Properties

Label 1050.2.i.b.751.1
Level $1050$
Weight $2$
Character 1050.751
Analytic conductor $8.384$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 751.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1050.751
Dual form 1050.2.i.b.151.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{6} +(-2.00000 + 1.73205i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +1.00000 q^{6} +(-2.00000 + 1.73205i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{11} +(-0.500000 + 0.866025i) q^{12} -1.00000 q^{13} +(-0.500000 - 2.59808i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.500000 - 0.866025i) q^{18} +(1.50000 - 2.59808i) q^{19} +(2.50000 + 0.866025i) q^{21} -1.00000 q^{22} +(3.50000 - 6.06218i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(0.500000 - 0.866025i) q^{26} +1.00000 q^{27} +(2.50000 + 0.866025i) q^{28} -8.00000 q^{29} +(1.00000 + 1.73205i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.500000 - 0.866025i) q^{33} +1.00000 q^{36} +(5.50000 - 9.52628i) q^{37} +(1.50000 + 2.59808i) q^{38} +(0.500000 + 0.866025i) q^{39} -11.0000 q^{41} +(-2.00000 + 1.73205i) q^{42} -8.00000 q^{43} +(0.500000 - 0.866025i) q^{44} +(3.50000 + 6.06218i) q^{46} +(-2.50000 + 4.33013i) q^{47} +1.00000 q^{48} +(1.00000 - 6.92820i) q^{49} +(0.500000 + 0.866025i) q^{52} +(-5.50000 - 9.52628i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-2.00000 + 1.73205i) q^{56} -3.00000 q^{57} +(4.00000 - 6.92820i) q^{58} +(-2.00000 - 3.46410i) q^{59} -2.00000 q^{62} +(-0.500000 - 2.59808i) q^{63} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{66} -7.00000 q^{69} -6.00000 q^{71} +(-0.500000 + 0.866025i) q^{72} +(-3.00000 - 5.19615i) q^{73} +(5.50000 + 9.52628i) q^{74} -3.00000 q^{76} +(-2.50000 - 0.866025i) q^{77} -1.00000 q^{78} +(4.00000 - 6.92820i) q^{79} +(-0.500000 - 0.866025i) q^{81} +(5.50000 - 9.52628i) q^{82} -8.00000 q^{83} +(-0.500000 - 2.59808i) q^{84} +(4.00000 - 6.92820i) q^{86} +(4.00000 + 6.92820i) q^{87} +(0.500000 + 0.866025i) q^{88} +(5.00000 - 8.66025i) q^{89} +(2.00000 - 1.73205i) q^{91} -7.00000 q^{92} +(1.00000 - 1.73205i) q^{93} +(-2.50000 - 4.33013i) q^{94} +(-0.500000 + 0.866025i) q^{96} +16.0000 q^{97} +(5.50000 + 4.33013i) q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} + 2q^{6} - 4q^{7} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} + 2q^{6} - 4q^{7} + 2q^{8} - q^{9} + q^{11} - q^{12} - 2q^{13} - q^{14} - q^{16} - q^{18} + 3q^{19} + 5q^{21} - 2q^{22} + 7q^{23} - q^{24} + q^{26} + 2q^{27} + 5q^{28} - 16q^{29} + 2q^{31} - q^{32} + q^{33} + 2q^{36} + 11q^{37} + 3q^{38} + q^{39} - 22q^{41} - 4q^{42} - 16q^{43} + q^{44} + 7q^{46} - 5q^{47} + 2q^{48} + 2q^{49} + q^{52} - 11q^{53} - q^{54} - 4q^{56} - 6q^{57} + 8q^{58} - 4q^{59} - 4q^{62} - q^{63} + 2q^{64} + q^{66} - 14q^{69} - 12q^{71} - q^{72} - 6q^{73} + 11q^{74} - 6q^{76} - 5q^{77} - 2q^{78} + 8q^{79} - q^{81} + 11q^{82} - 16q^{83} - q^{84} + 8q^{86} + 8q^{87} + q^{88} + 10q^{89} + 4q^{91} - 14q^{92} + 2q^{93} - 5q^{94} - q^{96} + 32q^{97} + 11q^{98} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) −0.500000 + 0.866025i −0.144338 + 0.250000i
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) −0.500000 2.59808i −0.133631 0.694365i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 1.50000 2.59808i 0.344124 0.596040i −0.641071 0.767482i \(-0.721509\pi\)
