Properties

Label 1050.6.a.k.1.1
Level $1050$
Weight $6$
Character 1050.1
Self dual yes
Analytic conductor $168.403$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,6,Mod(1,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.403010804\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} -36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -9.00000 q^{3} +16.0000 q^{4} -36.0000 q^{6} +49.0000 q^{7} +64.0000 q^{8} +81.0000 q^{9} +664.000 q^{11} -144.000 q^{12} -318.000 q^{13} +196.000 q^{14} +256.000 q^{16} -1582.00 q^{17} +324.000 q^{18} +236.000 q^{19} -441.000 q^{21} +2656.00 q^{22} -2212.00 q^{23} -576.000 q^{24} -1272.00 q^{26} -729.000 q^{27} +784.000 q^{28} -4954.00 q^{29} -7128.00 q^{31} +1024.00 q^{32} -5976.00 q^{33} -6328.00 q^{34} +1296.00 q^{36} -4358.00 q^{37} +944.000 q^{38} +2862.00 q^{39} +10542.0 q^{41} -1764.00 q^{42} +8452.00 q^{43} +10624.0 q^{44} -8848.00 q^{46} -5352.00 q^{47} -2304.00 q^{48} +2401.00 q^{49} +14238.0 q^{51} -5088.00 q^{52} +33354.0 q^{53} -2916.00 q^{54} +3136.00 q^{56} -2124.00 q^{57} -19816.0 q^{58} -15436.0 q^{59} -36762.0 q^{61} -28512.0 q^{62} +3969.00 q^{63} +4096.00 q^{64} -23904.0 q^{66} -40972.0 q^{67} -25312.0 q^{68} +19908.0 q^{69} -9092.00 q^{71} +5184.00 q^{72} +73454.0 q^{73} -17432.0 q^{74} +3776.00 q^{76} +32536.0 q^{77} +11448.0 q^{78} +89400.0 q^{79} +6561.00 q^{81} +42168.0 q^{82} +6428.00 q^{83} -7056.00 q^{84} +33808.0 q^{86} +44586.0 q^{87} +42496.0 q^{88} -122658. q^{89} -15582.0 q^{91} -35392.0 q^{92} +64152.0 q^{93} -21408.0 q^{94} -9216.00 q^{96} -21370.0 q^{97} +9604.00 q^{98} +53784.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −9.00000 −0.577350
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −36.0000 −0.408248
\(7\) 49.0000 0.377964
\(8\) 64.0000 0.353553
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 664.000 1.65457 0.827287 0.561779i \(-0.189883\pi\)
0.827287 + 0.561779i \(0.189883\pi\)
\(12\) −144.000 −0.288675
\(13\) −318.000 −0.521878 −0.260939 0.965355i \(-0.584032\pi\)
−0.260939 + 0.965355i \(0.584032\pi\)
\(14\) 196.000 0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1582.00 −1.32765 −0.663826 0.747887i \(-0.731068\pi\)
−0.663826 + 0.747887i \(0.731068\pi\)
\(18\) 324.000 0.235702
\(19\) 236.000 0.149978 0.0749891 0.997184i \(-0.476108\pi\)
0.0749891 + 0.997184i \(0.476108\pi\)
\(20\) 0 0
\(21\) −441.000 −0.218218
\(22\) 2656.00 1.16996
\(23\) −2212.00 −0.871898 −0.435949 0.899971i \(-0.643587\pi\)
−0.435949 + 0.899971i \(0.643587\pi\)
\(24\) −576.000 −0.204124
\(25\) 0 0
\(26\) −1272.00 −0.369023
\(27\) −729.000 −0.192450
\(28\) 784.000 0.188982
\(29\) −4954.00 −1.09386 −0.546929 0.837179i \(-0.684203\pi\)
−0.546929 + 0.837179i \(0.684203\pi\)
\(30\) 0 0
\(31\) −7128.00 −1.33218 −0.666091 0.745871i \(-0.732034\pi\)
−0.666091 + 0.745871i \(0.732034\pi\)
\(32\) 1024.00 0.176777
\(33\) −5976.00 −0.955269
\(34\) −6328.00 −0.938792
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −4358.00 −0.523339 −0.261669 0.965158i \(-0.584273\pi\)
−0.261669 + 0.965158i \(0.584273\pi\)
\(38\) 944.000 0.106051
\(39\) 2862.00 0.301306
\(40\) 0 0
\(41\) 10542.0 0.979407 0.489704 0.871889i \(-0.337105\pi\)
0.489704 + 0.871889i \(0.337105\pi\)
\(42\) −1764.00 −0.154303
\(43\) 8452.00 0.697089 0.348545 0.937292i \(-0.386676\pi\)
0.348545 + 0.937292i \(0.386676\pi\)
\(44\) 10624.0 0.827287
\(45\) 0 0
\(46\) −8848.00 −0.616525
\(47\) −5352.00 −0.353404 −0.176702 0.984264i \(-0.556543\pi\)
−0.176702 + 0.984264i \(0.556543\pi\)
\(48\) −2304.00 −0.144338
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 14238.0 0.766520
\(52\) −5088.00 −0.260939
\(53\) 33354.0 1.63102 0.815508 0.578746i \(-0.196458\pi\)
0.815508 + 0.578746i \(0.196458\pi\)
\(54\) −2916.00 −0.136083
\(55\) 0 0
\(56\) 3136.00 0.133631
\(57\) −2124.00 −0.0865899
\(58\) −19816.0 −0.773475
\(59\) −15436.0 −0.577304 −0.288652 0.957434i \(-0.593207\pi\)
−0.288652 + 0.957434i \(0.593207\pi\)
\(60\) 0 0
\(61\) −36762.0 −1.26495 −0.632477 0.774579i \(-0.717962\pi\)
−0.632477 + 0.774579i \(0.717962\pi\)
\(62\) −28512.0 −0.941995
\(63\) 3969.00 0.125988
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −23904.0 −0.675477
\(67\) −40972.0 −1.11506 −0.557532 0.830155i \(-0.688252\pi\)
−0.557532 + 0.830155i \(0.688252\pi\)
\(68\) −25312.0 −0.663826
\(69\) 19908.0 0.503390
\(70\) 0 0
\(71\) −9092.00 −0.214049 −0.107025 0.994256i \(-0.534132\pi\)
−0.107025 + 0.994256i \(0.534132\pi\)
\(72\) 5184.00 0.117851
\(73\) 73454.0 1.61327 0.806637 0.591047i \(-0.201285\pi\)
0.806637 + 0.591047i \(0.201285\pi\)
\(74\) −17432.0 −0.370056
\(75\) 0 0
\(76\) 3776.00 0.0749891
\(77\) 32536.0 0.625370
\(78\) 11448.0 0.213056
\(79\) 89400.0 1.61165 0.805823 0.592156i \(-0.201723\pi\)
0.805823 + 0.592156i \(0.201723\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 42168.0 0.692546
\(83\) 6428.00 0.102419 0.0512095 0.998688i \(-0.483692\pi\)
