469
\(848\) −6.85824e6 −0.327509
\(849\) −1.08385e6 −0.0516061
\(850\) 0 0
\(851\) 1.06914e7 0.506068
\(852\) −2.97043e6 −0.140191
\(853\) 2.43630e7 1.14646 0.573229 0.819395i \(-0.305691\pi\)
0.573229 + 0.819395i \(0.305691\pi\)
\(854\) 7.61774e6 0.357422
\(855\) 0 0
\(856\) −9.57389e6 −0.446585
\(857\) −2.45612e6 −0.114234 −0.0571172 0.998367i \(-0.518191\pi\)
−0.0571172 + 0.998367i \(0.518191\pi\)
\(858\) −7.76045e6 −0.359889
\(859\) 8.62982e6 0.399042 0.199521 0.979894i \(-0.436061\pi\)
0.199521 + 0.979894i \(0.436061\pi\)
\(860\) 0 0
\(861\) 4.31563e6 0.198397
\(862\) 2.15038e7 0.985703
\(863\) −1.05199e7 −0.480824 −0.240412 0.970671i \(-0.577283\pi\)
−0.240412 + 0.970671i \(0.577283\pi\)
\(864\) 746496. 0.0340207
\(865\) 0 0
\(866\) 7.94246e6 0.359882
\(867\) 2.47812e6 0.111963
\(868\) −6.55424e6 −0.295273
\(869\) −2.15015e7 −0.965872
\(870\) 0 0
\(871\) 2.39001e7 1.06747
\(872\) −4.08486e6 −0.181922
\(873\) 6.40532e6 0.284449
\(874\) 8.01965e6 0.355121
\(875\) 0 0
\(876\) −41760.0 −0.00183865
\(877\) 1.14540e7 0.502872 0.251436 0.967874i \(-0.419097\pi\)
0.251436 + 0.967874i \(0.419097\pi\)
\(878\) 1.35491e7 0.593163
\(879\) −1.98143e7 −0.864980
\(880\) 0 0
\(881\) −1.18134e7 −0.512786 −0.256393 0.966573i \(-0.582534\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(882\) 777924. 0.0336718
\(883\) −4.63221e6 −0.199934 −0.0999670 0.994991i \(-0.531874\pi\)
−0.0999670 + 0.994991i \(0.531874\pi\)
\(884\) 2.07903e7 0.894810
\(885\) 0 0
\(886\) −8.56378e6 −0.366506
\(887\) −4.47728e7 −1.91075 −0.955377 0.295388i \(-0.904551\pi\)
−0.955377 + 0.295388i \(0.904551\pi\)
\(888\) 2.71526e6 0.115553
\(889\) 1.32116e7 0.560661
\(890\) 0 0
\(891\) 1.41718e6 0.0598039
\(892\) 1.00265e7 0.421927
\(893\) −1.96248e7 −0.823525
\(894\) −1.43629e7 −0.601034
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) −2.03712e7 −0.845347
\(898\) −2.79123e7 −1.15506
\(899\) −1.23895e7 −0.511276
\(900\) 0 0
\(901\) 3.48806e7 1.43144
\(902\) −8.45510e6 −0.346021
\(903\) 8.57128e6 0.349805
\(904\) 4.54541e6 0.184992
\(905\) 0 0
\(906\) −8.09885e6 −0.327795
\(907\) 2.08357e7 0.840986 0.420493 0.907296i \(-0.361857\pi\)
0.420493 + 0.907296i \(0.361857\pi\)
\(908\) 7.20634e6 0.290068
\(909\) 1.49547e7 0.600300
\(910\) 0 0
\(911\) 5.27869e6 0.210732 0.105366 0.994434i \(-0.466399\pi\)
0.105366 + 0.994434i \(0.466399\pi\)
\(912\) 2.03674e6 0.0810863
\(913\) −4.17053e6 −0.165582
\(914\) 2.07200e7 0.820396
\(915\) 0 0
\(916\) −1.70325e7 −0.670717
\(917\) −3.97782e6 −0.156215
\(918\) −3.79663e6 −0.148693
\(919\) 2.51286e7 0.981477 0.490738 0.871307i \(-0.336727\pi\)
0.490738 + 0.871307i \(0.336727\pi\)
\(920\) 0 0
\(921\) −998100. −0.0387726
\(922\) −3.13200e7 −1.21337
\(923\) 2.05867e7 0.795396
\(924\) −1.52410e6 −0.0587263
\(925\) 0 0
\(926\) −661280. −0.0253430
\(927\) −5.23195e6 −0.199970
\(928\) −1.51757e6 −0.0578467
\(929\) 1.38042e7 0.524774 0.262387 0.964963i \(-0.415490\pi\)
0.262387 + 0.964963i \(0.415490\pi\)
\(930\) 0 0
\(931\) 2.12248e6 0.0802547
\(932\) −2.29788e7 −0.866540
\(933\) −8.19547e6 −0.308226
\(934\) 7.17317e6 0.269057
\(935\) 0 0
\(936\) −5.17363e6 −0.193022
