Properties

Label 1050.6.a.f.1.1
Level $1050$
Weight $6$
Character 1050.1
Self dual yes
Analytic conductor $168.403$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1050,6,Mod(1,1050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1050.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(168.403010804\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -36.0000 q^{6} +49.0000 q^{7} -64.0000 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-4.00000 q^{2} +9.00000 q^{3} +16.0000 q^{4} -36.0000 q^{6} +49.0000 q^{7} -64.0000 q^{8} +81.0000 q^{9} +650.000 q^{11} +144.000 q^{12} -762.000 q^{13} -196.000 q^{14} +256.000 q^{16} +556.000 q^{17} -324.000 q^{18} -2452.00 q^{19} +441.000 q^{21} -2600.00 q^{22} +2950.00 q^{23} -576.000 q^{24} +3048.00 q^{26} +729.000 q^{27} +784.000 q^{28} -674.000 q^{29} -3024.00 q^{31} -1024.00 q^{32} +5850.00 q^{33} -2224.00 q^{34} +1296.00 q^{36} -7730.00 q^{37} +9808.00 q^{38} -6858.00 q^{39} -17016.0 q^{41} -1764.00 q^{42} -21836.0 q^{43} +10400.0 q^{44} -11800.0 q^{46} +23940.0 q^{47} +2304.00 q^{48} +2401.00 q^{49} +5004.00 q^{51} -12192.0 q^{52} -15594.0 q^{53} -2916.00 q^{54} -3136.00 q^{56} -22068.0 q^{57} +2696.00 q^{58} +5608.00 q^{59} +150.000 q^{61} +12096.0 q^{62} +3969.00 q^{63} +4096.00 q^{64} -23400.0 q^{66} +43784.0 q^{67} +8896.00 q^{68} +26550.0 q^{69} -39178.0 q^{71} -5184.00 q^{72} +23570.0 q^{73} +30920.0 q^{74} -39232.0 q^{76} +31850.0 q^{77} +27432.0 q^{78} -17892.0 q^{79} +6561.00 q^{81} +68064.0 q^{82} -38972.0 q^{83} +7056.00 q^{84} +87344.0 q^{86} -6066.00 q^{87} -41600.0 q^{88} +6024.00 q^{89} -37338.0 q^{91} +47200.0 q^{92} -27216.0 q^{93} -95760.0 q^{94} -9216.00 q^{96} -108430. q^{97} -9604.00 q^{98} +52650.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 9.00000 0.577350
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −36.0000 −0.408248
\(7\) 49.0000 0.377964
\(8\) −64.0000 −0.353553
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 650.000 1.61969 0.809845 0.586645i \(-0.199551\pi\)
0.809845 + 0.586645i \(0.199551\pi\)
\(12\) 144.000 0.288675
\(13\) −762.000 −1.25054 −0.625269 0.780410i \(-0.715011\pi\)
−0.625269 + 0.780410i \(0.715011\pi\)
\(14\) −196.000 −0.267261
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 556.000 0.466608 0.233304 0.972404i \(-0.425046\pi\)
0.233304 + 0.972404i \(0.425046\pi\)
\(18\) −324.000 −0.235702
\(19\) −2452.00 −1.55825 −0.779124 0.626870i \(-0.784336\pi\)
−0.779124 + 0.626870i \(0.784336\pi\)
\(20\) 0 0
\(21\) 441.000 0.218218
\(22\) −2600.00 −1.14529
\(23\) 2950.00 1.16279 0.581397 0.813620i \(-0.302507\pi\)
0.581397 + 0.813620i \(0.302507\pi\)
\(24\) −576.000 −0.204124
\(25\) 0 0
\(26\) 3048.00 0.884263
\(27\) 729.000 0.192450
\(28\) 784.000 0.188982
\(29\) −674.000 −0.148821 −0.0744106 0.997228i \(-0.523708\pi\)
−0.0744106 + 0.997228i \(0.523708\pi\)
\(30\) 0 0
\(31\) −3024.00 −0.565168 −0.282584 0.959243i \(-0.591192\pi\)
−0.282584 + 0.959243i \(0.591192\pi\)
\(32\) −1024.00 −0.176777
\(33\) 5850.00 0.935128
\(34\) −2224.00 −0.329942
\(35\) 0 0
\(36\) 1296.00 0.166667
\(37\) −7730.00 −0.928272 −0.464136 0.885764i \(-0.653635\pi\)
−0.464136 + 0.885764i \(0.653635\pi\)
\(38\) 9808.00 1.10185
\(39\) −6858.00 −0.721998
\(40\) 0 0
\(41\) −17016.0 −1.58088 −0.790438 0.612542i \(-0.790147\pi\)
−0.790438 + 0.612542i \(0.790147\pi\)
\(42\) −1764.00 −0.154303
\(43\) −21836.0 −1.80095 −0.900476 0.434907i \(-0.856781\pi\)
−0.900476 + 0.434907i \(0.856781\pi\)
\(44\) 10400.0 0.809845
\(45\) 0 0
\(46\) −11800.0 −0.822219
\(47\) 23940.0 1.58081 0.790405 0.612585i \(-0.209870\pi\)
0.790405 + 0.612585i \(0.209870\pi\)
\(48\) 2304.00 0.144338
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) 5004.00 0.269396
\(52\) −12192.0 −0.625269
\(53\) −15594.0 −0.762549 −0.381275 0.924462i \(-0.624515\pi\)
−0.381275 + 0.924462i \(0.624515\pi\)
\(54\) −2916.00 −0.136083
\(55\) 0 0
\(56\) −3136.00 −0.133631
\(57\) −22068.0 −0.899655
\(58\) 2696.00 0.105233
\(59\) 5608.00 0.209738 0.104869 0.994486i \(-0.466558\pi\)
0.104869 + 0.994486i \(0.466558\pi\)
\(60\) 0 0
\(61\) 150.000 0.00516139 0.00258069 0.999997i \(-0.499179\pi\)
0.00258069 + 0.999997i \(0.499179\pi\)
\(62\) 12096.0 0.399634
\(63\) 3969.00 0.125988
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) −23400.0 −0.661235
\(67\) 43784.0 1.19159 0.595797 0.803135i \(-0.296836\pi\)
0.595797 + 0.803135i \(0.296836\pi\)
\(68\) 8896.00 0.233304
\(69\) 26550.0 0.671339
\(70\) 0 0
\(71\) −39178.0 −0.922351 −0.461176 0.887309i \(-0.652572\pi\)
−0.461176 + 0.887309i \(0.652572\pi\)
\(72\) −5184.00 −0.117851
\(73\) 23570.0 0.517669 0.258835 0.965922i \(-0.416662\pi\)
0.258835 + 0.965922i \(0.416662\pi\)
\(74\) 30920.0 0.656387
\(75\) 0 0
\(76\) −39232.0 −0.779124
\(77\) 31850.0 0.612185
\(78\) 27432.0 0.510530
\(79\) −17892.0 −0.322546 −0.161273 0.986910i \(-0.551560\pi\)