0.0512095 + 0.998688i \(0.483692\pi\)
\(84\) −7056.00 −0.109109
\(85\) 0 0
\(86\) 33808.0 0.492916
\(87\) 44586.0 0.631539
\(88\) 42496.0 0.584980
\(89\) −122658. −1.64142 −0.820712 0.571342i \(-0.806423\pi\)
−0.820712 + 0.571342i \(0.806423\pi\)
\(90\) 0 0
\(91\) −15582.0 −0.197251
\(92\) −35392.0 −0.435949
\(93\) 64152.0 0.769135
\(94\) −21408.0 −0.249894
\(95\) 0 0
\(96\) −9216.00 −0.102062
\(97\) −21370.0 −0.230608 −0.115304 0.993330i \(-0.536784\pi\)
−0.115304 + 0.993330i \(0.536784\pi\)
\(98\) 9604.00 0.101015
\(99\) 53784.0 0.551525
\(100\) 0 0
\(101\) −36814.0 −0.359095 −0.179548 0.983749i \(-0.557463\pi\)
−0.179548 + 0.983749i \(0.557463\pi\)
\(102\) 56952.0 0.542012
\(103\) −104528. −0.970822 −0.485411 0.874286i \(-0.661330\pi\)
−0.485411 + 0.874286i \(0.661330\pi\)
\(104\) −20352.0 −0.184512
\(105\) 0 0
\(106\) 133416. 1.15330
\(107\) −214440. −1.81070 −0.905350 0.424667i \(-0.860391\pi\)
−0.905350 + 0.424667i \(0.860391\pi\)
\(108\) −11664.0 −0.0962250
\(109\) 28798.0 0.232165 0.116082 0.993240i \(-0.462966\pi\)
0.116082 + 0.993240i \(0.462966\pi\)
\(110\) 0 0
\(111\) 39222.0 0.302150
\(112\) 12544.0 0.0944911
\(113\) 56014.0 0.412668 0.206334 0.978482i \(-0.433847\pi\)
0.206334 + 0.978482i \(0.433847\pi\)
\(114\) −8496.00 −0.0612283
\(115\) 0 0
\(116\) −79264.0 −0.546929
\(117\) −25758.0 −0.173959
\(118\) −61744.0 −0.408216
\(119\) −77518.0 −0.501805
\(120\) 0 0
\(121\) 279845. 1.73762
\(122\) −147048. −0.894457
\(123\) −94878.0 −0.565461
\(124\) −114048. −0.666091
\(125\) 0 0
\(126\) 15876.0 0.0890871
\(127\) −185400. −1.02000 −0.510000 0.860174i \(-0.670355\pi\)
−0.510000 + 0.860174i \(0.670355\pi\)
\(128\) 16384.0 0.0883883
\(129\) −76068.0 −0.402465
\(130\) 0 0
\(131\) 64532.0 0.328547 0.164273 0.986415i \(-0.447472\pi\)
0.164273 + 0.986415i \(0.447472\pi\)
\(132\) −95616.0 −0.477635
\(133\) 11564.0 0.0566864
\(134\) −163888. −0.788470
\(135\) 0 0
\(136\) −101248. −0.469396
\(137\) −152930. −0.696131 −0.348066 0.937470i \(-0.613161\pi\)
−0.348066 + 0.937470i \(0.613161\pi\)
\(138\) 79632.0 0.355951
\(139\) −343460. −1.50778 −0.753892 0.656998i \(-0.771826\pi\)
−0.753892 + 0.656998i \(0.771826\pi\)
\(140\) 0 0
\(141\) 48168.0 0.204038
\(142\) −36368.0 −0.151356
\(143\) −211152. −0.863486
\(144\) 20736.0 0.0833333
\(145\) 0 0
\(146\) 293816. 1.14076
\(147\) −21609.0 −0.0824786
\(148\) −69728.0 −0.261669
\(149\) −174858. −0.645238 −0.322619 0.946529i \(-0.604563\pi\)
−0.322619 + 0.946529i \(0.604563\pi\)
\(150\) 0 0
\(151\) −452552. −1.61520 −0.807600 0.589731i \(-0.799234\pi\)
−0.807600 + 0.589731i \(0.799234\pi\)
\(152\) 15104.0 0.0530253
\(153\) −128142. −0.442551
\(154\) 130144. 0.442204
\(155\) 0 0
\(156\) 45792.0 0.150653
\(157\) 499066. 1.61588 0.807940 0.589265i \(-0.200583\pi\)
0.807940 + 0.589265i \(0.200583\pi\)
\(158\) 357600. 1.13961
\(159\) −300186. −0.941668
\(160\) 0 0
\(161\) −108388. −0.329546
\(162\) 26244.0 0.0785674
\(163\) 475588. 1.40204 0.701022 0.713139i \(-0.252727\pi\)
0.701022 + 0.713139i \(0.252727\pi\)
\(164\) 168672. 0.489704
\(165\) 0 0
\(166\) 25712.0 0.0724212
\(167\) −120224. −0.333580 −0.166790 0.985992i \(-0.553340\pi\)
−0.166790 + 0.985992i \(0.553340\pi\)
\(168\) −28224.0 −0.0771517
\(169\) −270169. −0.727644
\(170\) 0 0
\(171\) 19116.0 0.0499927
\(172\) 135232. 0.348545
\(173\) −508874. −1.29269 −0.646346 0.763045i \(-0.723704\pi\)
−0.646346 + 0.763045i \(0.723704\pi\)
\(174\) 178344. 0.446566
\(175\) 0 0
\(176\) 169984. 0.413644
\(177\) 138924. 0.333307
\(178\) −490632. −1.16066
\(179\) 487560. 1.13735 0.568677 0.822561i \(-0.307456\pi\)
0.568677 + 0.822561i \(0.307456\pi\)
\(180\) 0 0
\(181\) −544410. −1.23518 −0.617589 0.786501i \(-0.711891\pi\)
−0.617589 + 0.786501i \(0.711891\pi\)
\(182\) −62328.0 −0.139478
\(183\) 330858. 0.730321
\(184\) −141568. −0.308262
\(185\) 0 0
\(186\) 256608. 0.543861
\(187\) −1.05045e6 −2.19670
\(188\) −85632.0 −0.176702
\(189\) −35721.0 −0.0727393
\(190\) 0 0
\(191\) 376404. 0.746570 0.373285 0.927717i \(-0.378231\pi\)
0.373285 + 0.927717i \(0.378231\pi\)
\(192\) −36864.0 −0.0721688
\(193\) −844946. −1.63281 −0.816405 0.577480i \(-0.804036\pi\)
−0.816405 + 0.577480i \(0.804036\pi\)
\(194\) −85480.0 −0.163065
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) 492794. 0.904690 0.452345 0.891843i \(-0.350588\pi\)
0.452345 + 0.891843i \(0.350588\pi\)
\(198\) 215136. 0.389987
\(199\) −914776. −1.63750 −0.818751 0.574148i \(-0.805333\pi\)
−0.818751 + 0.574148i \(0.805333\pi\)
\(200\) 0 0
\(201\) 368748. 0.643783
\(202\) −147256. −0.253919
\(203\) −242746. −0.413440
\(204\) 227808. 0.383260
\(205\) 0 0
\(206\) −418112. −0.686475
\(207\) −179172. −0.290633
\(208\) −81408.0 −0.130469
\(209\) 156704. 0.248150
\(210\) 0 0
\(211\) 311780. 0.482106 0.241053 0.970512i \(-0.422507\pi\)
0.241053 + 0.970512i \(0.422507\pi\)
\(212\) 533664. 0.815508