0.985194 + 0.171442i \(0.0548427\pi\)
\(20\) 0 0
\(21\) 2.50000 + 0.866025i 0.545545 + 0.188982i
\(22\) −1.00000 −0.213201
\(23\) 3.50000 6.06218i 0.729800 1.26405i −0.227167 0.973856i \(-0.572946\pi\)
0.956967 0.290196i \(-0.0937204\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 0 0
\(26\) 0.500000 0.866025i 0.0980581 0.169842i
\(27\) 1.00000 0.192450
\(28\) 2.50000 + 0.866025i 0.472456 + 0.163663i
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.500000 0.866025i 0.0870388 0.150756i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 5.50000 9.52628i 0.904194 1.56611i 0.0821995 0.996616i \(-0.473806\pi\)
0.821995 0.569495i \(-0.192861\pi\)
\(38\) 1.50000 + 2.59808i 0.243332 + 0.421464i
\(39\) 0.500000 + 0.866025i 0.0800641 + 0.138675i
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) −2.00000 + 1.73205i −0.308607 + 0.267261i
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 0.500000 0.866025i 0.0753778 0.130558i
\(45\) 0 0
\(46\) 3.50000 + 6.06218i 0.516047 + 0.893819i
\(47\) −2.50000 + 4.33013i −0.364662 + 0.631614i −0.988722 0.149763i \(-0.952149\pi\)
0.624059 + 0.781377i \(0.285482\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −5.50000 9.52628i −0.755483 1.30854i −0.945134 0.326683i \(-0.894069\pi\)
0.189651 0.981852i \(-0.439264\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 0 0
\(56\) −2.00000 + 1.73205i −0.267261 + 0.231455i
\(57\) −3.00000 −0.397360
\(58\) 4.00000 6.92820i 0.525226 0.909718i
\(59\) −2.00000 3.46410i −0.260378 0.450988i 0.705965 0.708247i \(-0.250514\pi\)
−0.966342 + 0.257260i \(0.917180\pi\)
\(60\) 0 0
\(61\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(62\) −2.00000 −0.254000
\(63\) −0.500000 2.59808i −0.0629941 0.327327i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0.500000 + 0.866025i 0.0615457 + 0.106600i
\(67\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(68\) 0 0
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −3.00000 5.19615i −0.351123 0.608164i 0.635323 0.772246i \(-0.280867\pi\)
−0.986447 + 0.164083i \(0.947534\pi\)
\(74\) 5.50000 + 9.52628i 0.639362 + 1.10741i
\(75\) 0 0
\(76\) −3.00000 −0.344124
\(77\) −2.50000 0.866025i −0.284901 0.0986928i
\(78\) −1.00000 −0.113228
\(79\) 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i \(-0.684745\pi\)
0.998388 + 0.0567635i \(0.0180781\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 5.50000 9.52628i 0.607373 1.05200i
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) −0.500000 2.59808i −0.0545545 0.283473i
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 4.00000 + 6.92820i 0.428845 + 0.742781i
\(88\) 0.500000 + 0.866025i 0.0533002 + 0.0923186i
\(89\) 5.00000 8.66025i 0.529999 0.917985i −0.469389 0.882992i \(-0.655526\pi\)
0.999388 0.0349934i \(-0.0111410\pi\)
\(90\) 0 0
\(91\) 2.00000 1.73205i 0.209657 0.181568i
\(92\) −7.00000 −0.729800
\(93\) 1.00000 1.73205i 0.103695 0.179605i
\(94\) −2.50000 4.33013i −0.257855 0.446619i
\(95\) 0 0
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −8.00000 + 13.8564i −0.788263 + 1.36531i 0.138767 + 0.990325i \(0.455686\pi\)
−0.927030 + 0.374987i \(0.877647\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 11.0000 1.06841