−0.161273 + 0.986910i \(0.551560\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) 68064.0 1.11785
\(83\) −38972.0 −0.620951 −0.310476 0.950581i \(-0.600488\pi\)
−0.310476 + 0.950581i \(0.600488\pi\)
\(84\) 7056.00 0.109109
\(85\) 0 0
\(86\) 87344.0 1.27346
\(87\) −6066.00 −0.0859220
\(88\) −41600.0 −0.572647
\(89\) 6024.00 0.0806139 0.0403070 0.999187i \(-0.487166\pi\)
0.0403070 + 0.999187i \(0.487166\pi\)
\(90\) 0 0
\(91\) −37338.0 −0.472659
\(92\) 47200.0 0.581397
\(93\) −27216.0 −0.326300
\(94\) −95760.0 −1.11780
\(95\) 0 0
\(96\) −9216.00 −0.102062
\(97\) −108430. −1.17009 −0.585046 0.811000i \(-0.698924\pi\)
−0.585046 + 0.811000i \(0.698924\pi\)
\(98\) −9604.00 −0.101015
\(99\) 52650.0 0.539896
\(100\) 0 0
\(101\) −70424.0 −0.686938 −0.343469 0.939164i \(-0.611602\pi\)
−0.343469 + 0.939164i \(0.611602\pi\)
\(102\) −20016.0 −0.190492
\(103\) 31552.0 0.293045 0.146522 0.989207i \(-0.453192\pi\)
0.146522 + 0.989207i \(0.453192\pi\)
\(104\) 48768.0 0.442132
\(105\) 0 0
\(106\) 62376.0 0.539204
\(107\) −108282. −0.914317 −0.457159 0.889385i \(-0.651133\pi\)
−0.457159 + 0.889385i \(0.651133\pi\)
\(108\) 11664.0 0.0962250
\(109\) −72146.0 −0.581629 −0.290814 0.956779i \(-0.593926\pi\)
−0.290814 + 0.956779i \(0.593926\pi\)
\(110\) 0 0
\(111\) −69570.0 −0.535938
\(112\) 12544.0 0.0944911
\(113\) −220906. −1.62746 −0.813732 0.581240i \(-0.802568\pi\)
−0.813732 + 0.581240i \(0.802568\pi\)
\(114\) 88272.0 0.636152
\(115\) 0 0
\(116\) −10784.0 −0.0744106
\(117\) −61722.0 −0.416846
\(118\) −22432.0 −0.148307
\(119\) 27244.0 0.176361
\(120\) 0 0
\(121\) 261449. 1.62339
\(122\) −600.000 −0.00364965
\(123\) −153144. −0.912719
\(124\) −48384.0 −0.282584
\(125\) 0 0
\(126\) −15876.0 −0.0890871
\(127\) 239652. 1.31847 0.659237 0.751935i \(-0.270879\pi\)
0.659237 + 0.751935i \(0.270879\pi\)
\(128\) −16384.0 −0.0883883
\(129\) −196524. −1.03978
\(130\) 0 0
\(131\) −274172. −1.39587 −0.697935 0.716161i \(-0.745897\pi\)
−0.697935 + 0.716161i \(0.745897\pi\)
\(132\) 93600.0 0.467564
\(133\) −120148. −0.588962
\(134\) −175136. −0.842584
\(135\) 0 0
\(136\) −35584.0 −0.164971
\(137\) 391154. 1.78052 0.890259 0.455455i \(-0.150523\pi\)
0.890259 + 0.455455i \(0.150523\pi\)
\(138\) −106200. −0.474708
\(139\) 339364. 1.48980 0.744901 0.667175i \(-0.232497\pi\)
0.744901 + 0.667175i \(0.232497\pi\)
\(140\) 0 0
\(141\) 215460. 0.912681
\(142\) 156712. 0.652201
\(143\) −495300. −2.02548
\(144\) 20736.0 0.0833333
\(145\) 0 0
\(146\) −94280.0 −0.366047
\(147\) 21609.0 0.0824786
\(148\) −123680. −0.464136
\(149\) −29334.0 −0.108244 −0.0541222 0.998534i \(-0.517236\pi\)
−0.0541222 + 0.998534i \(0.517236\pi\)
\(150\) 0 0
\(151\) 71608.0 0.255575 0.127788 0.991802i \(-0.459212\pi\)
0.127788 + 0.991802i \(0.459212\pi\)
\(152\) 156928. 0.550924
\(153\) 45036.0 0.155536
\(154\) −127400. −0.432880
\(155\) 0 0
\(156\) −109728. −0.360999
\(157\) −296318. −0.959420 −0.479710 0.877427i \(-0.659258\pi\)
−0.479710 + 0.877427i \(0.659258\pi\)
\(158\) 71568.0 0.228074
\(159\) −140346. −0.440258
\(160\) 0 0
\(161\) 144550. 0.439494
\(162\) −26244.0 −0.0785674
\(163\) 480400. 1.41623 0.708115 0.706097i \(-0.249546\pi\)
0.708115 + 0.706097i \(0.249546\pi\)
\(164\) −272256. −0.790438
\(165\) 0 0
\(166\) 155888. 0.439079
\(167\) −160180. −0.444444 −0.222222 0.974996i \(-0.571331\pi\)
−0.222222 + 0.974996i \(0.571331\pi\)
\(168\) −28224.0 −0.0771517
\(169\) 209351. 0.563843
\(170\) 0 0
\(171\) −198612. −0.519416
\(172\) −349376. −0.900476
\(173\) 8984.00 0.0228220 0.0114110 0.999935i \(-0.496368\pi\)
0.0114110 + 0.999935i \(0.496368\pi\)
\(174\) 24264.0 0.0607560
\(175\) 0 0
\(176\) 166400. 0.404922
\(177\) 50472.0 0.121093
\(178\) −24096.0 −0.0570026
\(179\) 182886. 0.426627 0.213313 0.976984i \(-0.431575\pi\)
0.213313 + 0.976984i \(0.431575\pi\)
\(180\) 0 0
\(181\) 138330. 0.313848 0.156924 0.987611i \(-0.449842\pi\)
0.156924 + 0.987611i \(0.449842\pi\)
\(182\) 149352. 0.334220
\(183\) 1350.00 0.00297993
\(184\) −188800. −0.411109
\(185\) 0 0
\(186\) 108864. 0.230729
\(187\) 361400. 0.755760
\(188\) 383040. 0.790405
\(189\) 35721.0 0.0727393
\(190\) 0 0
\(191\) 327222. 0.649021 0.324511 0.945882i \(-0.394800\pi\)
0.324511 + 0.945882i \(0.394800\pi\)
\(192\) 36864.0 0.0721688
\(193\) −786902. −1.52064 −0.760322 0.649547i \(-0.774959\pi\)
−0.760322 + 0.649547i \(0.774959\pi\)
\(194\) 433720. 0.827380
\(195\) 0 0
\(196\) 38416.0 0.0714286
\(197\) −423098. −0.776740 −0.388370 0.921504i \(-0.626962\pi\)
−0.388370 + 0.921504i \(0.626962\pi\)
\(198\) −210600. −0.381764
\(199\) 1.02392e6 1.83288 0.916439 0.400175i \(-0.131051\pi\)
0.916439 + 0.400175i \(0.131051\pi\)
\(200\) 0 0
\(201\) 394056. 0.687967
\(202\) 281696. 0.485738
\(203\) −33026.0 −0.0562491
\(204\) 80064.0 0.134698
\(205\) 0 0
\(206\) −126208. −0.207214
\(207\) 238950. 0.387598
\(208\) −195072. −0.312634
\(209\) −1.59380e6 −2.52388
\(210\) 0 0
\(211\) 461516. 0.713642 0.356821 0.934173i \(-0.383861\pi\)