\(213\) 81828.0 0.123581
\(214\) −857760. −1.28036
\(215\) 0 0
\(216\) −46656.0 −0.0680414
\(217\) −349272. −0.503517
\(218\) 115192. 0.164165
\(219\) −661086. −0.931425
\(220\) 0 0
\(221\) 503076. 0.692872
\(222\) 156888. 0.213652
\(223\) 1.28776e6 1.73409 0.867047 0.498226i \(-0.166015\pi\)
0.867047 + 0.498226i \(0.166015\pi\)
\(224\) 50176.0 0.0668153
\(225\) 0 0
\(226\) 224056. 0.291800
\(227\) −1.28905e6 −1.66037 −0.830187 0.557485i \(-0.811766\pi\)
−0.830187 + 0.557485i \(0.811766\pi\)
\(228\) −33984.0 −0.0432950
\(229\) 678214. 0.854630 0.427315 0.904103i \(-0.359460\pi\)
0.427315 + 0.904103i \(0.359460\pi\)
\(230\) 0 0
\(231\) −292824. −0.361058
\(232\) −317056. −0.386737
\(233\) 1.11731e6 1.34829 0.674146 0.738598i \(-0.264512\pi\)
0.674146 + 0.738598i \(0.264512\pi\)
\(234\) −103032. −0.123008
\(235\) 0 0
\(236\) −246976. −0.288652
\(237\) −804600. −0.930485
\(238\) −310072. −0.354830
\(239\) −1.26196e6 −1.42906 −0.714528 0.699606i \(-0.753359\pi\)
−0.714528 + 0.699606i \(0.753359\pi\)
\(240\) 0 0
\(241\) 948218. 1.05164 0.525818 0.850597i \(-0.323759\pi\)
0.525818 + 0.850597i \(0.323759\pi\)
\(242\) 1.11938e6 1.22868
\(243\) −59049.0 −0.0641500
\(244\) −588192. −0.632477
\(245\) 0 0
\(246\) −379512. −0.399841
\(247\) −75048.0 −0.0782703
\(248\) −456192. −0.470997
\(249\) −57852.0 −0.0591317
\(250\) 0 0
\(251\) −486396. −0.487310 −0.243655 0.969862i \(-0.578347\pi\)
−0.243655 + 0.969862i \(0.578347\pi\)
\(252\) 63504.0 0.0629941
\(253\) −1.46877e6 −1.44262
\(254\) −741600. −0.721249
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.03910e6 0.981349 0.490675 0.871343i \(-0.336750\pi\)
0.490675 + 0.871343i \(0.336750\pi\)
\(258\) −304272. −0.284585
\(259\) −213542. −0.197803
\(260\) 0 0
\(261\) −401274. −0.364619
\(262\) 258128. 0.232317
\(263\) −1.35104e6 −1.20443 −0.602213 0.798335i \(-0.705714\pi\)
−0.602213 + 0.798335i \(0.705714\pi\)
\(264\) −382464. −0.337739
\(265\) 0 0
\(266\) 46256.0 0.0400833
\(267\) 1.10392e6 0.947677
\(268\) −655552. −0.557532
\(269\) −1.11811e6 −0.942115 −0.471057 0.882103i \(-0.656128\pi\)
−0.471057 + 0.882103i \(0.656128\pi\)
\(270\) 0 0
\(271\) −190104. −0.157242 −0.0786209 0.996905i \(-0.525052\pi\)
−0.0786209 + 0.996905i \(0.525052\pi\)
\(272\) −404992. −0.331913
\(273\) 140238. 0.113883
\(274\) −611720. −0.492239
\(275\) 0 0
\(276\) 318528. 0.251695
\(277\) 200506. 0.157010 0.0785051 0.996914i \(-0.474985\pi\)
0.0785051 + 0.996914i \(0.474985\pi\)
\(278\) −1.37384e6 −1.06616
\(279\) −577368. −0.444061
\(280\) 0 0
\(281\) 1.09237e6 0.825285 0.412643 0.910893i \(-0.364606\pi\)
0.412643 + 0.910893i \(0.364606\pi\)
\(282\) 192672. 0.144277
\(283\) −1.81258e6 −1.34534 −0.672669 0.739944i \(-0.734852\pi\)
−0.672669 + 0.739944i \(0.734852\pi\)
\(284\) −145472. −0.107025
\(285\) 0 0
\(286\) −844608. −0.610577
\(287\) 516558. 0.370181
\(288\) 82944.0 0.0589256
\(289\) 1.08287e6 0.762659
\(290\) 0 0
\(291\) 192330. 0.133142
\(292\) 1.17526e6 0.806637
\(293\) −2.10031e6 −1.42927 −0.714634 0.699499i \(-0.753407\pi\)
−0.714634 + 0.699499i \(0.753407\pi\)
\(294\) −86436.0 −0.0583212
\(295\) 0 0
\(296\) −278912. −0.185028
\(297\) −484056. −0.318423
\(298\) −699432. −0.456252
\(299\) 703416. 0.455024
\(300\) 0 0
\(301\) 414148. 0.263475
\(302\) −1.81021e6 −1.14212
\(303\) 331326. 0.207324
\(304\) 60416.0 0.0374945
\(305\) 0 0
\(306\) −512568. −0.312931
\(307\) 1.64104e6 0.993743 0.496872 0.867824i \(-0.334482\pi\)
0.496872 + 0.867824i \(0.334482\pi\)
\(308\) 520576. 0.312685
\(309\) 940752. 0.560504
\(310\) 0 0
\(311\) −945232. −0.554163 −0.277081 0.960846i \(-0.589367\pi\)
−0.277081 + 0.960846i \(0.589367\pi\)
\(312\) 183168. 0.106528
\(313\) −415354. −0.239639 −0.119820 0.992796i \(-0.538232\pi\)
−0.119820 + 0.992796i \(0.538232\pi\)
\(314\) 1.99626e6 1.14260
\(315\) 0 0
\(316\) 1.43040e6 0.805823
\(317\) −1.18481e6 −0.662220 −0.331110 0.943592i \(-0.607423\pi\)
−0.331110 + 0.943592i \(0.607423\pi\)
\(318\) −1.20074e6 −0.665860
\(319\) −3.28946e6 −1.80987
\(320\) 0 0
\(321\) 1.92996e6 1.04541
\(322\) −433552. −0.233024
\(323\) −373352. −0.199119
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) 1.90235e6 0.991395
\(327\) −259182. −0.134040
\(328\) 674688. 0.346273
\(329\) −262248. −0.133574
\(330\) 0 0
\(331\) 1.37155e6 0.688083 0.344042 0.938954i \(-0.388204\pi\)
0.344042 + 0.938954i \(0.388204\pi\)
\(332\) 102848. 0.0512095
\(333\) −352998. −0.174446
\(334\) −480896. −0.235877
\(335\) 0 0
\(336\) −112896. −0.0545545
\(337\) −963522. −0.462154 −0.231077 0.972935i \(-0.574225\pi\)
−0.231077 + 0.972935i \(0.574225\pi\)
\(338\) −1.08068e6 −0.514522
\(339\) −504126. −0.238254
\(340\) 0 0
\(341\) −4.73299e6 −2.20419
\(342\) 76464.0 0.0353502
\(343\) 117649. 0.0539949
\(344\) 540928. 0.246458
\(345\) 0 0
\(346\) −2.03550e6 −0.914071
\(347\) −2.57731e6 −1.14906 −0.574531 0.818483i \(-0.694815\pi\)
−0.574531 + 0.818483i \(0.694815\pi\)
