# Properties

 Label 1050.2.i.r Level 1050 Weight 2 Character orbit 1050.i Analytic conductor 8.384 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1050.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.38429221223$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + q^{6} + ( -2 - \zeta_{6} ) q^{7} - q^{8} -\zeta_{6} q^{9} +O(q^{10})$$ $$q + \zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} + q^{6} + ( -2 - \zeta_{6} ) q^{7} - q^{8} -\zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{11} + \zeta_{6} q^{12} + 4 q^{13} + ( 1 - 3 \zeta_{6} ) q^{14} -\zeta_{6} q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} + ( 1 - \zeta_{6} ) q^{18} -6 \zeta_{6} q^{19} + ( -3 + 2 \zeta_{6} ) q^{21} + 4 q^{22} -7 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} + 4 \zeta_{6} q^{26} - q^{27} + ( 3 - 2 \zeta_{6} ) q^{28} + 4 q^{29} + ( 5 - 5 \zeta_{6} ) q^{31} + ( 1 - \zeta_{6} ) q^{32} -4 \zeta_{6} q^{33} -3 q^{34} + q^{36} -2 \zeta_{6} q^{37} + ( 6 - 6 \zeta_{6} ) q^{38} + ( 4 - 4 \zeta_{6} ) q^{39} + 7 q^{41} + ( -2 - \zeta_{6} ) q^{42} + 2 q^{43} + 4 \zeta_{6} q^{44} + ( 7 - 7 \zeta_{6} ) q^{46} -\zeta_{6} q^{47} - q^{48} + ( 3 + 5 \zeta_{6} ) q^{49} + 3 \zeta_{6} q^{51} + ( -4 + 4 \zeta_{6} ) q^{52} + ( 2 - 2 \zeta_{6} ) q^{53} -\zeta_{6} q^{54} + ( 2 + \zeta_{6} ) q^{56} -6 q^{57} + 4 \zeta_{6} q^{58} + ( 14 - 14 \zeta_{6} ) q^{59} -12 \zeta_{6} q^{61} + 5 q^{62} + ( -1 + 3 \zeta_{6} ) q^{63} + q^{64} + ( 4 - 4 \zeta_{6} ) q^{66} + ( -12 + 12 \zeta_{6} ) q^{67} -3 \zeta_{6} q^{68} -7 q^{69} -9 q^{71} + \zeta_{6} q^{72} + ( -6 + 6 \zeta_{6} ) q^{73} + ( 2 - 2 \zeta_{6} ) q^{74} + 6 q^{76} + ( -12 + 8 \zeta_{6} ) q^{77} + 4 q^{78} + 17 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 7 \zeta_{6} q^{82} -4 q^{83} + ( 1 - 3 \zeta_{6} ) q^{84} + 2 \zeta_{6} q^{86} + ( 4 - 4 \zeta_{6} ) q^{87} + ( -4 + 4 \zeta_{6} ) q^{88} + 7 \zeta_{6} q^{89} + ( -8 - 4 \zeta_{6} ) q^{91} + 7 q^{92} -5 \zeta_{6} q^{93} + ( 1 - \zeta_{6} ) q^{94} -\zeta_{6} q^{96} -7 q^{97} + ( -5 + 8 \zeta_{6} ) q^{98} -4 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{2} + q^{3} - q^{4} + 2q^{6} - 5q^{7} - 2q^{8} - q^{9} + O(q^{10})$$ $$2q + q^{2} + q^{3} - q^{4} + 2q^{6} - 5q^{7} - 2q^{8} - q^{9} + 4q^{11} + q^{12} + 8q^{13} - q^{14} - q^{16} - 3q^{17} + q^{18} - 6q^{19} - 4q^{21} + 8q^{22} - 7q^{23} - q^{24} + 4q^{26} - 2q^{27} + 4q^{28} + 8q^{29} + 5q^{31} + q^{32} - 4q^{33} - 6q^{34} + 2q^{36} - 2q^{37} + 6q^{38} + 4q^{39} + 14q^{41} - 5q^{42} + 4q^{43} + 4q^{44} + 7q^{46} - q^{47} - 2q^{48} + 11q^{49} + 3q^{51} - 4q^{52} + 2q^{53} - q^{54} + 5q^{56} - 12q^{57} + 