\(107\) −5.00000 + 8.66025i −0.483368 + 0.837218i −0.999818 0.0190994i \(-0.993920\pi\)
0.516449 + 0.856318i \(0.327253\pi\)
\(108\) −0.500000 0.866025i −0.0481125 0.0833333i
\(109\) −3.00000 5.19615i −0.287348 0.497701i 0.685828 0.727764i \(-0.259440\pi\)
−0.973176 + 0.230063i \(0.926107\pi\)
\(110\) 0 0
\(111\) −11.0000 −1.04407
\(112\) −0.500000 2.59808i −0.0472456 0.245495i
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 1.50000 2.59808i 0.140488 0.243332i
\(115\) 0 0
\(116\) 4.00000 + 6.92820i 0.371391 + 0.643268i
\(117\) 0.500000 0.866025i 0.0462250 0.0800641i
\(118\) 4.00000 0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 0 0
\(123\) 5.50000 + 9.52628i 0.495918 + 0.858956i
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) 0 0
\(126\) 2.50000 + 0.866025i 0.222718 + 0.0771517i
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 4.00000 + 6.92820i 0.352180 + 0.609994i
\(130\) 0 0
\(131\) 2.50000 4.33013i 0.218426 0.378325i −0.735901 0.677089i \(-0.763241\pi\)
0.954327 + 0.298764i \(0.0965744\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 1.50000 + 7.79423i 0.130066 + 0.675845i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 3.50000 6.06218i 0.297940 0.516047i
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 5.00000 0.421076
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) −0.500000 0.866025i −0.0418121 0.0724207i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 0 0
\(146\) 6.00000 0.496564
\(147\) −6.50000 + 2.59808i −0.536111 + 0.214286i
\(148\) −11.0000 −0.904194
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 0 0
\(151\) −3.00000 5.19615i −0.244137 0.422857i 0.717752 0.696299i \(-0.245171\pi\)
−0.961888 + 0.273442i \(0.911838\pi\)
\(152\) 1.50000 2.59808i 0.121666 0.210732i
\(153\) 0 0
\(154\) 2.00000 1.73205i 0.161165 0.139573i
\(155\) 0 0
\(156\) 0.500000 0.866025i 0.0400320 0.0693375i
\(157\) −3.50000 6.06218i −0.279330 0.483814i 0.691888 0.722005i \(-0.256779\pi\)
−0.971219 + 0.238190i \(0.923446\pi\)
\(158\) 4.00000 + 6.92820i 0.318223 + 0.551178i
\(159\) −5.50000 + 9.52628i −0.436178 + 0.755483i
\(160\) 0 0
\(161\) 3.50000 + 18.1865i 0.275839 + 1.43330i
\(162\) 1.00000 0.0785674
\(163\) 8.00000 13.8564i 0.626608 1.08532i −0.361619 0.932326i \(-0.617776\pi\)
0.988227 0.152992i \(-0.0488907\pi\)
\(164\) 5.50000 + 9.52628i 0.429478 + 0.743877i
\(165\) 0 0
\(166\) 4.00000 6.92820i 0.310460 0.537733i
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 2.50000 + 0.866025i 0.192879 + 0.0668153i
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 1.50000 + 2.59808i 0.114708 + 0.198680i
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) −7.50000 + 12.9904i −0.570214 + 0.987640i 0.426329 + 0.904568i \(0.359807\pi\)
−0.996544 + 0.0830722i \(0.973527\pi\)
\(174\) −8.00000 −0.606478
\(175\) 0 0
\(176\) −1.00000 −0.0753778
\(177\) −2.00000 + 3.46410i −0.150329 + 0.260378i
\(178\) 5.00000 + 8.66025i 0.374766 + 0.649113i
\(179\) 9.50000 + 16.4545i 0.710063 + 1.22987i 0.964833 + 0.262864i \(0.0846670\pi\)
−0.254770 + 0.967002i \(0.582000\pi\)
\(180\) 0 0
\(181\) −24.0000 −1.78391 −0.891953 0.452128i \(-0.850665\pi\)
−0.891953 + 0.452128i \(0.850665\pi\)
\(182\) 0.500000 + 2.59808i 0.0370625 + 0.192582i
\(183\) 0 0
\(184\) 3.50000 6.06218i 0.258023 0.446910i
\(185\) 0 0
