Properties

Label 1050.2.o.l
Level 1050
Weight 2
Character orbit 1050.o
Analytic conductor 8.384
Analytic rank 0
Dimension 4
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{12} - \zeta_{12}^{3} ) q^{2} + \zeta_{12} q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} + q^{6} + ( -\zeta_{12} + 3 \zeta_{12}^{3} ) q^{7} -\zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} +O(q^{10})\) \( q + ( \zeta_{12} - \zeta_{12}^{3} ) q^{2} + \zeta_{12} q^{3} + ( 1 - \zeta_{12}^{2} ) q^{4} + q^{6} + ( -\zeta_{12} + 3 \zeta_{12}^{3} ) q^{7} -\zeta_{12}^{3} q^{8} + \zeta_{12}^{2} q^{9} + ( 4 - 4 \zeta_{12}^{2} ) q^{11} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{12} + 4 \zeta_{12}^{3} q^{13} + ( -1 + 3 \zeta_{12}^{2} ) q^{14} -\zeta_{12}^{2} q^{16} + 3 \zeta_{12} q^{17} + \zeta_{12} q^{18} + 6 \zeta_{12}^{2} q^{19} + ( -3 + 2 \zeta_{12}^{2} ) q^{21} -4 \zeta_{12}^{3} q^{22} + ( 7 \zeta_{12} - 7 \zeta_{12}^{3} ) q^{23} + ( 1 - \zeta_{12}^{2} ) q^{24} + 4 \zeta_{12}^{2} q^{26} + \zeta_{12}^{3} q^{27} + ( 2 \zeta_{12} + \zeta_{12}^{3} ) q^{28} -4 q^{29} + ( 5 - 5 \zeta_{12}^{2} ) q^{31} -\zeta_{12} q^{32} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{33} + 3 q^{34} + q^{36} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{37} + 6 \zeta_{12} q^{38} + ( -4 + 4 \zeta_{12}^{2} ) q^{39} + 7 q^{41} + ( -\zeta_{12} + 3 \zeta_{12}^{3} ) q^{42} + 2 \zeta_{12}^{3} q^{43} -4 \zeta_{12}^{2} q^{44} + ( 7 - 7 \zeta_{12}^{2} ) q^{46} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{47} -\zeta_{12}^{3} q^{48} + ( -3 - 5 \zeta_{12}^{2} ) q^{49} + 3 \zeta_{12}^{2} q^{51} + 4 \zeta_{12} q^{52} + 2 \zeta_{12} q^{53} + \zeta_{12}^{2} q^{54} + ( 2 + \zeta_{12}^{2} ) q^{56} + 6 \zeta_{12}^{3} q^{57} + ( -4 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{58} + ( -14 + 14 \zeta_{12}^{2} ) q^{59} -12 \zeta_{12}^{2} q^{61} -5 \zeta_{12}^{3} q^{62} + ( -3 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{63} - q^{64} + ( 4 - 4 \zeta_{12}^{2} ) q^{66} + 12 \zeta_{12} q^{67} + ( 3 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{68} + 7 q^{69} -9 q^{71} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{72} -6 \zeta_{12} q^{73} + ( -2 + 2 \zeta_{12}^{2} ) q^{74} + 6 q^{76} + ( 8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{77} + 4 \zeta_{12}^{3} q^{78} -17 \zeta_{12}^{2} q^{79} + ( -1 + \zeta_{12}^{2} ) q^{81} + ( 7 \zeta_{12} - 7 \zeta_{12}^{3} ) q^{82} -4 \zeta_{12}^{3} q^{83} + ( -1 + 3 \zeta_{12}^{2} ) q^{84} + 2 \zeta_{12}^{2} q^{86} -4 \zeta_{12} q^{87} -4 \zeta_{12} q^{88} -7 \zeta_{12}^{2} q^{89} + ( -8 - 4 \zeta_{12}^{2} ) q^{91} -7 \zeta_{12}^{3} q^{92} + ( 5 \zeta_{12} - 5 \zeta_{12}^{3} ) q^{93} + ( -1 + \zeta_{12}^{2} ) q^{94} -\zeta_{12}^{2} q^{96} + 7 \zeta_{12}^{3} q^{97} + ( -8 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{98} + 4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{4} + 4q^{6} + 2q^{9} + O(q^{10}) \) \( 4q + 2q^{4} + 4q^{6} + 2q^{9} + 8q^{11} + 2q^{14} - 2q^{16} + 12q^{19} - 8q^{21} + 2q^{24} + 8q^{26} - 16q^{29} + 10q^{31} + 12q^{34} + 4q^{36} - 8q^{39} + 28q^{41} - 8q^{44} + 14q^{46} - 22q^{49} + 6q^{51} + 2q^{54} + 10q^{56} - 28q^{59} - 24q^{61} - 4q^{64} + 8q^{66} + 28q^{69} - 36q^{71} - 4q^{74} + 24q^{76} - 34q^{79} - 2q^{81} + 2q^{84} + 4q^{86} - 14q^{89} - 40q^{91} - 2q^{94} - 2q^{96} + 16q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