\(348\) 713376. 0.315770
\(349\) −3.06751e6 −1.34810 −0.674051 0.738684i \(-0.735447\pi\)
−0.674051 + 0.738684i \(0.735447\pi\)
\(350\) 0 0
\(351\) 231822. 0.100435
\(352\) 679936. 0.292490
\(353\) 3.10144e6 1.32473 0.662364 0.749182i \(-0.269553\pi\)
0.662364 + 0.749182i \(0.269553\pi\)
\(354\) 555696. 0.235683
\(355\) 0 0
\(356\) −1.96253e6 −0.820712
\(357\) 697662. 0.289717
\(358\) 1.95024e6 0.804230
\(359\) −327508. −0.134118 −0.0670588 0.997749i \(-0.521362\pi\)
−0.0670588 + 0.997749i \(0.521362\pi\)
\(360\) 0 0
\(361\) −2.42040e6 −0.977507
\(362\) −2.17764e6 −0.873403
\(363\) −2.51860e6 −1.00321
\(364\) −249312. −0.0986256
\(365\) 0 0
\(366\) 1.32343e6 0.516415
\(367\) 2.86739e6 1.11128 0.555638 0.831424i \(-0.312474\pi\)
0.555638 + 0.831424i \(0.312474\pi\)
\(368\) −566272. −0.217974
\(369\) 853902. 0.326469
\(370\) 0 0
\(371\) 1.63435e6 0.616466
\(372\) 1.02643e6 0.384568
\(373\) −3.58029e6 −1.33244 −0.666218 0.745757i \(-0.732088\pi\)
−0.666218 + 0.745757i \(0.732088\pi\)
\(374\) −4.20179e6 −1.55330
\(375\) 0 0
\(376\) −342528. −0.124947
\(377\) 1.57537e6 0.570860
\(378\) −142884. −0.0514344
\(379\) 1.64235e6 0.587310 0.293655 0.955912i \(-0.405128\pi\)
0.293655 + 0.955912i \(0.405128\pi\)
\(380\) 0 0
\(381\) 1.66860e6 0.588898
\(382\) 1.50562e6 0.527905
\(383\) 2.05698e6 0.716527 0.358263 0.933621i \(-0.383369\pi\)
0.358263 + 0.933621i \(0.383369\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) −3.37978e6 −1.15457
\(387\) 684612. 0.232363
\(388\) −341920. −0.115304
\(389\) 616142. 0.206446 0.103223 0.994658i \(-0.467084\pi\)
0.103223 + 0.994658i \(0.467084\pi\)
\(390\) 0 0
\(391\) 3.49938e6 1.15758
\(392\) 153664. 0.0505076
\(393\) −580788. −0.189686
\(394\) 1.97118e6 0.639713
\(395\) 0 0
\(396\) 860544. 0.275762
\(397\) −2.19212e6 −0.698052 −0.349026 0.937113i \(-0.613487\pi\)
−0.349026 + 0.937113i \(0.613487\pi\)
\(398\) −3.65910e6 −1.15789
\(399\) −104076. −0.0327279
\(400\) 0 0
\(401\) 3.28454e6 1.02003 0.510015 0.860165i \(-0.329640\pi\)
0.510015 + 0.860165i \(0.329640\pi\)
\(402\) 1.47499e6 0.455223
\(403\) 2.26670e6 0.695236
\(404\) −589024. −0.179548
\(405\) 0 0
\(406\) −970984. −0.292346
\(407\) −2.89371e6 −0.865903
\(408\) 911232. 0.271006
\(409\) −3.61219e6 −1.06773 −0.533866 0.845569i \(-0.679261\pi\)
−0.533866 + 0.845569i \(0.679261\pi\)
\(410\) 0 0
\(411\) 1.37637e6 0.401912
\(412\) −1.67245e6 −0.485411
\(413\) −756364. −0.218200
\(414\) −716688. −0.205508
\(415\) 0 0
\(416\) −325632. −0.0922558
\(417\) 3.09114e6 0.870520
\(418\) 626816. 0.175469
\(419\) 5.41489e6 1.50680 0.753398 0.657564i \(-0.228413\pi\)
0.753398 + 0.657564i \(0.228413\pi\)
\(420\) 0 0
\(421\) 3.60629e6 0.991644 0.495822 0.868424i \(-0.334867\pi\)
0.495822 + 0.868424i \(0.334867\pi\)
\(422\) 1.24712e6 0.340900
\(423\) −433512. −0.117801
\(424\) 2.13466e6 0.576651
\(425\) 0 0
\(426\) 327312. 0.0873852
\(427\) −1.80134e6 −0.478107
\(428\) −3.43104e6 −0.905350
\(429\) 1.90037e6 0.498534
\(430\) 0 0
\(431\) −2.78214e6 −0.721416 −0.360708 0.932679i \(-0.617465\pi\)
−0.360708 + 0.932679i \(0.617465\pi\)
\(432\) −186624. −0.0481125
\(433\) −6.27619e6 −1.60871 −0.804353 0.594152i \(-0.797488\pi\)
−0.804353 + 0.594152i \(0.797488\pi\)
\(434\) −1.39709e6 −0.356041
\(435\) 0 0
\(436\) 460768. 0.116082
\(437\) −522032. −0.130766
\(438\) −2.64434e6 −0.658617
\(439\) 641592. 0.158890 0.0794452 0.996839i \(-0.474685\pi\)
0.0794452 + 0.996839i \(0.474685\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 2.01230e6 0.489934
\(443\) −6.05546e6 −1.46601 −0.733006 0.680222i \(-0.761883\pi\)
−0.733006 + 0.680222i \(0.761883\pi\)
\(444\) 627552. 0.151075
\(445\) 0 0
\(446\) 5.15104e6 1.22619
\(447\) 1.57372e6 0.372528
\(448\) 200704. 0.0472456
\(449\) −5.16681e6 −1.20950 −0.604752 0.796414i \(-0.706728\pi\)
−0.604752 + 0.796414i \(0.706728\pi\)
\(450\) 0 0
\(451\) 6.99989e6 1.62050
\(452\) 896224. 0.206334
\(453\) 4.07297e6 0.932536
\(454\) −5.15621e6 −1.17406
\(455\) 0 0
\(456\) −135936. −0.0306142
\(457\) 227798. 0.0510222 0.0255111 0.999675i \(-0.491879\pi\)
0.0255111 + 0.999675i \(0.491879\pi\)
\(458\) 2.71286e6 0.604315
\(459\) 1.15328e6 0.255507
\(460\) 0 0
\(461\) 585146. 0.128237 0.0641183 0.997942i \(-0.479577\pi\)
0.0641183 + 0.997942i \(0.479577\pi\)
\(462\) −1.17130e6 −0.255306
\(463\) 3.41454e6 0.740251 0.370126 0.928982i \(-0.379315\pi\)
0.370126 + 0.928982i \(0.379315\pi\)
\(464\) −1.26822e6 −0.273465
\(465\) 0 0
\(466\) 4.46924e6 0.953386
\(467\) −716300. −0.151986 −0.0759929 0.997108i \(-0.524213\pi\)
−0.0759929 + 0.997108i \(0.524213\pi\)
\(468\) −412128. −0.0869796
\(469\) −2.00763e6 −0.421455
\(470\) 0 0
\(471\) −4.49159e6 −0.932928
\(472\) −987904. −0.204108
\(473\) 5.61213e6 1.15339
\(474\) −3.21840e6 −0.657952
\(475\) 0 0
\(476\) −1.24029e6 −0.250903
\(477\) 2.70167e6 0.543672
\(478\) −5.04782e6 −1.01050
\(479\) 5.24092e6 1.04368 0.521842 0.853042i \(-0.325245\pi\)
