Properties

Label 1050.3.q
Level $1050$
Weight $3$
Character orbit 1050.q
Rep. character $\chi_{1050}(199,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $5$
Sturm bound $720$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 35 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 5 \)
Sturm bound: \(720\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1050, [\chi])\).

Total New Old
Modular forms 1008 96 912
Cusp forms 912 96 816
Eisenstein series 96 0 96

Trace form

\( 96 q + 96 q^{4} - 144 q^{9} - 56 q^{11} + 32 q^{14} - 192 q^{16} - 156 q^{19} - 12 q^{21} - 192 q^{26} - 192 q^{29} - 24 q^{31} - 576 q^{36} - 36 q^{39} + 112 q^{44} + 16 q^{46} + 244 q^{49} + 48 q^{51}+ \cdots + 336 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1050, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1050.3.q.a 1050.q 35.i $8$ $28.610$ \(\Q(\zeta_{24})\) None 42.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta_{5} q^{2}+(-2\beta_{3}+\beta_1)q^{3}+(-2\beta_{2}+2)q^{4}+\cdots\)
1050.3.q.b 1050.q 35.i $16$ $28.610$ 16.0.\(\cdots\).1 None 1050.3.p.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{11}q^{2}+(-\beta _{1}-\beta _{9})q^{3}+(2+2\beta _{3}+\cdots)q^{4}+\cdots\)
1050.3.q.c 1050.q 35.i $16$ $28.610$ 16.0.\(\cdots\).1 None 210.3.o.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{13}q^{2}+(\beta _{1}+2\beta _{8})q^{3}-2\beta _{6}q^{4}+\cdots\)
1050.3.q.d 1050.q 35.i $24$ $28.610$ None 1050.3.p.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1050.3.q.e 1050.q 35.i $32$ $28.610$ None 210.3.o.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(1050, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1050, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(35, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(70, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)