\(186\) 1.00000 + 1.73205i 0.0733236 + 0.127000i
\(187\) 0 0
\(188\) 5.00000 0.364662
\(189\) −2.00000 + 1.73205i −0.145479 + 0.125988i
\(190\) 0 0
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) 11.0000 + 19.0526i 0.791797 + 1.37143i 0.924853 + 0.380325i \(0.124188\pi\)
−0.133056 + 0.991109i \(0.542479\pi\)
\(194\) −8.00000 + 13.8564i −0.574367 + 0.994832i
\(195\) 0 0
\(196\) −6.50000 + 2.59808i −0.464286 + 0.185577i
\(197\) 1.00000 0.0712470 0.0356235 0.999365i \(-0.488658\pi\)
0.0356235 + 0.999365i \(0.488658\pi\)
\(198\) 0.500000 0.866025i 0.0355335 0.0615457i
\(199\) 12.0000 + 20.7846i 0.850657 + 1.47338i 0.880616 + 0.473831i \(0.157129\pi\)
−0.0299585 + 0.999551i \(0.509538\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.0000 13.8564i 1.12298 0.972529i
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 13.8564i −0.557386 0.965422i
\(207\) 3.50000 + 6.06218i 0.243267 + 0.421350i
\(208\) 0.500000 0.866025i 0.0346688 0.0600481i
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) −5.50000 + 9.52628i −0.377742 + 0.654268i
\(213\) 3.00000 + 5.19615i 0.205557 + 0.356034i
\(214\) −5.00000 8.66025i −0.341793 0.592003i
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) −5.00000 1.73205i −0.339422 0.117579i
\(218\) 6.00000 0.406371
\(219\) −3.00000 + 5.19615i −0.202721 + 0.351123i
\(220\) 0 0
\(221\) 0 0
\(222\) 5.50000 9.52628i 0.369136 0.639362i
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) 2.50000 + 0.866025i 0.167038 + 0.0578638i
\(225\) 0 0
\(226\) 3.00000 5.19615i 0.199557 0.345643i
\(227\) 4.00000 + 6.92820i 0.265489 + 0.459841i 0.967692 0.252136i \(-0.0811332\pi\)
−0.702202 + 0.711977i \(0.747800\pi\)
\(228\) 1.50000 + 2.59808i 0.0993399 + 0.172062i
\(229\) −7.00000 + 12.1244i −0.462573 + 0.801200i −0.999088 0.0426906i \(-0.986407\pi\)
0.536515 + 0.843891i \(0.319740\pi\)
\(230\) 0 0
\(231\) 0.500000 + 2.59808i 0.0328976 + 0.170941i
\(232\) −8.00000 −0.525226
\(233\) 9.00000 15.5885i 0.589610 1.02123i −0.404674 0.914461i \(-0.632615\pi\)
0.994283 0.106773i \(-0.0340517\pi\)
\(234\) 0.500000 + 0.866025i 0.0326860 + 0.0566139i
\(235\) 0 0
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) −3.50000 6.06218i −0.225455 0.390499i 0.731001 0.682376i \(-0.239053\pi\)
−0.956456 + 0.291877i \(0.905720\pi\)
\(242\) 5.00000 + 8.66025i 0.321412 + 0.556702i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) −11.0000 −0.701334
\(247\) −1.50000 + 2.59808i −0.0954427 + 0.165312i
\(248\) 1.00000 + 1.73205i 0.0635001 + 0.109985i
\(249\) 4.00000 + 6.92820i 0.253490 + 0.439057i
\(250\) 0 0
\(251\) 13.0000 0.820553 0.410276 0.911961i \(-0.365432\pi\)
0.410276 + 0.911961i \(0.365432\pi\)
\(252\) −2.00000 + 1.73205i −0.125988 + 0.109109i
\(253\) 7.00000 0.440086
\(254\) −8.50000 + 14.7224i −0.533337 + 0.923768i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −10.0000 + 17.3205i −0.623783 + 1.08042i 0.364992 + 0.931011i \(0.381072\pi\)
−0.988775 + 0.149413i \(0.952262\pi\)
\(258\) −8.00000 −0.498058
\(259\) 5.50000 + 28.5788i 0.341753 + 1.77580i
\(260\) 0 0
\(261\) 4.00000 6.92820i 0.247594 0.428845i
\(262\) 2.50000 + 4.33013i 0.154451 + 0.267516i
\(263\) 12.0000 + 20.7846i 0.739952 + 1.28163i 0.952517 + 0.304487i \(0.0984850\pi\)
−0.212565 + 0.977147i \(0.568182\pi\)
\(264\) 0.500000 0.866025i 0.0307729 0.0533002i