499.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i −0.866025 + 0.500000i 0.500000 + 0.866025i 0 1.00000 0.866025 + 2.50000i 1.00000i 0.500000 0.866025i 0
499.2 0.866025 + 0.500000i 0.866025 0.500000i 0.500000 + 0.866025i 0 1.00000 −0.866025 2.50000i 1.00000i 0.500000 0.866025i 0
949.1 −0.866025 + 0.500000i −0.866025 0.500000i 0.500000 0.866025i 0 1.00000 0.866025 2.50000i 1.00000i 0.500000 + 0.866025i 0
949.2 0.866025 0.500000i 0.866025 + 0.500000i 0.500000 0.866025i 0 1.00000 −0.866025 + 2.50000i 1.00000i 0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.c even 3 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.o.l 4
5.b even 2 1 inner 1050.2.o.l 4
5.c odd 4 1 1050.2.i.d 2
5.c odd 4 1 1050.2.i.r yes 2
7.c even 3 1 inner 1050.2.o.l 4
35.j even 6 1 inner 1050.2.o.l 4
35.k even 12 1 7350.2.a.v 1
35.k even 12 1 7350.2.a.bs 1
35.l odd 12 1 1050.2.i.d 2
35.l odd 12 1 1050.2.i.r yes 2
35.l odd 12 1 7350.2.a.e 1
35.l odd 12 1 7350.2.a.ci 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.i.d 2 5.c odd 4 1
1050.2.i.d 2 35.l odd 12 1
1050.2.i.r yes 2 5.c odd 4 1
1050.2.i.r yes 2 35.l odd 12 1
1050.2.o.l 4 1.a even 1 1 trivial
1050.2.o.l 4 5.b even 2 1 inner
1050.2.o.l 4 7.c even 3 1 inner
1050.2.o.l 4 35.j even 6 1 inner
7350.2.a.e 1 35.l odd 12 1
7350.2.a.v 1 35.k even 12 1
7350.2.a.bs 1 35.k even 12 1
7350.2.a.ci 1 35.l odd 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11}^{2} - 4 T_{11} + 16 \)
\( T_{13}^{2} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( 1 - T^{2} + T^{4} \)
$5$ 1
$7$ \( 1 + 11 T^{2} + 49 T^{4} \)
$11$ \( ( 1 - 4 T + 5 T^{2} - 44 T^{3} + 121 T^{4} )^{2} \)
$13$ \( ( 1 - 6 T + 13 T^{2} )^{2}( 1 + 6 T + 13 T^{2} )^{2} \)
$17$ \( 1 + 25 T^{2} + 336 T^{4} + 7225 T^{6} + 83521 T^{8} \)
$19$ \( ( 1 - 6 T + 17 T^{2} - 114 T^{3} + 361 T^{4} )^{2} \)
$23$ \( 1 - 3 T^{2} - 520 T^{4} - 1587 T^{6} + 279841 T^{8} \)
$29$ \( ( 1 + 4 T + 29 T^{2} )^{4} \)
$31$ \( ( 1 - 5 T - 6 T^{2} - 155 T^{3} + 961 T^{4} )^{2} \)
$37$ \( ( 1 - 12 T + 107 T^{2} - 444 T^{3} + 1369 T^{4} )( 1 + 12 T + 107 T^{2} + 444 T^{3} + 1369 T^{4} ) \)
$41$ \( ( 1 - 7 T + 41 T^{2} )^{4} \)
$43$ \( ( 1 - 82 T^{2} + 1849 T^{4} )^{2} \)
$47$ \( 1 + 93 T^{2} + 6440 T^{4} + 205437 T^{6} + 4879681 T^{8} \)
$53$ \( 1 + 102 T^{2} + 7595 T^{4} + 286518 T^{6} + 7890481 T^{8} \)
$59$ \( ( 1 + 14 T + 137 T^{2} + 826 T^{3} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 + 12 T + 83 T^{2} + 732 T^{3} + 3721 T^{4} )^{2} \)
$67$ \( 1 - 10 T^{2} - 4389 T^{4} - 44890 T^{6} + 20151121 T^{8} \)
$71$ \( ( 1 + 9 T + 71 T^{2} )^{4} \)
$73$ \( ( 1 - 16 T + 183 T^{2} - 1168 T^{3} + 5329 T^{4} )( 1 + 16 T + 183 T^{2} + 1168 T^{3} + 5329 T^{4} ) \)
$79$ \( ( 1 + 4 T + 79 T^{2} )^{2}( 1 + 13 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 - 150 T^{2} + 6889 T^{4} )^{2} \)
$89$ \( ( 1 + 7 T - 40 T^{2} + 623 T^{3} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 - 145 T^{2} + 9409 T^{4} )^{2} \)
show more
show less