0.521842 + 0.853042i \(0.325245\pi\)
\(480\) 0 0
\(481\) 1.38584e6 0.273119
\(482\) 3.79287e6 0.743619
\(483\) 975492. 0.190264
\(484\) 4.47752e6 0.868809
\(485\) 0 0
\(486\) −236196. −0.0453609
\(487\) −1.11702e6 −0.213421 −0.106710 0.994290i \(-0.534032\pi\)
−0.106710 + 0.994290i \(0.534032\pi\)
\(488\) −2.35277e6 −0.447229
\(489\) −4.28029e6 −0.809471
\(490\) 0 0
\(491\) 1.34458e6 0.251699 0.125850 0.992049i \(-0.459834\pi\)
0.125850 + 0.992049i \(0.459834\pi\)
\(492\) −1.51805e6 −0.282731
\(493\) 7.83723e6 1.45226
\(494\) −300192. −0.0553454
\(495\) 0 0
\(496\) −1.82477e6 −0.333045
\(497\) −445508. −0.0809030
\(498\) −231408. −0.0418124
\(499\) −6.54648e6 −1.17695 −0.588473 0.808517i \(-0.700271\pi\)
−0.588473 + 0.808517i \(0.700271\pi\)
\(500\) 0 0
\(501\) 1.08202e6 0.192592
\(502\) −1.94558e6 −0.344580
\(503\) 8.22050e6 1.44870 0.724350 0.689432i \(-0.242140\pi\)
0.724350 + 0.689432i \(0.242140\pi\)
\(504\) 254016. 0.0445435
\(505\) 0 0
\(506\) −5.87507e6 −1.02009
\(507\) 2.43152e6 0.420105
\(508\) −2.96640e6 −0.510000
\(509\) −5.11045e6 −0.874308 −0.437154 0.899387i \(-0.644013\pi\)
−0.437154 + 0.899387i \(0.644013\pi\)
\(510\) 0 0
\(511\) 3.59925e6 0.609760
\(512\) 262144. 0.0441942
\(513\) −172044. −0.0288633
\(514\) 4.15639e6 0.693919
\(515\) 0 0
\(516\) −1.21709e6 −0.201232
\(517\) −3.55373e6 −0.584733
\(518\) −854168. −0.139868
\(519\) 4.57987e6 0.746336
\(520\) 0 0
\(521\) 9.69999e6 1.56559 0.782793 0.622282i \(-0.213794\pi\)
0.782793 + 0.622282i \(0.213794\pi\)
\(522\) −1.60510e6 −0.257825
\(523\) 3.17295e6 0.507234 0.253617 0.967305i \(-0.418380\pi\)
0.253617 + 0.967305i \(0.418380\pi\)
\(524\) 1.03251e6 0.164273
\(525\) 0 0
\(526\) −5.40418e6 −0.851658
\(527\) 1.12765e7 1.76867
\(528\) −1.52986e6 −0.238817
\(529\) −1.54340e6 −0.239794
\(530\) 0 0
\(531\) −1.25032e6 −0.192435
\(532\) 185024. 0.0283432
\(533\) −3.35236e6 −0.511131
\(534\) 4.41569e6 0.670109
\(535\) 0 0
\(536\) −2.62221e6 −0.394235
\(537\) −4.38804e6 −0.656651
\(538\) −4.47244e6 −0.666176
\(539\) 1.59426e6 0.236368
\(540\) 0 0
\(541\) −6.62575e6 −0.973289 −0.486644 0.873600i \(-0.661779\pi\)
−0.486644 + 0.873600i \(0.661779\pi\)
\(542\) −760416. −0.111187
\(543\) 4.89969e6 0.713131
\(544\) −1.61997e6 −0.234698
\(545\) 0 0
\(546\) 560952. 0.0805275
\(547\) −3.84707e6 −0.549745 −0.274873 0.961481i \(-0.588636\pi\)
−0.274873 + 0.961481i \(0.588636\pi\)
\(548\) −2.44688e6 −0.348066
\(549\) −2.97772e6 −0.421651
\(550\) 0 0
\(551\) −1.16914e6 −0.164055
\(552\) 1.27411e6 0.177975
\(553\) 4.38060e6 0.609145
\(554\) 802024. 0.111023
\(555\) 0 0
\(556\) −5.49536e6 −0.753892
\(557\) −5.00176e6 −0.683101 −0.341550 0.939863i \(-0.610952\pi\)
−0.341550 + 0.939863i \(0.610952\pi\)
\(558\) −2.30947e6 −0.313998
\(559\) −2.68774e6 −0.363795
\(560\) 0 0
\(561\) 9.45403e6 1.26826
\(562\) 4.36948e6 0.583565
\(563\) −2.27772e6 −0.302852 −0.151426 0.988469i \(-0.548386\pi\)
−0.151426 + 0.988469i \(0.548386\pi\)
\(564\) 770688. 0.102019
\(565\) 0 0
\(566\) −7.25032e6 −0.951297
\(567\) 321489. 0.0419961
\(568\) −581888. −0.0756778
\(569\) 8.86979e6 1.14850 0.574252 0.818678i \(-0.305293\pi\)
0.574252 + 0.818678i \(0.305293\pi\)
\(570\) 0 0
\(571\) 1.40102e7 1.79826 0.899132 0.437678i \(-0.144199\pi\)
0.899132 + 0.437678i \(0.144199\pi\)
\(572\) −3.37843e6 −0.431743
\(573\) −3.38764e6 −0.431033
\(574\) 2.06623e6 0.261758
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) −8.75327e6 −1.09454 −0.547269 0.836957i \(-0.684332\pi\)
−0.547269 + 0.836957i \(0.684332\pi\)
\(578\) 4.33147e6 0.539281
\(579\) 7.60451e6 0.942703
\(580\) 0 0
\(581\) 314972. 0.0387108
\(582\) 769320. 0.0941455
\(583\) 2.21471e7 2.69864
\(584\) 4.70106e6 0.570379
\(585\) 0 0
\(586\) −8.40122e6 −1.01064
\(587\) 1.06117e7 1.27113 0.635564 0.772048i \(-0.280768\pi\)
0.635564 + 0.772048i \(0.280768\pi\)
\(588\) −345744. −0.0412393
\(589\) −1.68221e6 −0.199798
\(590\) 0 0
\(591\) −4.43515e6 −0.522323
\(592\) −1.11565e6 −0.130835
\(593\) −1.88552e6 −0.220188 −0.110094 0.993921i \(-0.535115\pi\)
−0.110094 + 0.993921i \(0.535115\pi\)
\(594\) −1.93622e6 −0.225159
\(595\) 0 0
\(596\) −2.79773e6 −0.322619
\(597\) 8.23298e6 0.945413
\(598\) 2.81366e6 0.321751
\(599\) 1.27256e7 1.44915 0.724573 0.689198i \(-0.242037\pi\)
0.724573 + 0.689198i \(0.242037\pi\)
\(600\) 0 0
\(601\) 7.18846e6 0.811801 0.405900 0.913917i \(-0.366958\pi\)
0.405900 + 0.913917i \(0.366958\pi\)
\(602\) 1.65659e6 0.186305
\(603\) −3.31873e6 −0.371688
\(604\) −7.24083e6 −0.807600
\(605\) 0 0
\(606\) 1.32530e6 0.146600
\(607\) −1.08494e7 −1.19519 −0.597593 0.801800i \(-0.703876\pi\)
−0.597593 + 0.801800i \(0.703876\pi\)
\(608\) 241664. 0.0265126
\(609\) 2.18471e6 0.238699
\(610\) 0 0
\(611\) 1.70194e6 0.184434
\(612\) −2.05027e6 −0.221275
\(613\) 4.90511e6 0.527227 0.263614 0.964628i \(-0.415086\pi\)
0.263614 + 0.964628i \(0.415086\pi\)