\(937\) 4.73307e7 1.76114 0.880570 0.473915i \(-0.157160\pi\)
0.880570 + 0.473915i \(0.157160\pi\)
\(938\) 4.69381e6 0.174188
\(939\) −2.81023e7 −1.04011
\(940\) 0 0
\(941\) −3.25570e7 −1.19859 −0.599295 0.800528i \(-0.704552\pi\)
−0.599295 + 0.800528i \(0.704552\pi\)
\(942\) 8.39585e6 0.308274
\(943\) −2.21946e7 −0.812773
\(944\) 7.19155e6 0.262659
\(945\) 0 0
\(946\) −1.67927e7 −0.610088
\(947\) 5.27117e6 0.190999 0.0954997 0.995429i \(-0.469555\pi\)
0.0954997 + 0.995429i \(0.469555\pi\)
\(948\) −1.43343e7 −0.518032
\(949\) 289420. 0.0104319
\(950\) 0 0
\(951\) 2.49019e7 0.892857
\(952\) 4.08307e6 0.146014
\(953\) −8.20579e6 −0.292677 −0.146338 0.989235i \(-0.546749\pi\)
−0.146338 + 0.989235i \(0.546749\pi\)
\(954\) −8.67996e6 −0.308778
\(955\) 0 0
\(956\) −1.59658e7 −0.564995
\(957\) −2.88101e6 −0.101687
\(958\) −2.63863e7 −0.928890
\(959\) −1.27846e7 −0.448890
\(960\) 0 0
\(961\) 4.12604e7 1.44120
\(962\) −1.88183e7 −0.655605
\(963\) −1.21170e7 −0.421044
\(964\) −3.64758e6 −0.126419
\(965\) 0 0
\(966\) −4.00075e6 −0.137943
\(967\) 1.18118e7 0.406210 0.203105 0.979157i \(-0.434897\pi\)
0.203105 + 0.979157i \(0.434897\pi\)
\(968\) −7.32128e6 −0.251130
\(969\) −1.03587e7 −0.354402
\(970\) 0 0
\(971\) −3.67702e7 −1.25155 −0.625774 0.780004i \(-0.715217\pi\)
−0.625774 + 0.780004i \(0.715217\pi\)
\(972\) 944784. 0.0320750
\(973\) 1.46002e7 0.494399
\(974\) 2.38957e7 0.807091
\(975\) 0 0
\(976\) −9.94970e6 −0.334338
\(977\) 1.85183e7 0.620674 0.310337 0.950627i \(-0.399558\pi\)
0.310337 + 0.950627i \(0.399558\pi\)
\(978\) −1.67839e7 −0.561108
\(979\) 7.86024e6 0.262107
\(980\) 0 0
\(981\) −5.16991e6 −0.171518
\(982\) 1.52506e6 0.0504670
\(983\) −2.72169e7 −0.898370 −0.449185 0.893439i \(-0.648286\pi\)
−0.449185 + 0.893439i \(0.648286\pi\)
\(984\) −5.63674e6 −0.185584
\(985\) 0 0
\(986\) 7.71826e6 0.252829
\(987\) 9.79020e6 0.319889
\(988\) −1.41157e7 −0.460056
\(989\) −4.40808e7 −1.43304
\(990\) 0 0
\(991\) 1.63398e7 0.528522 0.264261 0.964451i \(-0.414872\pi\)
0.264261 + 0.964451i \(0.414872\pi\)
\(992\) 8.56064e6 0.276202
\(993\) 2.90031e7 0.933409
\(994\) 4.04309e6 0.129792
\(995\) 0 0
\(996\) −2.78035e6 −0.0888079
\(997\) 3.02062e7 0.962406 0.481203 0.876609i \(-0.340200\pi\)
0.481203 + 0.876609i \(0.340200\pi\)
\(998\) 6.17403e6 0.196220
\(999\) 3.43651e6 0.108944
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.a.n.1.1 1
5.2 odd 4 1050.6.g.o.799.2 2
5.3 odd 4 1050.6.g.o.799.1 2
5.4 even 2 42.6.a.a.1.1 1
15.14 odd 2 126.6.a.k.1.1 1
20.19 odd 2 336.6.a.j.1.1 1
35.4 even 6 294.6.e.r.79.1 2
35.9 even 6 294.6.e.r.67.1 2
35.19 odd 6 294.6.e.h.67.1 2
35.24 odd 6 294.6.e.h.79.1 2
35.34 odd 2 294.6.a.h.1.1 1
60.59 even 2 1008.6.a.x.1.1 1
105.104 even 2 882.6.a.o.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.a.1.1 1 5.4 even 2
126.6.a.k.1.1 1 15.14 odd 2
294.6.a.h.1.1 1 35.34 odd 2
294.6.e.h.67.1 2 35.19 odd 6
294.6.e.h.79.1 2 35.24 odd 6
294.6.e.r.67.1 2 35.9 even 6
294.6.e.r.79.1 2 35.4 even 6
336.6.a.j.1.1 1 20.19 odd 2
882.6.a.o.1.1 1 105.104 even 2
1008.6.a.x.1.1 1 60.59 even 2
1050.6.a.n.1.1 1 1.1 even 1 trivial
1050.6.g.o.799.1 2 5.3 odd 4
1050.6.g.o.799.2 2 5.2 odd 4