\(265\) 0 0
\(266\) −7.50000 2.59808i −0.459855 0.159298i
\(267\) −10.0000 −0.611990
\(268\) 0 0
\(269\) −10.0000 17.3205i −0.609711 1.05605i −0.991288 0.131713i \(-0.957952\pi\)
0.381577 0.924337i \(-0.375381\pi\)
\(270\) 0 0
\(271\) −16.0000 + 27.7128i −0.971931 + 1.68343i −0.282218 + 0.959350i \(0.591070\pi\)
−0.689713 + 0.724083i \(0.742263\pi\)
\(272\) 0 0
\(273\) −2.50000 0.866025i −0.151307 0.0524142i
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 3.50000 + 6.06218i 0.210675 + 0.364900i
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) −10.0000 + 17.3205i −0.599760 + 1.03882i
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −1.00000 −0.0596550 −0.0298275 0.999555i \(-0.509496\pi\)
−0.0298275 + 0.999555i \(0.509496\pi\)
\(282\) −2.50000 + 4.33013i −0.148873 + 0.257855i
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) 1.00000 0.0591312
\(287\) 22.0000 19.0526i 1.29862 1.12464i
\(288\) 1.00000 0.0589256
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) −8.00000 13.8564i −0.468968 0.812277i
\(292\) −3.00000 + 5.19615i −0.175562 + 0.304082i
\(293\) −27.0000 −1.57736 −0.788678 0.614806i \(-0.789234\pi\)
−0.788678 + 0.614806i \(0.789234\pi\)
\(294\) 1.00000 6.92820i 0.0583212 0.404061i
\(295\) 0 0
\(296\) 5.50000 9.52628i 0.319681 0.553704i
\(297\) 0.500000 + 0.866025i 0.0290129 + 0.0502519i
\(298\) 0 0
\(299\) −3.50000 + 6.06218i −0.202410 + 0.350585i
\(300\) 0 0
\(301\) 16.0000 13.8564i 0.922225 0.798670i
\(302\) 6.00000 0.345261
\(303\) 0 0
\(304\) 1.50000 + 2.59808i 0.0860309 + 0.149010i
\(305\) 0 0
\(306\) 0 0
\(307\) −20.0000 −1.14146 −0.570730 0.821138i \(-0.693340\pi\)
−0.570730 + 0.821138i \(0.693340\pi\)
\(308\) 0.500000 + 2.59808i 0.0284901 + 0.148039i
\(309\) 16.0000 0.910208
\(310\) 0 0
\(311\) −6.00000 10.3923i −0.340229 0.589294i 0.644246 0.764818i \(-0.277171\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 0.500000 + 0.866025i 0.0283069 + 0.0490290i
\(313\) −6.00000 + 10.3923i −0.339140 + 0.587408i −0.984271 0.176664i \(-0.943469\pi\)
0.645131 + 0.764072i \(0.276803\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) −9.00000 + 15.5885i −0.505490 + 0.875535i 0.494489 + 0.869184i \(0.335355\pi\)
−0.999980 + 0.00635137i \(0.997978\pi\)
\(318\) −5.50000 9.52628i −0.308425 0.534207i
\(319\) −4.00000 6.92820i −0.223957 0.387905i
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) −17.5000 6.06218i −0.975237 0.337832i
\(323\) 0 0
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 0 0
\(326\) 8.00000 + 13.8564i 0.443079 + 0.767435i
\(327\) −3.00000 + 5.19615i −0.165900 + 0.287348i
\(328\) −11.0000 −0.607373
\(329\) −2.50000 12.9904i −0.137829 0.716183i
\(330\) 0 0
\(331\) 6.50000 11.2583i 0.357272 0.618814i −0.630232 0.776407i \(-0.717040\pi\)
0.987504 + 0.157593i \(0.0503735\pi\)
\(332\) 4.00000 + 6.92820i 0.219529 + 0.380235i
\(333\) 5.50000 + 9.52628i 0.301398 + 0.522037i
\(334\) −1.50000 + 2.59808i −0.0820763 + 0.142160i
\(335\) 0 0
\(336\) −2.00000 + 1.73205i −0.109109 + 0.0944911i
\(337\) 12.0000 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) 3.00000 + 5.19615i 0.162938 + 0.282216i
\(340\) 0 0
\(341\) −1.00000 + 1.73205i −0.0541530 + 0.0937958i
\(342\) −3.00000 −0.162221
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) −7.50000 12.9904i −0.403202 0.698367i