\(614\) 6.56418e6 0.702683
\(615\) 0 0
\(616\) 2.08230e6 0.221102
\(617\) −2.58445e6 −0.273310 −0.136655 0.990619i \(-0.543635\pi\)
−0.136655 + 0.990619i \(0.543635\pi\)
\(618\) 3.76301e6 0.396336
\(619\) −4.99336e6 −0.523801 −0.261901 0.965095i \(-0.584349\pi\)
−0.261901 + 0.965095i \(0.584349\pi\)
\(620\) 0 0
\(621\) 1.61255e6 0.167797
\(622\) −3.78093e6 −0.391852
\(623\) −6.01024e6 −0.620400
\(624\) 732672. 0.0753266
\(625\) 0 0
\(626\) −1.66142e6 −0.169450
\(627\) −1.41034e6 −0.143269
\(628\) 7.98506e6 0.807940
\(629\) 6.89436e6 0.694812
\(630\) 0 0
\(631\) −1.18219e7 −1.18199 −0.590997 0.806674i \(-0.701265\pi\)
−0.590997 + 0.806674i \(0.701265\pi\)
\(632\) 5.72160e6 0.569803
\(633\) −2.80602e6 −0.278344
\(634\) −4.73926e6 −0.468260
\(635\) 0 0
\(636\) −4.80298e6 −0.470834
\(637\) −763518. −0.0745540
\(638\) −1.31578e7 −1.27977
\(639\) −736452. −0.0713497
\(640\) 0 0
\(641\) −5.47007e6 −0.525833 −0.262916 0.964819i \(-0.584684\pi\)
−0.262916 + 0.964819i \(0.584684\pi\)
\(642\) 7.71984e6 0.739215
\(643\) −9.64934e6 −0.920386 −0.460193 0.887819i \(-0.652220\pi\)
−0.460193 + 0.887819i \(0.652220\pi\)
\(644\) −1.73421e6 −0.164773
\(645\) 0 0
\(646\) −1.49341e6 −0.140798
\(647\) −292368. −0.0274580 −0.0137290 0.999906i \(-0.504370\pi\)
−0.0137290 + 0.999906i \(0.504370\pi\)
\(648\) 419904. 0.0392837
\(649\) −1.02495e7 −0.955193
\(650\) 0 0
\(651\) 3.14345e6 0.290706
\(652\) 7.60941e6 0.701022
\(653\) −6.94081e6 −0.636982 −0.318491 0.947926i \(-0.603176\pi\)
−0.318491 + 0.947926i \(0.603176\pi\)
\(654\) −1.03673e6 −0.0947808
\(655\) 0 0
\(656\) 2.69875e6 0.244852
\(657\) 5.94977e6 0.537758
\(658\) −1.04899e6 −0.0944512
\(659\) −1.32912e7 −1.19221 −0.596104 0.802908i \(-0.703285\pi\)
−0.596104 + 0.802908i \(0.703285\pi\)
\(660\) 0 0
\(661\) 2.05219e6 0.182690 0.0913448 0.995819i \(-0.470883\pi\)
0.0913448 + 0.995819i \(0.470883\pi\)
\(662\) 5.48619e6 0.486548
\(663\) −4.52768e6 −0.400030
\(664\) 411392. 0.0362106
\(665\) 0 0
\(666\) −1.41199e6 −0.123352
\(667\) 1.09582e7 0.953732
\(668\) −1.92358e6 −0.166790
\(669\) −1.15898e7 −1.00118
\(670\) 0 0
\(671\) −2.44100e7 −2.09296
\(672\) −451584. −0.0385758
\(673\) 1.57039e7 1.33650 0.668252 0.743935i \(-0.267043\pi\)
0.668252 + 0.743935i \(0.267043\pi\)
\(674\) −3.85409e6 −0.326792
\(675\) 0 0
\(676\) −4.32270e6 −0.363822
\(677\) 969534. 0.0813002 0.0406501 0.999173i \(-0.487057\pi\)
0.0406501 + 0.999173i \(0.487057\pi\)
\(678\) −2.01650e6 −0.168471
\(679\) −1.04713e6 −0.0871618
\(680\) 0 0
\(681\) 1.16015e7 0.958617
\(682\) −1.89320e7 −1.55860
\(683\) 1.49908e7 1.22962 0.614812 0.788673i \(-0.289232\pi\)
0.614812 + 0.788673i \(0.289232\pi\)
\(684\) 305856. 0.0249964
\(685\) 0 0
\(686\) 470596. 0.0381802
\(687\) −6.10393e6 −0.493421
\(688\) 2.16371e6 0.174272
\(689\) −1.06066e7 −0.851191
\(690\) 0 0
\(691\) −7.16038e6 −0.570481 −0.285240 0.958456i \(-0.592073\pi\)
−0.285240 + 0.958456i \(0.592073\pi\)
\(692\) −8.14198e6 −0.646346
\(693\) 2.63542e6 0.208457
\(694\) −1.03092e7 −0.812509
\(695\) 0 0
\(696\) 2.85350e6 0.223283
\(697\) −1.66774e7 −1.30031
\(698\) −1.22701e7 −0.953253
\(699\) −1.00558e7 −0.778437
\(700\) 0 0
\(701\) −91834.0 −0.00705844 −0.00352922 0.999994i \(-0.501123\pi\)
−0.00352922 + 0.999994i \(0.501123\pi\)
\(702\) 927288. 0.0710186
\(703\) −1.02849e6 −0.0784894
\(704\) 2.71974e6 0.206822
\(705\) 0 0
\(706\) 1.24058e7 0.936725
\(707\) −1.80389e6 −0.135725
\(708\) 2.22278e6 0.166653
\(709\) 2.20981e7 1.65097 0.825487 0.564422i \(-0.190901\pi\)
0.825487 + 0.564422i \(0.190901\pi\)
\(710\) 0 0
\(711\) 7.24140e6 0.537216
\(712\) −7.85011e6 −0.580331
\(713\) 1.57671e7 1.16153
\(714\) 2.79065e6 0.204861
\(715\) 0 0
\(716\) 7.80096e6 0.568677
\(717\) 1.13576e7 0.825066
\(718\) −1.31003e6 −0.0948355
\(719\) 1.58388e7 1.14262 0.571308 0.820736i \(-0.306436\pi\)
0.571308 + 0.820736i \(0.306436\pi\)
\(720\) 0 0
\(721\) −5.12187e6 −0.366936
\(722\) −9.68161e6 −0.691202
\(723\) −8.53396e6 −0.607163
\(724\) −8.71056e6 −0.617589
\(725\) 0 0
\(726\) −1.00744e7 −0.709379
\(727\) −6.31418e6 −0.443078 −0.221539 0.975151i \(-0.571108\pi\)
−0.221539 + 0.975151i \(0.571108\pi\)
\(728\) −997248. −0.0697388
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.33711e7 −0.925492
\(732\) 5.29373e6 0.365161
\(733\) −6.93003e6 −0.476404 −0.238202 0.971216i \(-0.576558\pi\)
−0.238202 + 0.971216i \(0.576558\pi\)
\(734\) 1.14696e7 0.785791
\(735\) 0 0
\(736\) −2.26509e6 −0.154131
\(737\) −2.72054e7 −1.84496
\(738\) 3.41561e6 0.230849
\(739\) 1.42331e7 0.958714 0.479357 0.877620i \(-0.340870\pi\)
0.479357 + 0.877620i \(0.340870\pi\)
\(740\) 0 0
\(741\) 675432. 0.0451894
\(742\) 6.53738e6 0.435907
\(743\) 5.94460e6 0.395048 0.197524 0.980298i \(-0.436710\pi\)
0.197524 + 0.980298i \(0.436710\pi\)
\(744\) 4.10573e6 0.271930
\(745\) 0 0
\(746\) −1.43212e7 −0.942175
\(747\) 520668. 0.0341397
\(748\) −1.68072e7 −1.09835
\(749\) −1.05076e7 −0.684380