0.356821 + 0.934173i \(0.383861\pi\)
\(212\) −249504. −0.381275
\(213\) −352602. −0.532520
\(214\) 433128. 0.646520
\(215\) 0 0
\(216\) −46656.0 −0.0680414
\(217\) −148176. −0.213613
\(218\) 288584. 0.411274
\(219\) 212130. 0.298877
\(220\) 0 0
\(221\) −423672. −0.583511
\(222\) 278280. 0.378965
\(223\) −995048. −1.33993 −0.669965 0.742393i \(-0.733691\pi\)
−0.669965 + 0.742393i \(0.733691\pi\)
\(224\) −50176.0 −0.0668153
\(225\) 0 0
\(226\) 883624. 1.15079
\(227\) 95568.0 0.123097 0.0615486 0.998104i \(-0.480396\pi\)
0.0615486 + 0.998104i \(0.480396\pi\)
\(228\) −353088. −0.449827
\(229\) −1.04409e6 −1.31567 −0.657836 0.753161i \(-0.728528\pi\)
−0.657836 + 0.753161i \(0.728528\pi\)
\(230\) 0 0
\(231\) 286650. 0.353445
\(232\) 43136.0 0.0526163
\(233\) 1.16941e6 1.41116 0.705581 0.708629i \(-0.250686\pi\)
0.705581 + 0.708629i \(0.250686\pi\)
\(234\) 246888. 0.294754
\(235\) 0 0
\(236\) 89728.0 0.104869
\(237\) −161028. −0.186222
\(238\) −108976. −0.124706
\(239\) −27342.0 −0.0309625 −0.0154812 0.999880i \(-0.504928\pi\)
−0.0154812 + 0.999880i \(0.504928\pi\)
\(240\) 0 0
\(241\) −907714. −1.00671 −0.503357 0.864078i \(-0.667902\pi\)
−0.503357 + 0.864078i \(0.667902\pi\)
\(242\) −1.04580e6 −1.14791
\(243\) 59049.0 0.0641500
\(244\) 2400.00 0.00258069
\(245\) 0 0
\(246\) 612576. 0.645390
\(247\) 1.86842e6 1.94865
\(248\) 193536. 0.199817
\(249\) −350748. −0.358506
\(250\) 0 0
\(251\) 44088.0 0.0441709 0.0220854 0.999756i \(-0.492969\pi\)
0.0220854 + 0.999756i \(0.492969\pi\)
\(252\) 63504.0 0.0629941
\(253\) 1.91750e6 1.88336
\(254\) −958608. −0.932302
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 829200. 0.783117 0.391558 0.920153i \(-0.371936\pi\)
0.391558 + 0.920153i \(0.371936\pi\)
\(258\) 786096. 0.735235
\(259\) −378770. −0.350854
\(260\) 0 0
\(261\) −54594.0 −0.0496071
\(262\) 1.09669e6 0.987029
\(263\) −1.31947e6 −1.17627 −0.588137 0.808761i \(-0.700139\pi\)
−0.588137 + 0.808761i \(0.700139\pi\)
\(264\) −374400. −0.330618
\(265\) 0 0
\(266\) 480592. 0.416459
\(267\) 54216.0 0.0465425
\(268\) 700544. 0.595797
\(269\) −783788. −0.660416 −0.330208 0.943908i \(-0.607119\pi\)
−0.330208 + 0.943908i \(0.607119\pi\)
\(270\) 0 0
\(271\) 955080. 0.789981 0.394990 0.918685i \(-0.370748\pi\)
0.394990 + 0.918685i \(0.370748\pi\)
\(272\) 142336. 0.116652
\(273\) −336042. −0.272890
\(274\) −1.56462e6 −1.25902
\(275\) 0 0
\(276\) 424800. 0.335669
\(277\) −1.91273e6 −1.49780 −0.748901 0.662682i \(-0.769418\pi\)
−0.748901 + 0.662682i \(0.769418\pi\)
\(278\) −1.35746e6 −1.05345
\(279\) −244944. −0.188389
\(280\) 0 0
\(281\) −1.02620e6 −0.775295 −0.387648 0.921808i \(-0.626712\pi\)
−0.387648 + 0.921808i \(0.626712\pi\)
\(282\) −861840. −0.645363
\(283\) −1.74668e6 −1.29642 −0.648211 0.761461i \(-0.724482\pi\)
−0.648211 + 0.761461i \(0.724482\pi\)
\(284\) −626848. −0.461176
\(285\) 0 0
\(286\) 1.98120e6 1.43223
\(287\) −833784. −0.597515
\(288\) −82944.0 −0.0589256
\(289\) −1.11072e6 −0.782277
\(290\) 0 0
\(291\) −975870. −0.675553
\(292\) 377120. 0.258835
\(293\) −2.23212e6 −1.51897 −0.759484 0.650526i \(-0.774548\pi\)
−0.759484 + 0.650526i \(0.774548\pi\)
\(294\) −86436.0 −0.0583212
\(295\) 0 0
\(296\) 494720. 0.328194
\(297\) 473850. 0.311709
\(298\) 117336. 0.0765404
\(299\) −2.24790e6 −1.45412
\(300\) 0 0
\(301\) −1.06996e6 −0.680696
\(302\) −286432. −0.180719
\(303\) −633816. −0.396604
\(304\) −627712. −0.389562
\(305\) 0 0
\(306\) −180144. −0.109981
\(307\) −1.85324e6 −1.12224 −0.561119 0.827735i \(-0.689629\pi\)
−0.561119 + 0.827735i \(0.689629\pi\)
\(308\) 509600. 0.306092
\(309\) 283968. 0.169189
\(310\) 0 0
\(311\) −450956. −0.264383 −0.132191 0.991224i \(-0.542201\pi\)
−0.132191 + 0.991224i \(0.542201\pi\)
\(312\) 438912. 0.255265
\(313\) −1.60263e6 −0.924642 −0.462321 0.886713i \(-0.652983\pi\)
−0.462321 + 0.886713i \(0.652983\pi\)
\(314\) 1.18527e6 0.678413
\(315\) 0 0
\(316\) −286272. −0.161273
\(317\) 20862.0 0.0116602 0.00583012 0.999983i \(-0.498144\pi\)
0.00583012 + 0.999983i \(0.498144\pi\)
\(318\) 561384. 0.311309
\(319\) −438100. −0.241044
\(320\) 0 0
\(321\) −974538. −0.527881
\(322\) −578200. −0.310770
\(323\) −1.36331e6 −0.727091
\(324\) 104976. 0.0555556
\(325\) 0 0
\(326\) −1.92160e6 −1.00143
\(327\) −649314. −0.335804
\(328\) 1.08902e6 0.558924
\(329\) 1.17306e6 0.597490
\(330\) 0 0
\(331\) 2.07621e6 1.04160 0.520801 0.853678i \(-0.325633\pi\)
0.520801 + 0.853678i \(0.325633\pi\)
\(332\) −623552. −0.310476
\(333\) −626130. −0.309424
\(334\) 640720. 0.314269
\(335\) 0 0
\(336\) 112896. 0.0545545
\(337\) −1.20508e6 −0.578019 −0.289009 0.957326i \(-0.593326\pi\)
−0.289009 + 0.957326i \(0.593326\pi\)
\(338\) −837404. −0.398697
\(339\) −1.98815e6 −0.939617
\(340\) 0 0
\(341\) −1.96560e6 −0.915396
\(342\) 794448. 0.367282
\(343\) 117649. 0.0539949
\(344\) 1.39750e6 0.636732
\(345\) 0 0
\(346\) −35936.0 −0.0161376