\(347\) 7.00000 + 12.1244i 0.375780 + 0.650870i 0.990443 0.137920i \(-0.0440416\pi\)
−0.614664 + 0.788789i \(0.710708\pi\)
\(348\) 4.00000 6.92820i 0.214423 0.371391i
\(349\) 12.0000 0.642345 0.321173 0.947021i \(-0.395923\pi\)
0.321173 + 0.947021i \(0.395923\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0.500000 0.866025i 0.0266501 0.0461593i
\(353\) 12.0000 + 20.7846i 0.638696 + 1.10625i 0.985719 + 0.168397i \(0.0538590\pi\)
−0.347024 + 0.937856i \(0.612808\pi\)
\(354\) −2.00000 3.46410i −0.106299 0.184115i
\(355\) 0 0
\(356\) −10.0000 −0.529999
\(357\) 0 0
\(358\) −19.0000 −1.00418
\(359\) −2.00000 + 3.46410i −0.105556 + 0.182828i −0.913965 0.405793i \(-0.866996\pi\)
0.808409 + 0.588621i \(0.200329\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 12.0000 20.7846i 0.630706 1.09241i
\(363\) −10.0000 −0.524864
\(364\) −2.50000 0.866025i −0.131036 0.0453921i
\(365\) 0 0
\(366\) 0 0
\(367\) 12.5000 + 21.6506i 0.652495 + 1.13015i 0.982516 + 0.186180i \(0.0596109\pi\)
−0.330021 + 0.943974i \(0.607056\pi\)
\(368\) 3.50000 + 6.06218i 0.182450 + 0.316013i
\(369\) 5.50000 9.52628i 0.286319 0.495918i
\(370\) 0 0
\(371\) 27.5000 + 9.52628i 1.42773 + 0.494580i
\(372\) −2.00000 −0.103695
\(373\) 3.00000 5.19615i 0.155334 0.269047i −0.777847 0.628454i \(-0.783688\pi\)
0.933181 + 0.359408i \(0.117021\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.50000 + 4.33013i −0.128928 + 0.223309i
\(377\) 8.00000 0.412021
\(378\) −0.500000 2.59808i −0.0257172 0.133631i
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) −8.50000 14.7224i −0.435468 0.754253i
\(382\) 3.00000 + 5.19615i 0.153493 + 0.265858i
\(383\) 17.5000 30.3109i 0.894208 1.54881i 0.0594268 0.998233i \(-0.481073\pi\)
0.834781 0.550581i \(-0.185594\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −22.0000 −1.11977
\(387\) 4.00000 6.92820i 0.203331 0.352180i
\(388\) −8.00000 13.8564i −0.406138 0.703452i
\(389\) −5.00000 8.66025i −0.253510 0.439092i 0.710980 0.703213i \(-0.248252\pi\)
−0.964490 + 0.264120i \(0.914918\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 6.92820i 0.0505076 0.349927i
\(393\) −5.00000 −0.252217
\(394\) −0.500000 + 0.866025i −0.0251896 + 0.0436297i
\(395\) 0 0
\(396\) 0.500000 + 0.866025i 0.0251259 + 0.0435194i
\(397\) 7.00000 12.1244i 0.351320 0.608504i −0.635161 0.772380i \(-0.719066\pi\)
0.986481 + 0.163876i \(0.0523996\pi\)
\(398\) −24.0000 −1.20301
\(399\) 6.00000 5.19615i 0.300376 0.260133i
\(400\) 0 0
\(401\) 2.50000 4.33013i 0.124844 0.216236i −0.796828 0.604206i \(-0.793490\pi\)
0.921672 + 0.387970i \(0.126824\pi\)
\(402\) 0 0
\(403\) −1.00000 1.73205i −0.0498135 0.0862796i
\(404\) 0 0
\(405\) 0 0
\(406\) 4.00000 + 20.7846i 0.198517 + 1.03152i
\(407\) 11.0000 0.545250
\(408\) 0 0
\(409\) −1.00000 1.73205i −0.0494468 0.0856444i 0.840243 0.542211i \(-0.182412\pi\)
−0.889689 + 0.456566i \(0.849079\pi\)
\(410\) 0 0
\(411\) −9.00000 + 15.5885i −0.443937 + 0.768922i
\(412\) 16.0000 0.788263
\(413\) 10.0000 + 3.46410i 0.492068 + 0.170457i
\(414\) −7.00000 −0.344031
\(415\) 0 0
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) −10.0000 17.3205i −0.489702 0.848189i
\(418\) −1.50000 + 2.59808i −0.0733674 + 0.127076i
\(419\) −5.00000 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) −2.50000 + 4.33013i −0.121698 + 0.210787i
