Properties

Label 1050.3.e.e
Level $1050$
Weight $3$
Character orbit 1050.e
Analytic conductor $28.610$
Analytic rank $0$
Dimension $24$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 48 q^{4} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q - 48 q^{4} - 44 q^{9} + 96 q^{16} + 80 q^{19} - 28 q^{21} + 224 q^{31} - 128 q^{34} + 88 q^{36} + 92 q^{39} - 144 q^{46} + 168 q^{49} - 284 q^{51} + 144 q^{54} - 192 q^{64} + 224 q^{66} + 152 q^{69} - 160 q^{76} + 72 q^{79} - 212 q^{81} + 56 q^{84} + 168 q^{91} + 128 q^{94} + 876 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
701.1 1.41421i −1.28756 2.70965i −2.00000 0 −3.83202 + 1.82088i −2.64575 2.82843i −5.68438 + 6.97766i 0
701.2 1.41421i 1.28756 2.70965i −2.00000 0 −3.83202 1.82088i 2.64575 2.82843i −5.68438 6.97766i 0
701.3 1.41421i −1.28756 + 2.70965i −2.00000 0 −3.83202 1.82088i −2.64575 2.82843i −5.68438 6.97766i 0
701.4 1.41421i 1.28756 + 2.70965i −2.00000 0 −3.83202 + 1.82088i 2.64575 2.82843i −5.68438 + 6.97766i 0
701.5 1.41421i −2.22285 + 2.01468i −2.00000 0 2.84919 + 3.14358i 2.64575 2.82843i 0.882103 8.95667i 0
701.6 1.41421i 2.22285 + 2.01468i −2.00000 0 2.84919 3.14358i −2.64575 2.82843i 0.882103 + 8.95667i 0
701.7 1.41421i −2.22285 2.01468i −2.00000 0 2.84919 3.14358i 2.64575 2.82843i 0.882103 + 8.95667i 0
701.8 1.41421i 2.22285 2.01468i −2.00000 0 2.84919 + 3.14358i −2.64575 2.82843i 0.882103 8.95667i 0
701.9 1.41421i −2.46556 + 1.70910i −2.00000 0 2.41703 + 3.48683i −2.64575 2.82843i 3.15796 8.42777i 0
701.10 1.41421i 2.46556 + 1.70910i −2.00000 0 2.41703 3.48683i 2.64575 2.82843i 3.15796 + 8.42777i 0
701.11 1.41421i −2.46556 1.70910i −2.00000 0 2.41703 3.48683i −2.64575 2.82843i 3.15796 + 8.42777i 0
701.12 1.41421i 2.46556 1.70910i −2.00000 0 2.41703 + 3.48683i 2.64575 2.82843i 3.15796 8.42777i 0
701.13 1.41421i −0.554262 + 2.94835i −2.00000 0 4.16960 + 0.783844i 2.64575 2.82843i −8.38559 3.26832i 0
701.14 1.41421i 0.554262 + 2.94835i −2.00000 0 4.16960 0.783844i −2.64575 2.82843i −8.38559 + 3.26832i 0
701.15 1.41421i −0.554262 2.94835i −2.00000 0 4.16960 0.783844i 2.64575 2.82843i −8.38559 + 3.26832i 0
701.16 1.41421i 0.554262 2.94835i −2.00000 0 4.16960 + 0.783844i −2.64575 2.82843i −8.38559 3.26832i 0
701.17 1.41421i −2.79991 1.07726i −2.00000 0 −1.52347 + 3.95968i 2.64575 2.82843i 6.67904 + 6.03245i 0
701.18 1.41421i 2.79991 1.07726i −2.00000 0 −1.52347 3.95968i −2.64575 2.82843i 6.67904 6.03245i 0
701.19 1.41421i −2.79991 + 1.07726i −2.00000 0 −1.52347 3.95968i 2.64575 2.82843i 6.67904 6.03245i 0
701.20 1.41421i 2.79991 + 1.07726i −2.00000 0 −1.52347 + 3.95968i −2.64575 2.82843i 6.67904 + 6.03245i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 701.24
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.3.e.e 24
3.b odd 2 1 inner 1050.3.e.e 24
5.b even 2 1 inner 1050.3.e.e 24
5.c odd 4 2 210.3.c.a 24
15.d odd 2 1 inner 1050.3.e.e 24
15.e even 4 2 210.3.c.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.3.c.a 24 5.c odd 4 2
210.3.c.a 24 15.e even 4 2
1050.3.e.e 24 1.a even 1 1 trivial
1050.3.e.e 24 3.b odd 2 1 inner
1050.3.e.e 24 5.b even 2 1 inner
1050.3.e.e 24 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11}^{12} + 526T_{11}^{10} + 76657T_{11}^{8} + 4209048T_{11}^{6} + 95989320T_{11}^{4} + 817879680T_{11}^{2} + 2289048336 \) Copy content Toggle raw display
\( T_{13}^{12} - 1082 T_{13}^{10} + 379213 T_{13}^{8} - 48657988 T_{13}^{6} + 2156635604 T_{13}^{4} - 30447344608 T_{13}^{2} + 989983296 \) Copy content Toggle raw display