\(347\) 876642. 0.390840 0.195420 0.980720i \(-0.437393\pi\)
0.195420 + 0.980720i \(0.437393\pi\)
\(348\) −97056.0 −0.0429610
\(349\) −1.29593e6 −0.569532 −0.284766 0.958597i \(-0.591916\pi\)
−0.284766 + 0.958597i \(0.591916\pi\)
\(350\) 0 0
\(351\) −555498. −0.240666
\(352\) −665600. −0.286323
\(353\) 3.99040e6 1.70443 0.852215 0.523192i \(-0.175259\pi\)
0.852215 + 0.523192i \(0.175259\pi\)
\(354\) −201888. −0.0856253
\(355\) 0 0
\(356\) 96384.0 0.0403070
\(357\) 245196. 0.101822
\(358\) −731544. −0.301671
\(359\) 4.06452e6 1.66446 0.832229 0.554432i \(-0.187064\pi\)
0.832229 + 0.554432i \(0.187064\pi\)
\(360\) 0 0
\(361\) 3.53620e6 1.42814
\(362\) −553320. −0.221924
\(363\) 2.35304e6 0.937266
\(364\) −597408. −0.236329
\(365\) 0 0
\(366\) −5400.00 −0.00210713
\(367\) 1.67243e6 0.648162 0.324081 0.946029i \(-0.394945\pi\)
0.324081 + 0.946029i \(0.394945\pi\)
\(368\) 755200. 0.290698
\(369\) −1.37830e6 −0.526959
\(370\) 0 0
\(371\) −764106. −0.288216
\(372\) −435456. −0.163150
\(373\) −3.16769e6 −1.17888 −0.589441 0.807812i \(-0.700652\pi\)
−0.589441 + 0.807812i \(0.700652\pi\)
\(374\) −1.44560e6 −0.534403
\(375\) 0 0
\(376\) −1.53216e6 −0.558901
\(377\) 513588. 0.186106
\(378\) −142884. −0.0514344
\(379\) −4.20388e6 −1.50332 −0.751662 0.659548i \(-0.770748\pi\)
−0.751662 + 0.659548i \(0.770748\pi\)
\(380\) 0 0
\(381\) 2.15687e6 0.761222
\(382\) −1.30889e6 −0.458927
\(383\) 342616. 0.119347 0.0596734 0.998218i \(-0.480994\pi\)
0.0596734 + 0.998218i \(0.480994\pi\)
\(384\) −147456. −0.0510310
\(385\) 0 0
\(386\) 3.14761e6 1.07526
\(387\) −1.76872e6 −0.600317
\(388\) −1.73488e6 −0.585046
\(389\) −3.83959e6 −1.28650 −0.643252 0.765654i \(-0.722415\pi\)
−0.643252 + 0.765654i \(0.722415\pi\)
\(390\) 0 0
\(391\) 1.64020e6 0.542569
\(392\) −153664. −0.0505076
\(393\) −2.46755e6 −0.805906
\(394\) 1.69239e6 0.549238
\(395\) 0 0
\(396\) 842400. 0.269948
\(397\) −3.43894e6 −1.09509 −0.547543 0.836777i \(-0.684437\pi\)
−0.547543 + 0.836777i \(0.684437\pi\)
\(398\) −4.09568e6 −1.29604
\(399\) −1.08133e6 −0.340038
\(400\) 0 0
\(401\) −3.89421e6 −1.20937 −0.604684 0.796466i \(-0.706701\pi\)
−0.604684 + 0.796466i \(0.706701\pi\)
\(402\) −1.57622e6 −0.486466
\(403\) 2.30429e6 0.706764
\(404\) −1.12678e6 −0.343469
\(405\) 0 0
\(406\) 132104. 0.0397741
\(407\) −5.02450e6 −1.50351
\(408\) −320256. −0.0952460
\(409\) −1.64679e6 −0.486778 −0.243389 0.969929i \(-0.578259\pi\)
−0.243389 + 0.969929i \(0.578259\pi\)
\(410\) 0 0
\(411\) 3.52039e6 1.02798
\(412\) 504832. 0.146522
\(413\) 274792. 0.0792737
\(414\) −955800. −0.274073
\(415\) 0 0
\(416\) 780288. 0.221066
\(417\) 3.05428e6 0.860138
\(418\) 6.37520e6 1.78465
\(419\) −1.67659e6 −0.466544 −0.233272 0.972412i \(-0.574943\pi\)
−0.233272 + 0.972412i \(0.574943\pi\)
\(420\) 0 0
\(421\) −566742. −0.155840 −0.0779202 0.996960i \(-0.524828\pi\)
−0.0779202 + 0.996960i \(0.524828\pi\)
\(422\) −1.84606e6 −0.504621
\(423\) 1.93914e6 0.526936
\(424\) 998016. 0.269602
\(425\) 0 0
\(426\) 1.41041e6 0.376548
\(427\) 7350.00 0.00195082
\(428\) −1.73251e6 −0.457159
\(429\) −4.45770e6 −1.16941
\(430\) 0 0
\(431\) 6.68468e6 1.73335 0.866677 0.498870i \(-0.166251\pi\)
0.866677 + 0.498870i \(0.166251\pi\)
\(432\) 186624. 0.0481125
\(433\) −6.91337e6 −1.77203 −0.886013 0.463661i \(-0.846536\pi\)
−0.886013 + 0.463661i \(0.846536\pi\)
\(434\) 592704. 0.151047
\(435\) 0 0
\(436\) −1.15434e6 −0.290814
\(437\) −7.23340e6 −1.81192
\(438\) −848520. −0.211338
\(439\) −4.56281e6 −1.12998 −0.564990 0.825098i \(-0.691120\pi\)
−0.564990 + 0.825098i \(0.691120\pi\)
\(440\) 0 0
\(441\) 194481. 0.0476190
\(442\) 1.69469e6 0.412605
\(443\) −4.59760e6 −1.11307 −0.556534 0.830825i \(-0.687869\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(444\) −1.11312e6 −0.267969
\(445\) 0 0
\(446\) 3.98019e6 0.947473
\(447\) −264006. −0.0624950
\(448\) 200704. 0.0472456
\(449\) 1.70658e6 0.399494 0.199747 0.979848i \(-0.435988\pi\)
0.199747 + 0.979848i \(0.435988\pi\)
\(450\) 0 0
\(451\) −1.10604e7 −2.56053
\(452\) −3.53450e6 −0.813732
\(453\) 644472. 0.147557
\(454\) −382272. −0.0870428
\(455\) 0 0
\(456\) 1.41235e6 0.318076
\(457\) 6.93916e6 1.55423 0.777117 0.629356i \(-0.216681\pi\)
0.777117 + 0.629356i \(0.216681\pi\)
\(458\) 4.17634e6 0.930320
\(459\) 405324. 0.0897988
\(460\) 0 0
\(461\) −2.61805e6 −0.573753 −0.286877 0.957968i \(-0.592617\pi\)
−0.286877 + 0.957968i \(0.592617\pi\)
\(462\) −1.14660e6 −0.249923
\(463\) −7.13602e6 −1.54705 −0.773524 0.633767i \(-0.781508\pi\)
−0.773524 + 0.633767i \(0.781508\pi\)
\(464\) −172544. −0.0372053
\(465\) 0 0
\(466\) −4.67764e6 −0.997843
\(467\) 2.17398e6 0.461278 0.230639 0.973039i \(-0.425918\pi\)
0.230639 + 0.973039i \(0.425918\pi\)
\(468\) −987552. −0.208423
\(469\) 2.14542e6 0.450380
\(470\) 0 0
\(471\) −2.66686e6 −0.553922
\(472\) −358912. −0.0741537
\(473\) −1.41934e7 −2.91698
\(474\) 644112. 0.131679
\(475\) 0 0
\(476\) 435904. 0.0881807