4q^{58} + 14q^{59} - 12q^{61} + 10q^{62} + q^{63} + 2q^{64} + 4q^{66} - 12q^{67} - 3q^{68} - 14q^{69} - 18q^{71} + q^{72} - 6q^{73} + 2q^{74} + 12q^{76} - 16q^{77} + 8q^{78} + 17q^{79} - q^{81} + 7q^{82} - 8q^{83} - q^{84} + 2q^{86} + 4q^{87} - 4q^{88} + 7q^{89} - 20q^{91} + 14q^{92} - 5q^{93} + q^{94} - q^{96} - 14q^{97} - 2q^{98} - 8q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$701$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
151.1
 0.5 + 0.866025i 0.5 − 0.866025i
0.500000 + 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0 1.00000 −2.50000 0.866025i −1.00000 −0.500000 0.866025i 0
751.1 0.500000 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0 1.00000 −2.50000 + 0.866025i −1.00000 −0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.i.r yes 2
5.b even 2 1 1050.2.i.d 2
5.c odd 4 2 1050.2.o.l 4
7.c even 3 1 inner 1050.2.i.r yes 2
7.c even 3 1 7350.2.a.e 1
7.d odd 6 1 7350.2.a.v 1
35.i odd 6 1 7350.2.a.bs 1
35.j even 6 1 1050.2.i.d 2
35.j even 6 1 7350.2.a.ci 1
35.l odd 12 2 1050.2.o.l 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.i.d 2 5.b even 2 1
1050.2.i.d 2 35.j even 6 1
1050.2.i.r yes 2 1.a even 1 1 trivial
1050.2.i.r yes 2 7.c even 3 1 inner
1050.2.o.l 4 5.c odd 4 2
1050.2.o.l 4 35.l odd 12 2
7350.2.a.e 1 7.c even 3 1
7350.2.a.v 1 7.d odd 6 1
7350.2.a.bs 1 35.i odd 6 1
7350.2.a.ci 1 35.j even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1050, [\chi])$$:

 $$T_{11}^{2} - 4 T_{11} + 16$$ $$T_{13} - 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T + T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ 1
$7$ $$1 + 5 T + 7 T^{2}$$
$11$ $$1 - 4 T + 5 T^{2} - 44 T^{3} + 121 T^{4}$$
$13$ $$( 1 - 4 T + 13 T^{2} )^{2}$$
$17$ $$1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4}$$
$19$ $$1 + 6 T + 17 T^{2} + 114 T^{3} + 361 T^{4}$$
$23$ $$1 + 7 T + 26 T^{2} + 161 T^{3} + 529 T^{4}$$
$29$ $$( 1 - 4 T + 29 T^{2} )^{2}$$
$31$ $$1 - 5 T - 6 T^{2} - 155 T^{3} + 961 T^{4}$$
$37$ $$1 + 2 T - 33 T^{2} + 74 T^{3} + 1369 T^{4}$$
$41$ $$( 1 - 7 T + 41 T^{2} )^{2}$$
$43$ $$( 1 - 2 T + 43 T^{2} )^{2}$$
$47$ $$1 + T - 46 T^{2} + 47 T^{3} + 2209 T^{4}$$
$53$ $$1 - 2 T - 49 T^{2} - 106 T^{3} + 2809 T^{4}$$
$59$ $$1 - 14 T + 137 T^{2} - 826 T^{3} + 3481 T^{4}$$
$61$ $$1 + 12 T + 83 T^{2} + 732 T^{3} + 3721 T^{4}$$
$67$ $$1 + 12 T + 77 T^{2} + 804 T^{3} + 4489 T^{4}$$
$71$ $$( 1 + 9 T + 71 T^{2} )^{2}$$
$73$ $$1 + 6 T - 37 T^{2} + 438 T^{3} + 5329 T^{4}$$
$79$ $$( 1 - 13 T + 79 T^{2} )( 1 - 4 T + 79 T^{2} )$$
$83$ $$( 1 + 4 T + 83 T^{2} )^{2}$$
$89$ $$1 - 7 T - 40 T^{2} - 623 T^{3} + 7921 T^{4}$$
$97$ $$( 1 + 7 T + 97 T^{2} )^{2}$$