\(423\) −2.50000 4.33013i −0.121554 0.210538i
\(424\) −5.50000 9.52628i −0.267104 0.462637i
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 0 0
\(428\) 10.0000 0.483368
\(429\) −0.500000 + 0.866025i −0.0241402 + 0.0418121i
\(430\) 0 0
\(431\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(432\) −0.500000 + 0.866025i −0.0240563 + 0.0416667i
\(433\) 32.0000 1.53782 0.768911 0.639356i \(-0.220799\pi\)
0.768911 + 0.639356i \(0.220799\pi\)
\(434\) 4.00000 3.46410i 0.192006 0.166282i
\(435\) 0 0
\(436\) −3.00000 + 5.19615i −0.143674 + 0.248851i
\(437\) −10.5000 18.1865i −0.502283 0.869980i
\(438\) −3.00000 5.19615i −0.143346 0.248282i
\(439\) −16.0000 + 27.7128i −0.763638 + 1.32266i 0.177325 + 0.984152i \(0.443256\pi\)
−0.940963 + 0.338508i \(0.890078\pi\)
\(440\) 0 0
\(441\) 5.50000 + 4.33013i 0.261905 + 0.206197i
\(442\) 0 0
\(443\) 8.00000 13.8564i 0.380091 0.658338i −0.610984 0.791643i \(-0.709226\pi\)
0.991075 + 0.133306i \(0.0425592\pi\)
\(444\) 5.50000 + 9.52628i 0.261018 + 0.452097i
\(445\) 0 0
\(446\) 6.00000 10.3923i 0.284108 0.492090i
\(447\) 0 0
\(448\) −2.00000 + 1.73205i −0.0944911 + 0.0818317i
\(449\) 11.0000 0.519122 0.259561 0.965727i \(-0.416422\pi\)
0.259561 + 0.965727i \(0.416422\pi\)
\(450\) 0 0
\(451\) −5.50000 9.52628i −0.258985 0.448575i
\(452\) 3.00000 + 5.19615i 0.141108 + 0.244406i
\(453\) −3.00000 + 5.19615i −0.140952 + 0.244137i
\(454\) −8.00000 −0.375459
\(455\) 0 0
\(456\) −3.00000 −0.140488
\(457\) −9.00000 + 15.5885i −0.421002 + 0.729197i −0.996038 0.0889312i \(-0.971655\pi\)
0.575036 + 0.818128i \(0.304988\pi\)
\(458\) −7.00000 12.1244i −0.327089 0.566534i
\(459\) 0 0
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) −2.50000 0.866025i −0.116311 0.0402911i
\(463\) 13.0000 0.604161 0.302081 0.953282i \(-0.402319\pi\)
0.302081 + 0.953282i \(0.402319\pi\)
\(464\) 4.00000 6.92820i 0.185695 0.321634i
\(465\) 0 0
\(466\) 9.00000 + 15.5885i 0.416917 + 0.722121i
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) −1.00000 −0.0462250
\(469\) 0 0
\(470\) 0 0
\(471\) −3.50000 + 6.06218i −0.161271 + 0.279330i
\(472\) −2.00000 3.46410i −0.0920575 0.159448i
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) 4.00000 6.92820i 0.183726 0.318223i
\(475\) 0 0
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) 9.00000 15.5885i 0.411650 0.712999i
\(479\) −11.0000 19.0526i −0.502603 0.870534i −0.999995 0.00300810i \(-0.999042\pi\)
0.497393 0.867526i \(-0.334291\pi\)
\(480\) 0 0
\(481\) −5.50000 + 9.52628i −0.250778 + 0.434361i
\(482\) 7.00000 0.318841
\(483\) 14.0000 12.1244i 0.637022 0.551677i
\(484\) −10.0000 −0.454545
\(485\) 0 0
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 5.50000 9.52628i 0.247959 0.429478i
\(493\) 0 0
\(494\) −1.50000 2.59808i −0.0674882 0.116893i
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 12.0000 10.3923i 0.538274 0.466159i
\(498\) −8.00000 −0.358489
\(499\) 16.0000 27.7128i 0.716258 1.24060i −0.246214 0.969216i \(-0.579187\pi\)
0.962472 0.271380i \(-0.0874801\pi\)
\(500\) 0 0
\(501\) −1.50000 2.59808i −0.0670151 0.116073i
\(502\) −6.50000 + 11.2583i −0.290109 + 0.502484i
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) −0.500000 2.59808i −0.0222718 0.115728i
\(505\) 0 0