\(477\) −1.26311e6 −0.254183
\(478\) 109368. 0.0218938
\(479\) −4.63294e6 −0.922609 −0.461305 0.887242i \(-0.652619\pi\)
−0.461305 + 0.887242i \(0.652619\pi\)
\(480\) 0 0
\(481\) 5.89026e6 1.16084
\(482\) 3.63086e6 0.711855
\(483\) 1.30095e6 0.253742
\(484\) 4.18318e6 0.811696
\(485\) 0 0
\(486\) −236196. −0.0453609
\(487\) 4.56645e6 0.872481 0.436241 0.899830i \(-0.356310\pi\)
0.436241 + 0.899830i \(0.356310\pi\)
\(488\) −9600.00 −0.00182483
\(489\) 4.32360e6 0.817661
\(490\) 0 0
\(491\) −5.31429e6 −0.994813 −0.497407 0.867518i \(-0.665714\pi\)
−0.497407 + 0.867518i \(0.665714\pi\)
\(492\) −2.45030e6 −0.456360
\(493\) −374744. −0.0694412
\(494\) −7.47370e6 −1.37790
\(495\) 0 0
\(496\) −774144. −0.141292
\(497\) −1.91972e6 −0.348616
\(498\) 1.40299e6 0.253502
\(499\) −2.46314e6 −0.442831 −0.221415 0.975180i \(-0.571068\pi\)
−0.221415 + 0.975180i \(0.571068\pi\)
\(500\) 0 0
\(501\) −1.44162e6 −0.256600
\(502\) −176352. −0.0312335
\(503\) −2.79924e6 −0.493310 −0.246655 0.969103i \(-0.579331\pi\)
−0.246655 + 0.969103i \(0.579331\pi\)
\(504\) −254016. −0.0445435
\(505\) 0 0
\(506\) −7.67000e6 −1.33174
\(507\) 1.88416e6 0.325535
\(508\) 3.83443e6 0.659237
\(509\) 1.99914e6 0.342018 0.171009 0.985269i \(-0.445297\pi\)
0.171009 + 0.985269i \(0.445297\pi\)
\(510\) 0 0
\(511\) 1.15493e6 0.195661
\(512\) −262144. −0.0441942
\(513\) −1.78751e6 −0.299885
\(514\) −3.31680e6 −0.553747
\(515\) 0 0
\(516\) −3.14438e6 −0.519890
\(517\) 1.55610e7 2.56042
\(518\) 1.51508e6 0.248091
\(519\) 80856.0 0.0131763
\(520\) 0 0
\(521\) 3.52160e6 0.568390 0.284195 0.958767i \(-0.408274\pi\)
0.284195 + 0.958767i \(0.408274\pi\)
\(522\) 218376. 0.0350775
\(523\) −2.60685e6 −0.416737 −0.208369 0.978050i \(-0.566815\pi\)
−0.208369 + 0.978050i \(0.566815\pi\)
\(524\) −4.38675e6 −0.697935
\(525\) 0 0
\(526\) 5.27786e6 0.831752
\(527\) −1.68134e6 −0.263712
\(528\) 1.49760e6 0.233782
\(529\) 2.26616e6 0.352088
\(530\) 0 0
\(531\) 454248. 0.0699128
\(532\) −1.92237e6 −0.294481
\(533\) 1.29662e7 1.97694
\(534\) −216864. −0.0329105
\(535\) 0 0
\(536\) −2.80218e6 −0.421292
\(537\) 1.64597e6 0.246313
\(538\) 3.13515e6 0.466985
\(539\) 1.56065e6 0.231384
\(540\) 0 0
\(541\) −1.37441e6 −0.201894 −0.100947 0.994892i \(-0.532187\pi\)
−0.100947 + 0.994892i \(0.532187\pi\)
\(542\) −3.82032e6 −0.558601
\(543\) 1.24497e6 0.181200
\(544\) −569344. −0.0824855
\(545\) 0 0
\(546\) 1.34417e6 0.192962
\(547\) 8.78398e6 1.25523 0.627614 0.778524i \(-0.284032\pi\)
0.627614 + 0.778524i \(0.284032\pi\)
\(548\) 6.25846e6 0.890259
\(549\) 12150.0 0.00172046
\(550\) 0 0
\(551\) 1.65265e6 0.231900
\(552\) −1.69920e6 −0.237354
\(553\) −876708. −0.121911
\(554\) 7.65092e6 1.05911
\(555\) 0 0
\(556\) 5.42982e6 0.744901
\(557\) −6.29262e6 −0.859396 −0.429698 0.902973i \(-0.641380\pi\)
−0.429698 + 0.902973i \(0.641380\pi\)
\(558\) 979776. 0.133211
\(559\) 1.66390e7 2.25216
\(560\) 0 0
\(561\) 3.25260e6 0.436338
\(562\) 4.10481e6 0.548216
\(563\) −4.86582e6 −0.646971 −0.323485 0.946233i \(-0.604855\pi\)
−0.323485 + 0.946233i \(0.604855\pi\)
\(564\) 3.44736e6 0.456340
\(565\) 0 0
\(566\) 6.98670e6 0.916709
\(567\) 321489. 0.0419961
\(568\) 2.50739e6 0.326100
\(569\) −4.46383e6 −0.577998 −0.288999 0.957329i \(-0.593322\pi\)
−0.288999 + 0.957329i \(0.593322\pi\)
\(570\) 0 0
\(571\) 8.17054e6 1.04872 0.524361 0.851496i \(-0.324304\pi\)
0.524361 + 0.851496i \(0.324304\pi\)
\(572\) −7.92480e6 −1.01274
\(573\) 2.94500e6 0.374713
\(574\) 3.33514e6 0.422507
\(575\) 0 0
\(576\) 331776. 0.0416667
\(577\) 5.50343e6 0.688167 0.344084 0.938939i \(-0.388190\pi\)
0.344084 + 0.938939i \(0.388190\pi\)
\(578\) 4.44288e6 0.553153
\(579\) −7.08212e6 −0.877944
\(580\) 0 0
\(581\) −1.90963e6 −0.234697
\(582\) 3.90348e6 0.477688
\(583\) −1.01361e7 −1.23509
\(584\) −1.50848e6 −0.183024
\(585\) 0 0
\(586\) 8.92848e6 1.07407
\(587\) −8.14251e6 −0.975356 −0.487678 0.873024i \(-0.662156\pi\)
−0.487678 + 0.873024i \(0.662156\pi\)
\(588\) 345744. 0.0412393
\(589\) 7.41485e6 0.880672
\(590\) 0 0
\(591\) −3.80788e6 −0.448451
\(592\) −1.97888e6 −0.232068
\(593\) 2.73136e6 0.318964 0.159482 0.987201i \(-0.449018\pi\)
0.159482 + 0.987201i \(0.449018\pi\)
\(594\) −1.89540e6 −0.220412
\(595\) 0 0
\(596\) −469344. −0.0541222
\(597\) 9.21528e6 1.05821
\(598\) 8.99160e6 1.02822
\(599\) 1.23733e6 0.140902 0.0704510 0.997515i \(-0.477556\pi\)
0.0704510 + 0.997515i \(0.477556\pi\)
\(600\) 0 0
\(601\) −1.59756e7 −1.80414 −0.902071 0.431587i \(-0.857954\pi\)
−0.902071 + 0.431587i \(0.857954\pi\)
\(602\) 4.27986e6 0.481324
\(603\) 3.54650e6 0.397198
\(604\) 1.14573e6 0.127788
\(605\) 0 0
\(606\) 2.53526e6 0.280441
\(607\) 1.88275e6 0.207406 0.103703 0.994608i \(-0.466931\pi\)
0.103703 + 0.994608i \(0.466931\pi\)
\(608\) 2.51085e6 0.275462
\(609\) −297234. −0.0324755
\(610\) 0 0
\(611\) −1.82423e7 −1.97686
\(612\) 720576. 0.0777681
\(613\) 9.82804e6 1.05637 0.528185 0.849130i \(-0.322873\pi\)