\(750\) 0 0
\(751\) −682752. −0.0441736 −0.0220868 0.999756i \(-0.507031\pi\)
−0.0220868 + 0.999756i \(0.507031\pi\)
\(752\) −1.37011e6 −0.0883510
\(753\) 4.37756e6 0.281349
\(754\) 6.30149e6 0.403659
\(755\) 0 0
\(756\) −571536. −0.0363696
\(757\) −1.46333e7 −0.928116 −0.464058 0.885805i \(-0.653607\pi\)
−0.464058 + 0.885805i \(0.653607\pi\)
\(758\) 6.56939e6 0.415291
\(759\) 1.32189e7 0.832897
\(760\) 0 0
\(761\) −1.16367e7 −0.728399 −0.364200 0.931321i \(-0.618657\pi\)
−0.364200 + 0.931321i \(0.618657\pi\)
\(762\) 6.67440e6 0.416414
\(763\) 1.41110e6 0.0877500
\(764\) 6.02246e6 0.373285
\(765\) 0 0
\(766\) 8.22790e6 0.506661
\(767\) 4.90865e6 0.301282
\(768\) −589824. −0.0360844
\(769\) 1.91472e7 1.16759 0.583793 0.811902i \(-0.301568\pi\)
0.583793 + 0.811902i \(0.301568\pi\)
\(770\) 0 0
\(771\) −9.35188e6 −0.566582
\(772\) −1.35191e7 −0.816405
\(773\) 5.39261e6 0.324601 0.162301 0.986741i \(-0.448109\pi\)
0.162301 + 0.986741i \(0.448109\pi\)
\(774\) 2.73845e6 0.164305
\(775\) 0 0
\(776\) −1.36768e6 −0.0815324
\(777\) 1.92188e6 0.114202
\(778\) 2.46457e6 0.145979
\(779\) 2.48791e6 0.146890
\(780\) 0 0
\(781\) −6.03709e6 −0.354160
\(782\) 1.39975e7 0.818530
\(783\) 3.61147e6 0.210513
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) −2.32315e6 −0.134129
\(787\) −3.04348e6 −0.175159 −0.0875796 0.996158i \(-0.527913\pi\)
−0.0875796 + 0.996158i \(0.527913\pi\)
\(788\) 7.88470e6 0.452345
\(789\) 1.21594e7 0.695376
\(790\) 0 0
\(791\) 2.74469e6 0.155974
\(792\) 3.44218e6 0.194993
\(793\) 1.16903e7 0.660151
\(794\) −8.76847e6 −0.493597
\(795\) 0 0
\(796\) −1.46364e7 −0.818751
\(797\) −2.29652e7 −1.28063 −0.640316 0.768111i \(-0.721197\pi\)
−0.640316 + 0.768111i \(0.721197\pi\)
\(798\) −416304. −0.0231421
\(799\) 8.46686e6 0.469197
\(800\) 0 0
\(801\) −9.93530e6 −0.547141
\(802\) 1.31382e7 0.721271
\(803\) 4.87735e7 2.66928
\(804\) 5.89997e6 0.321892
\(805\) 0 0
\(806\) 9.06682e6 0.491606
\(807\) 1.00630e7 0.543930
\(808\) −2.35610e6 −0.126959
\(809\) 1.90787e7 1.02489 0.512445 0.858720i \(-0.328740\pi\)
0.512445 + 0.858720i \(0.328740\pi\)
\(810\) 0 0
\(811\) 1.09414e7 0.584147 0.292074 0.956396i \(-0.405655\pi\)
0.292074 + 0.956396i \(0.405655\pi\)
\(812\) −3.88394e6 −0.206720
\(813\) 1.71094e6 0.0907836
\(814\) −1.15748e7 −0.612286
\(815\) 0 0
\(816\) 3.64493e6 0.191630
\(817\) 1.99467e6 0.104548
\(818\) −1.44488e7 −0.755001
\(819\) −1.26214e6 −0.0657504
\(820\) 0 0
\(821\) 2.12594e7 1.10076 0.550380 0.834914i \(-0.314483\pi\)
0.550380 + 0.834914i \(0.314483\pi\)
\(822\) 5.50548e6 0.284194
\(823\) 1.42256e7 0.732103 0.366052 0.930595i \(-0.380709\pi\)
0.366052 + 0.930595i \(0.380709\pi\)
\(824\) −6.68979e6 −0.343237
\(825\) 0 0
\(826\) −3.02546e6 −0.154291
\(827\) −2.76103e6 −0.140381 −0.0701904 0.997534i \(-0.522361\pi\)
−0.0701904 + 0.997534i \(0.522361\pi\)
\(828\) −2.86675e6 −0.145316
\(829\) −3.82147e7 −1.93127 −0.965637 0.259895i \(-0.916312\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(830\) 0 0
\(831\) −1.80455e6 −0.0906499
\(832\) −1.30253e6 −0.0652347
\(833\) −3.79838e6 −0.189665
\(834\) 1.23646e7 0.615550
\(835\) 0 0
\(836\) 2.50726e6 0.124075
\(837\) 5.19631e6 0.256378
\(838\) 2.16596e7 1.06547
\(839\) 1.06044e7 0.520094 0.260047 0.965596i \(-0.416262\pi\)
0.260047 + 0.965596i \(0.416262\pi\)
\(840\) 0 0
\(841\) 4.03097e6 0.196526
\(842\) 1.44252e7 0.701198
\(843\) −9.83133e6 −0.476479
\(844\) 4.98848e6 0.241053
\(845\) 0 0
\(846\) −1.73405e6 −0.0832981
\(847\) 1.37124e7 0.656758
\(848\) 8.53862e6 0.407754
\(849\) 1.63132e7 0.776731
\(850\) 0 0
\(851\) 9.63990e6 0.456298
\(852\) 1.30925e6 0.0617907
\(853\) 4.07009e7 1.91527 0.957637 0.287977i \(-0.0929826\pi\)
0.957637 + 0.287977i \(0.0929826\pi\)
\(854\) −7.20535e6 −0.338073
\(855\) 0 0
\(856\) −1.37242e7 −0.640179
\(857\) 3.10120e7 1.44237 0.721187 0.692741i \(-0.243597\pi\)
0.721187 + 0.692741i \(0.243597\pi\)
\(858\) 7.60147e6 0.352517
\(859\) 1.09104e7 0.504495 0.252247 0.967663i \(-0.418830\pi\)
0.252247 + 0.967663i \(0.418830\pi\)
\(860\) 0 0
\(861\) −4.64902e6 −0.213724
\(862\) −1.11286e7 −0.510118
\(863\) −1.04089e7 −0.475751 −0.237875 0.971296i \(-0.576451\pi\)
−0.237875 + 0.971296i \(0.576451\pi\)
\(864\) −746496. −0.0340207
\(865\) 0 0
\(866\) −2.51048e7 −1.13753
\(867\) −9.74580e6 −0.440321
\(868\) −5.58835e6 −0.251759
\(869\) 5.93616e7 2.66659
\(870\) 0 0
\(871\) 1.30291e7 0.581928
\(872\) 1.84307e6 0.0820826
\(873\) −1.73097e6 −0.0768695
\(874\) −2.08813e6 −0.0924652
\(875\) 0 0
\(876\) −1.05774e7 −0.465712
\(877\) −1.64064e7 −0.720299 −0.360150 0.932895i \(-0.617274\pi\)
−0.360150 + 0.932895i \(0.617274\pi\)
\(878\) 2.56637e6 0.112352
\(879\) 1.89028e7 0.825188
\(880\) 0 0
\(881\) 1.48577e7 0.644927 0.322464 0.946582i \(-0.395489\pi\)
0.322464 + 0.946582i \(0.395489\pi\)
\(882\) 777924. 0.0336718
\(883\) 2.72018e7 1.17407 0.587037 0.809560i \(-0.300294\pi\)