0.528185 + 0.849130i \(0.322873\pi\)
\(614\) 7.41294e6 0.793542
\(615\) 0 0
\(616\) −2.03840e6 −0.216440
\(617\) 8.21262e6 0.868498 0.434249 0.900793i \(-0.357014\pi\)
0.434249 + 0.900793i \(0.357014\pi\)
\(618\) −1.13587e6 −0.119635
\(619\) 6.98465e6 0.732686 0.366343 0.930480i \(-0.380610\pi\)
0.366343 + 0.930480i \(0.380610\pi\)
\(620\) 0 0
\(621\) 2.15055e6 0.223780
\(622\) 1.80382e6 0.186947
\(623\) 295176. 0.0304692
\(624\) −1.75565e6 −0.180499
\(625\) 0 0
\(626\) 6.41054e6 0.653820
\(627\) −1.43442e7 −1.45716
\(628\) −4.74109e6 −0.479710
\(629\) −4.29788e6 −0.433139
\(630\) 0 0
\(631\) 1.26789e7 1.26767 0.633837 0.773467i \(-0.281479\pi\)
0.633837 + 0.773467i \(0.281479\pi\)
\(632\) 1.14509e6 0.114037
\(633\) 4.15364e6 0.412022
\(634\) −83448.0 −0.00824504
\(635\) 0 0
\(636\) −2.24554e6 −0.220129
\(637\) −1.82956e6 −0.178648
\(638\) 1.75240e6 0.170444
\(639\) −3.17342e6 −0.307450
\(640\) 0 0
\(641\) −1.40324e7 −1.34892 −0.674460 0.738311i \(-0.735624\pi\)
−0.674460 + 0.738311i \(0.735624\pi\)
\(642\) 3.89815e6 0.373268
\(643\) −1.30368e6 −0.124349 −0.0621745 0.998065i \(-0.519804\pi\)
−0.0621745 + 0.998065i \(0.519804\pi\)
\(644\) 2.31280e6 0.219747
\(645\) 0 0
\(646\) 5.45325e6 0.514131
\(647\) −1.57110e6 −0.147551 −0.0737757 0.997275i \(-0.523505\pi\)
−0.0737757 + 0.997275i \(0.523505\pi\)
\(648\) −419904. −0.0392837
\(649\) 3.64520e6 0.339711
\(650\) 0 0
\(651\) −1.33358e6 −0.123330
\(652\) 7.68640e6 0.708115
\(653\) 8.34115e6 0.765496 0.382748 0.923853i \(-0.374978\pi\)
0.382748 + 0.923853i \(0.374978\pi\)
\(654\) 2.59726e6 0.237449
\(655\) 0 0
\(656\) −4.35610e6 −0.395219
\(657\) 1.90917e6 0.172556
\(658\) −4.69224e6 −0.422489
\(659\) 6.18334e6 0.554638 0.277319 0.960778i \(-0.410554\pi\)
0.277319 + 0.960778i \(0.410554\pi\)
\(660\) 0 0
\(661\) 928966. 0.0826982 0.0413491 0.999145i \(-0.486834\pi\)
0.0413491 + 0.999145i \(0.486834\pi\)
\(662\) −8.30485e6 −0.736524
\(663\) −3.81305e6 −0.336890
\(664\) 2.49421e6 0.219539
\(665\) 0 0
\(666\) 2.50452e6 0.218796
\(667\) −1.98830e6 −0.173048
\(668\) −2.56288e6 −0.222222
\(669\) −8.95543e6 −0.773609
\(670\) 0 0
\(671\) 97500.0 0.00835985
\(672\) −451584. −0.0385758
\(673\) −1.79131e7 −1.52452 −0.762259 0.647272i \(-0.775910\pi\)
−0.762259 + 0.647272i \(0.775910\pi\)
\(674\) 4.82033e6 0.408721
\(675\) 0 0
\(676\) 3.34962e6 0.281922
\(677\) 4.96397e6 0.416253 0.208126 0.978102i \(-0.433263\pi\)
0.208126 + 0.978102i \(0.433263\pi\)
\(678\) 7.95262e6 0.664409
\(679\) −5.31307e6 −0.442253
\(680\) 0 0
\(681\) 860112. 0.0710701
\(682\) 7.86240e6 0.647283
\(683\) −89526.0 −0.00734340 −0.00367170 0.999993i \(-0.501169\pi\)
−0.00367170 + 0.999993i \(0.501169\pi\)
\(684\) −3.17779e6 −0.259708
\(685\) 0 0
\(686\) −470596. −0.0381802
\(687\) −9.39677e6 −0.759603
\(688\) −5.59002e6 −0.450238
\(689\) 1.18826e7 0.953596
\(690\) 0 0
\(691\) −142396. −0.0113450 −0.00567248 0.999984i \(-0.501806\pi\)
−0.00567248 + 0.999984i \(0.501806\pi\)
\(692\) 143744. 0.0114110
\(693\) 2.57985e6 0.204062
\(694\) −3.50657e6 −0.276365
\(695\) 0 0
\(696\) 388224. 0.0303780
\(697\) −9.46090e6 −0.737650
\(698\) 5.18372e6 0.402720
\(699\) 1.05247e7 0.814735
\(700\) 0 0
\(701\) 1.03935e7 0.798852 0.399426 0.916765i \(-0.369209\pi\)
0.399426 + 0.916765i \(0.369209\pi\)
\(702\) 2.22199e6 0.170177
\(703\) 1.89540e7 1.44648
\(704\) 2.66240e6 0.202461
\(705\) 0 0
\(706\) −1.59616e7 −1.20521
\(707\) −3.45078e6 −0.259638
\(708\) 807552. 0.0605463
\(709\) 4.65503e6 0.347782 0.173891 0.984765i \(-0.444366\pi\)
0.173891 + 0.984765i \(0.444366\pi\)
\(710\) 0 0
\(711\) −1.44925e6 −0.107515
\(712\) −385536. −0.0285013
\(713\) −8.92080e6 −0.657173
\(714\) −980784. −0.0719992
\(715\) 0 0
\(716\) 2.92618e6 0.213313
\(717\) −246078. −0.0178762
\(718\) −1.62581e7 −1.17695
\(719\) −6.72134e6 −0.484880 −0.242440 0.970166i \(-0.577948\pi\)
−0.242440 + 0.970166i \(0.577948\pi\)
\(720\) 0 0
\(721\) 1.54605e6 0.110760
\(722\) −1.41448e7 −1.00984
\(723\) −8.16943e6 −0.581227
\(724\) 2.21328e6 0.156924
\(725\) 0 0
\(726\) −9.41216e6 −0.662747
\(727\) 1.24076e7 0.870670 0.435335 0.900269i \(-0.356630\pi\)
0.435335 + 0.900269i \(0.356630\pi\)
\(728\) 2.38963e6 0.167110
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −1.21408e7 −0.840339
\(732\) 21600.0 0.00148996
\(733\) −1.35958e7 −0.934641 −0.467321 0.884088i \(-0.654781\pi\)
−0.467321 + 0.884088i \(0.654781\pi\)
\(734\) −6.68973e6 −0.458319
\(735\) 0 0
\(736\) −3.02080e6 −0.205555
\(737\) 2.84596e7 1.93001
\(738\) 5.51318e6 0.372616
\(739\) 2.56819e6 0.172988 0.0864941 0.996252i \(-0.472434\pi\)
0.0864941 + 0.996252i \(0.472434\pi\)
\(740\) 0 0
\(741\) 1.68158e7 1.12505
\(742\) 3.05642e6 0.203800
\(743\) 2.02133e7 1.34327 0.671637 0.740880i \(-0.265591\pi\)
0.671637 + 0.740880i \(0.265591\pi\)
\(744\) 1.74182e6 0.115364
\(745\) 0 0
\(746\) 1.26707e7 0.833595
\(747\) −3.15673e6 −0.206984
\(748\) 5.78240e6 0.377880
\(749\) −5.30582e6 −0.345579
\(750\) 0 0
\(751\) 7.04813e6 0.456010 0.228005 0.973660i \(-0.426780\pi\)
0.228005 + 0.973660i \(0.426780\pi\)
\(752\) 6.12864e6 0.395202
\(753\) 396792. 0.0255021
\(754\) −2.05435e6 −0.131597
\(755\) 0 0
\(756\) 571536. 0.0363696
\(757\) 2.04120e7 1.29463 0.647315 0.762223i \(-0.275892\pi\)
0.647315 + 0.762223i \(0.275892\pi\)
\(758\) 1.68155e7 1.06301
\(759\) 1.72575e7 1.08736
\(760\) 0 0
\(761\) −5.07974e6 −0.317965 −0.158983 0.987281i \(-0.550821\pi\)
−0.158983 + 0.987281i \(0.550821\pi\)
\(762\) −8.62747e6 −0.538265
\(763\) −3.53515e6 −0.219835
\(764\) 5.23555e6 0.324511
\(765\) 0 0
\(766\) −1.37046e6 −0.0843909
\(767\) −4.27330e6 −0.262286
\(768\) 589824. 0.0360844
\(769\) 2.33898e7 1.42630 0.713149 0.701012i \(-0.247268\pi\)
0.713149 + 0.701012i \(0.247268\pi\)
\(770\) 0 0
\(771\) 7.46280e6 0.452133
\(772\) −1.25904e7 −0.760322
\(773\) 1.11253e6 0.0669672 0.0334836 0.999439i \(-0.489340\pi\)
0.0334836 + 0.999439i \(0.489340\pi\)
\(774\) 7.07486e6 0.424488
\(775\) 0 0
\(776\) 6.93952e6 0.413690
\(777\) −3.40893e6 −0.202566
\(778\) 1.53584e7 0.909696
\(779\) 4.17232e7 2.46340
\(780\) 0 0
\(781\) −2.54657e7 −1.49392
\(782\) −6.56080e6 −0.383654
\(783\) −491346. −0.0286407
\(784\) 614656. 0.0357143
\(785\) 0 0
\(786\) 9.87019e6 0.569861
\(787\) −2.00812e6 −0.115572 −0.0577859 0.998329i \(-0.518404\pi\)
−0.0577859 + 0.998329i \(0.518404\pi\)
\(788\) −6.76957e6 −0.388370
\(789\) −1.18752e7 −0.679123
\(790\) 0 0
\(791\) −1.08244e7 −0.615124
\(792\) −3.36960e6 −0.190882
\(793\) −114300. −0.00645451
\(794\) 1.37558e7 0.774343
\(795\) 0 0
\(796\) 1.63827e7 0.916439
\(797\) −3.00897e7 −1.67792 −0.838961 0.544191i \(-0.816837\pi\)
−0.838961 + 0.544191i \(0.816837\pi\)
\(798\) 4.32533e6 0.240443
\(799\) 1.33106e7 0.737619
\(800\) 0 0
\(801\) 487944. 0.0268713
\(802\) 1.55768e7 0.855152
\(803\) 1.53205e7 0.838463
\(804\) 6.30490e6 0.343984
\(805\) 0 0
\(806\) −9.21715e6 −0.499757
\(807\) −7.05409e6 −0.381292
\(808\) 4.50714e6 0.242869
\(809\) −1.88207e6 −0.101103 −0.0505515 0.998721i \(-0.516098\pi\)
−0.0505515 + 0.998721i \(0.516098\pi\)
\(810\) 0 0
\(811\) 4.88220e6 0.260654 0.130327 0.991471i \(-0.458397\pi\)
0.130327 + 0.991471i \(0.458397\pi\)
\(812\) −528416. −0.0281246
\(813\) 8.59572e6 0.456096
\(814\) 2.00980e7 1.06314
\(815\) 0 0
\(816\) 1.28102e6 0.0673491
\(817\) 5.35419e7 2.80633
\(818\) 6.58718e6 0.344204
\(819\) −3.02438e6 −0.157553
\(820\) 0 0
\(821\) 8.37096e6 0.433429 0.216714 0.976235i \(-0.430466\pi\)
0.216714 + 0.976235i \(0.430466\pi\)
\(822\) −1.40815e7 −0.726893
\(823\) 2.02090e7 1.04003 0.520015 0.854157i \(-0.325926\pi\)
0.520015 + 0.854157i \(0.325926\pi\)
\(824\) −2.01933e6 −0.103607
\(825\) 0 0
\(826\) −1.09917e6 −0.0560549
\(827\) 1.31059e7 0.666352 0.333176 0.942865i \(-0.391880\pi\)
0.333176 + 0.942865i \(0.391880\pi\)
\(828\) 3.82320e6 0.193799
\(829\) 3.18667e7 1.61046 0.805232 0.592960i \(-0.202041\pi\)
0.805232 + 0.592960i \(0.202041\pi\)
\(830\) 0 0
\(831\) −1.72146e7 −0.864756
\(832\) −3.12115e6 −0.156317
\(833\) 1.33496e6 0.0666583
\(834\) −1.22171e7 −0.608209
\(835\) 0 0
\(836\) −2.55008e7 −1.26194
\(837\) −2.20450e6 −0.108767
\(838\) 6.70637e6 0.329896
\(839\) 9.94742e6 0.487872 0.243936 0.969791i \(-0.421561\pi\)
0.243936 + 0.969791i \(0.421561\pi\)
\(840\) 0 0
\(841\) −2.00569e7 −0.977852
\(842\) 2.26697e6 0.110196
\(843\) −9.23582e6 −0.447617
\(844\) 7.38426e6 0.356821
\(845\) 0 0
\(846\) −7.75656e6 −0.372600
\(847\) 1.28110e7 0.613585
\(848\) −3.99206e6 −0.190637
\(849\) −1.57201e7 −0.748489
\(850\) 0 0
\(851\) −2.28035e7 −1.07939
\(852\) −5.64163e6 −0.266260
\(853\) 6.52611e6 0.307102 0.153551 0.988141i \(-0.450929\pi\)
0.153551 + 0.988141i \(0.450929\pi\)
\(854\) −29400.0 −0.00137944
\(855\) 0 0
\(856\) 6.93005e6 0.323260
\(857\) 8.76238e6 0.407540 0.203770 0.979019i \(-0.434681\pi\)
0.203770 + 0.979019i \(0.434681\pi\)
\(858\) 1.78308e7 0.826899
\(859\) 6.47942e6 0.299608 0.149804 0.988716i \(-0.452136\pi\)
0.149804 + 0.988716i \(0.452136\pi\)
\(860\) 0 0
\(861\) −7.50406e6 −0.344975
\(862\) −2.67387e7 −1.22567
\(863\) 1.83417e7 0.838323 0.419162 0.907912i \(-0.362324\pi\)
0.419162 + 0.907912i \(0.362324\pi\)
\(864\) −746496. −0.0340207
\(865\) 0 0
\(866\) 2.76535e7 1.25301
\(867\) −9.99649e6 −0.451648
\(868\) −2.37082e6 −0.106807
\(869\) −1.16298e7 −0.522424
\(870\) 0 0
\(871\) −3.33634e7 −1.49013
\(872\) 4.61734e6 0.205637
\(873\) −8.78283e6 −0.390031
\(874\) 2.89336e7 1.28122
\(875\) 0 0
\(876\) 3.39408e6 0.149438
\(877\) −2.69065e7 −1.18129 −0.590647 0.806930i \(-0.701127\pi\)
−0.590647 + 0.806930i \(0.701127\pi\)
\(878\) 1.82512e7 0.799017
\(879\) −2.00891e7 −0.876976
\(880\) 0 0
\(881\) −1.52174e7 −0.660542 −0.330271 0.943886i \(-0.607140\pi\)
−0.330271 + 0.943886i \(0.607140\pi\)
\(882\) −777924. −0.0336718
\(883\) 2.61520e7 1.12877 0.564383 0.825513i \(-0.309114\pi\)