0.587037 + 0.809560i \(0.300294\pi\)
\(884\) 8.04922e6 0.346436
\(885\) 0 0
\(886\) −2.42218e7 −1.03663
\(887\) −2.71242e7 −1.15757 −0.578785 0.815480i \(-0.696473\pi\)
−0.578785 + 0.815480i \(0.696473\pi\)
\(888\) 2.51021e6 0.106826
\(889\) −9.08460e6 −0.385524
\(890\) 0 0
\(891\) 4.35650e6 0.183842
\(892\) 2.06042e7 0.867047
\(893\) −1.26307e6 −0.0530029
\(894\) 6.29489e6 0.263417
\(895\) 0 0
\(896\) 802816. 0.0334077
\(897\) −6.33074e6 −0.262708
\(898\) −2.06673e7 −0.855248
\(899\) 3.53121e7 1.45722
\(900\) 0 0
\(901\) −5.27660e7 −2.16542
\(902\) 2.79996e7 1.14587
\(903\) −3.72733e6 −0.152117
\(904\) 3.58490e6 0.145900
\(905\) 0 0
\(906\) 1.62919e7 0.659402
\(907\) 8.42269e6 0.339964 0.169982 0.985447i \(-0.445629\pi\)
0.169982 + 0.985447i \(0.445629\pi\)
\(908\) −2.06248e7 −0.830187
\(909\) −2.98193e6 −0.119698
\(910\) 0 0
\(911\) 3.08637e7 1.23212 0.616060 0.787700i \(-0.288728\pi\)
0.616060 + 0.787700i \(0.288728\pi\)
\(912\) −543744. −0.0216475
\(913\) 4.26819e6 0.169460
\(914\) 911192. 0.0360782
\(915\) 0 0
\(916\) 1.08514e7 0.427315
\(917\) 3.16207e6 0.124179
\(918\) 4.61311e6 0.180671
\(919\) 4.93895e6 0.192906 0.0964531 0.995338i \(-0.469250\pi\)
0.0964531 + 0.995338i \(0.469250\pi\)
\(920\) 0 0
\(921\) −1.47694e7 −0.573738
\(922\) 2.34058e6 0.0906770
\(923\) 2.89126e6 0.111707
\(924\) −4.68518e6 −0.180529
\(925\) 0 0
\(926\) 1.36581e7 0.523437
\(927\) −8.46677e6 −0.323607
\(928\) −5.07290e6 −0.193369
\(929\) 5.62575e6 0.213866 0.106933 0.994266i \(-0.465897\pi\)
0.106933 + 0.994266i \(0.465897\pi\)
\(930\) 0 0
\(931\) 566636. 0.0214255
\(932\) 1.78770e7 0.674146
\(933\) 8.50709e6 0.319946
\(934\) −2.86520e6 −0.107470
\(935\) 0 0
\(936\) −1.64851e6 −0.0615039
\(937\) −2.60073e7 −0.967714 −0.483857 0.875147i \(-0.660764\pi\)
−0.483857 + 0.875147i \(0.660764\pi\)
\(938\) −8.03051e6 −0.298014
\(939\) 3.73819e6 0.138356
\(940\) 0 0
\(941\) 3.02160e6 0.111241 0.0556203 0.998452i \(-0.482286\pi\)
0.0556203 + 0.998452i \(0.482286\pi\)
\(942\) −1.79664e7 −0.659680
\(943\) −2.33189e7 −0.853943
\(944\) −3.95162e6 −0.144326
\(945\) 0 0
\(946\) 2.24485e7 0.815567
\(947\) 3.48282e7 1.26199 0.630995 0.775787i \(-0.282647\pi\)
0.630995 + 0.775787i \(0.282647\pi\)
\(948\) −1.28736e7 −0.465242
\(949\) −2.33584e7 −0.841932
\(950\) 0 0
\(951\) 1.06633e7 0.382333
\(952\) −4.96115e6 −0.177415
\(953\) 9.39009e6 0.334917 0.167459 0.985879i \(-0.446444\pi\)
0.167459 + 0.985879i \(0.446444\pi\)
\(954\) 1.08067e7 0.384434
\(955\) 0 0
\(956\) −2.01913e7 −0.714528
\(957\) 2.96051e7 1.04493
\(958\) 2.09637e7 0.737996
\(959\) −7.49357e6 −0.263113
\(960\) 0 0
\(961\) 2.21792e7 0.774708
\(962\) 5.54338e6 0.193124
\(963\) −1.73696e7 −0.603566
\(964\) 1.51715e7 0.525818
\(965\) 0 0
\(966\) 3.90197e6 0.134537
\(967\) −1.44768e7 −0.497860 −0.248930 0.968521i \(-0.580079\pi\)
−0.248930 + 0.968521i \(0.580079\pi\)
\(968\) 1.79101e7 0.614340
\(969\) 3.36017e6 0.114961
\(970\) 0 0
\(971\) 9.24976e6 0.314834 0.157417 0.987532i \(-0.449683\pi\)
0.157417 + 0.987532i \(0.449683\pi\)
\(972\) −944784. −0.0320750
\(973\) −1.68295e7 −0.569889
\(974\) −4.46806e6 −0.150911
\(975\) 0 0
\(976\) −9.41107e6 −0.316238
\(977\) 4.97780e7 1.66840 0.834202 0.551459i \(-0.185929\pi\)
0.834202 + 0.551459i \(0.185929\pi\)
\(978\) −1.71212e7 −0.572382
\(979\) −8.14449e7 −2.71586
\(980\) 0 0
\(981\) 2.33264e6 0.0773882
\(982\) 5.37830e6 0.177978
\(983\) 8.95601e6 0.295618 0.147809 0.989016i \(-0.452778\pi\)
0.147809 + 0.989016i \(0.452778\pi\)
\(984\) −6.07219e6 −0.199921
\(985\) 0 0
\(986\) 3.13489e7 1.02690
\(987\) 2.36023e6 0.0771191
\(988\) −1.20077e6 −0.0391351
\(989\) −1.86958e7 −0.607790
\(990\) 0 0
\(991\) 2.62400e7 0.848751 0.424376 0.905486i \(-0.360494\pi\)
0.424376 + 0.905486i \(0.360494\pi\)
\(992\) −7.29907e6 −0.235499
\(993\) −1.23439e7 −0.397265
\(994\) −1.78203e6 −0.0572070
\(995\) 0 0
\(996\) −925632. −0.0295658
\(997\) −2.80506e7 −0.893727 −0.446863 0.894602i \(-0.647459\pi\)
−0.446863 + 0.894602i \(0.647459\pi\)
\(998\) −2.61859e7 −0.832226
\(999\) 3.17698e6 0.100717
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.a.k.1.1 1
5.2 odd 4 1050.6.g.i.799.2 2
5.3 odd 4 1050.6.g.i.799.1 2
5.4 even 2 42.6.a.d.1.1 1
15.14 odd 2 126.6.a.i.1.1 1
20.19 odd 2 336.6.a.h.1.1 1
35.4 even 6 294.6.e.i.79.1 2
35.9 even 6 294.6.e.i.67.1 2
35.19 odd 6 294.6.e.p.67.1 2
35.24 odd 6 294.6.e.p.79.1 2
35.34 odd 2 294.6.a.b.1.1 1
60.59 even 2 1008.6.a.j.1.1 1
105.104 even 2 882.6.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.d.1.1 1 5.4 even 2
126.6.a.i.1.1 1 15.14 odd 2
294.6.a.b.1.1 1 35.34 odd 2
294.6.e.i.67.1 2 35.9 even 6
294.6.e.i.79.1 2 35.4 even 6
294.6.e.p.67.1 2 35.19 odd 6
294.6.e.p.79.1 2 35.24 odd 6
336.6.a.h.1.1 1 20.19 odd 2
882.6.a.s.1.1 1 105.104 even 2
1008.6.a.j.1.1 1 60.59 even 2
1050.6.a.k.1.1 1 1.1 even 1 trivial
1050.6.g.i.799.1 2 5.3 odd 4
1050.6.g.i.799.2 2 5.2 odd 4