0.564383 + 0.825513i \(0.309114\pi\)
\(884\) −6.77875e6 −0.291756
\(885\) 0 0
\(886\) 1.83904e7 0.787058
\(887\) 1.08021e7 0.460997 0.230499 0.973073i \(-0.425964\pi\)
0.230499 + 0.973073i \(0.425964\pi\)
\(888\) 4.45248e6 0.189483
\(889\) 1.17429e7 0.498337
\(890\) 0 0
\(891\) 4.26465e6 0.179965
\(892\) −1.59208e7 −0.669965
\(893\) −5.87009e7 −2.46329
\(894\) 1.05602e6 0.0441906
\(895\) 0 0
\(896\) −802816. −0.0334077
\(897\) −2.02311e7 −0.839534
\(898\) −6.82631e6 −0.282485
\(899\) 2.03818e6 0.0841090
\(900\) 0 0
\(901\) −8.67026e6 −0.355812
\(902\) 4.42416e7 1.81057
\(903\) −9.62968e6 −0.393000
\(904\) 1.41380e7 0.575395
\(905\) 0 0
\(906\) −2.57789e6 −0.104338
\(907\) 9.84167e6 0.397238 0.198619 0.980077i \(-0.436354\pi\)
0.198619 + 0.980077i \(0.436354\pi\)
\(908\) 1.52909e6 0.0615486
\(909\) −5.70434e6 −0.228979
\(910\) 0 0
\(911\) 2.72509e7 1.08789 0.543945 0.839121i \(-0.316930\pi\)
0.543945 + 0.839121i \(0.316930\pi\)
\(912\) −5.64941e6 −0.224914
\(913\) −2.53318e7 −1.00575
\(914\) −2.77566e7 −1.09901
\(915\) 0 0
\(916\) −1.67054e7 −0.657836
\(917\) −1.34344e7 −0.527589
\(918\) −1.62130e6 −0.0634974
\(919\) 2.86432e7 1.11875 0.559374 0.828916i \(-0.311042\pi\)
0.559374 + 0.828916i \(0.311042\pi\)
\(920\) 0 0
\(921\) −1.66791e7 −0.647924
\(922\) 1.04722e7 0.405705
\(923\) 2.98536e7 1.15343
\(924\) 4.58640e6 0.176723
\(925\) 0 0
\(926\) 2.85441e7 1.09393
\(927\) 2.55571e6 0.0976816
\(928\) 690176. 0.0263081
\(929\) 6.78492e6 0.257932 0.128966 0.991649i \(-0.458834\pi\)
0.128966 + 0.991649i \(0.458834\pi\)
\(930\) 0 0
\(931\) −5.88725e6 −0.222607
\(932\) 1.87106e7 0.705581
\(933\) −4.05860e6 −0.152641
\(934\) −8.69590e6 −0.326173
\(935\) 0 0
\(936\) 3.95021e6 0.147377
\(937\) −3.00308e7 −1.11742 −0.558712 0.829362i \(-0.688704\pi\)
−0.558712 + 0.829362i \(0.688704\pi\)
\(938\) −8.58166e6 −0.318467
\(939\) −1.44237e7 −0.533842
\(940\) 0 0
\(941\) 2.30725e7 0.849415 0.424707 0.905331i \(-0.360377\pi\)
0.424707 + 0.905331i \(0.360377\pi\)
\(942\) 1.06674e7 0.391682
\(943\) −5.01972e7 −1.83823
\(944\) 1.43565e6 0.0524346
\(945\) 0 0
\(946\) 5.67736e7 2.06262
\(947\) −2.71433e7 −0.983531 −0.491765 0.870728i \(-0.663648\pi\)
−0.491765 + 0.870728i \(0.663648\pi\)
\(948\) −2.57645e6 −0.0931109
\(949\) −1.79603e7 −0.647365
\(950\) 0 0
\(951\) 187758. 0.00673205
\(952\) −1.74362e6 −0.0623532
\(953\) 1.61552e7 0.576209 0.288104 0.957599i \(-0.406975\pi\)
0.288104 + 0.957599i \(0.406975\pi\)
\(954\) 5.05246e6 0.179735
\(955\) 0 0
\(956\) −437472. −0.0154812
\(957\) −3.94290e6 −0.139167
\(958\) 1.85318e7 0.652383
\(959\) 1.91665e7 0.672973
\(960\) 0 0
\(961\) −1.94846e7 −0.680585
\(962\) −2.35610e7 −0.820837
\(963\) −8.77084e6 −0.304772
\(964\) −1.45234e7 −0.503357
\(965\) 0 0
\(966\) −5.20380e6 −0.179423
\(967\) 3.80323e7 1.30793 0.653967 0.756523i \(-0.273103\pi\)
0.653967 + 0.756523i \(0.273103\pi\)
\(968\) −1.67327e7 −0.573956
\(969\) −1.22698e7 −0.419786
\(970\) 0 0
\(971\) −2.23104e7 −0.759379 −0.379689 0.925114i \(-0.623969\pi\)
−0.379689 + 0.925114i \(0.623969\pi\)
\(972\) 944784. 0.0320750
\(973\) 1.66288e7 0.563093
\(974\) −1.82658e7 −0.616937
\(975\) 0 0
\(976\) 38400.0 0.00129035
\(977\) −3.06930e7 −1.02873 −0.514367 0.857570i \(-0.671973\pi\)
−0.514367 + 0.857570i \(0.671973\pi\)
\(978\) −1.72944e7 −0.578174
\(979\) 3.91560e6 0.130569
\(980\) 0 0
\(981\) −5.84383e6 −0.193876
\(982\) 2.12572e7 0.703439
\(983\) 1.52706e7 0.504048 0.252024 0.967721i \(-0.418904\pi\)
0.252024 + 0.967721i \(0.418904\pi\)
\(984\) 9.80122e6 0.322695
\(985\) 0 0
\(986\) 1.49898e6 0.0491024
\(987\) 1.05575e7 0.344961
\(988\) 2.98948e7 0.974323
\(989\) −6.44162e7 −2.09413
\(990\) 0 0
\(991\) 3.16279e7 1.02303 0.511513 0.859276i \(-0.329085\pi\)
0.511513 + 0.859276i \(0.329085\pi\)
\(992\) 3.09658e6 0.0999085
\(993\) 1.86859e7 0.601369
\(994\) 7.67889e6 0.246509
\(995\) 0 0
\(996\) −5.61197e6 −0.179253
\(997\) 3.55842e7 1.13376 0.566878 0.823802i \(-0.308151\pi\)
0.566878 + 0.823802i \(0.308151\pi\)
\(998\) 9.85256e6 0.313129
\(999\) −5.63517e6 −0.178646
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.6.a.f.1.1 1
5.2 odd 4 1050.6.g.h.799.1 2
5.3 odd 4 1050.6.g.h.799.2 2
5.4 even 2 42.6.a.e.1.1 1
15.14 odd 2 126.6.a.a.1.1 1
20.19 odd 2 336.6.a.q.1.1 1
35.4 even 6 294.6.e.d.79.1 2
35.9 even 6 294.6.e.d.67.1 2
35.19 odd 6 294.6.e.c.67.1 2
35.24 odd 6 294.6.e.c.79.1 2
35.34 odd 2 294.6.a.k.1.1 1
60.59 even 2 1008.6.a.d.1.1 1
105.104 even 2 882.6.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.e.1.1 1 5.4 even 2
126.6.a.a.1.1 1 15.14 odd 2
294.6.a.k.1.1 1 35.34 odd 2
294.6.e.c.67.1 2 35.19 odd 6
294.6.e.c.79.1 2 35.24 odd 6
294.6.e.d.67.1 2 35.9 even 6
294.6.e.d.79.1 2 35.4 even 6
336.6.a.q.1.1 1 20.19 odd 2
882.6.a.j.1.1 1 105.104 even 2
1008.6.a.d.1.1 1 60.59 even 2
1050.6.a.f.1.1 1 1.1 even 1 trivial
1050.6.g.h.799.1 2 5.2 odd 4
1050.6.g.h.799.2 2 5.3 odd 4