\(506\) −3.50000 + 6.06218i −0.155594 + 0.269497i
\(507\) 6.00000 + 10.3923i 0.266469 + 0.461538i
\(508\) −8.50000 14.7224i −0.377127 0.653202i
\(509\) 17.0000 29.4449i 0.753512 1.30512i −0.192599 0.981278i \(-0.561692\pi\)
0.946111 0.323843i \(-0.104975\pi\)
\(510\) 0 0
\(511\) 15.0000 + 5.19615i 0.663561 + 0.229864i
\(512\) 1.00000 0.0441942
\(513\) 1.50000 2.59808i 0.0662266 0.114708i
\(514\) −10.0000 17.3205i −0.441081 0.763975i
\(515\) 0 0
\(516\) 4.00000 6.92820i 0.176090 0.304997i
\(517\) −5.00000 −0.219900
\(518\) −27.5000 9.52628i −1.20828 0.418561i
\(519\) 15.0000 0.658427
\(520\) 0 0
\(521\) 16.5000 + 28.5788i 0.722878 + 1.25206i 0.959841 + 0.280543i \(0.0905145\pi\)
−0.236963 + 0.971519i \(0.576152\pi\)
\(522\) 4.00000 + 6.92820i 0.175075 + 0.303239i
\(523\) 1.00000 1.73205i 0.0437269 0.0757373i −0.843334 0.537390i \(-0.819410\pi\)
0.887061 + 0.461653i \(0.152744\pi\)
\(524\) −5.00000 −0.218426
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 0 0
\(528\) 0.500000 + 0.866025i 0.0217597 + 0.0376889i
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 6.00000 5.19615i 0.260133 0.225282i
\(533\) 11.0000 0.476463
\(534\) 5.00000 8.66025i 0.216371 0.374766i
\(535\) 0 0
\(536\) 0 0
\(537\) 9.50000 16.4545i 0.409955 0.710063i
\(538\) 20.0000 0.862261
\(539\) 6.50000 2.59808i 0.279975 0.111907i
\(540\) 0 0
\(541\) 5.00000 8.66025i 0.214967 0.372333i −0.738296 0.674477i \(-0.764369\pi\)
0.953262 + 0.302144i \(0.0977023\pi\)
\(542\) −16.0000 27.7128i −0.687259 1.19037i
\(543\) 12.0000 + 20.7846i 0.514969 + 0.891953i
\(544\) 0 0
\(545\) 0 0
\(546\) 2.00000 1.73205i 0.0855921 0.0741249i
\(547\) −16.0000 −0.684111 −0.342055 0.939680i \(-0.611123\pi\)
−0.342055 + 0.939680i \(0.611123\pi\)
\(548\) −9.00000 + 15.5885i −0.384461 + 0.665906i
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 + 20.7846i −0.511217 + 0.885454i
\(552\) −7.00000 −0.297940
\(553\) 4.00000 + 20.7846i 0.170097 + 0.883852i
\(554\) 22.0000 0.934690
\(555\) 0 0
\(556\) −10.0000 17.3205i −0.424094 0.734553i
\(557\) −16.5000 28.5788i −0.699127 1.21092i −0.968769 0.247964i \(-0.920239\pi\)
0.269642 0.962961i \(-0.413095\pi\)
\(558\) 1.00000 1.73205i 0.0423334 0.0733236i
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0.500000 0.866025i 0.0210912 0.0365311i
\(563\) −19.0000 32.9090i −0.800755 1.38695i −0.919120 0.393977i \(-0.871099\pi\)
0.118366 0.992970i \(-0.462235\pi\)
\(564\) −2.50000 4.33013i −0.105269 0.182331i
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) 2.50000 + 0.866025i 0.104990 + 0.0363696i
\(568\) −6.00000 −0.251754
\(569\) 4.50000 7.79423i 0.188650 0.326751i −0.756151 0.654398i \(-0.772922\pi\)
0.944800 + 0.327647i \(0.106256\pi\)
\(570\) 0 0
\(571\) 16.0000 + 27.7128i 0.669579 + 1.15975i 0.978022 + 0.208502i \(0.0668588\pi\)
−0.308443 + 0.951243i \(0.599808\pi\)
\(572\) −0.500000 + 0.866025i −0.0209061 + 0.0362103i
\(573\) −6.00000 −0.250654
\(574\) 5.50000 + 28.5788i 0.229566 + 1.19286i
\(575\) 0 0
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −7.00000 12.1244i −0.291414 0.504744i 0.682730 0.730670i \(-0.260792\pi\)
−0.974144 + 0.225927i \(0.927459\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 11.0000 19.0526i 0.457144 0.791797i
\(580\) 0 0
\(581\) 16.0000 13.8564i 0.663792 0.574861i
\(582\) 16.0000 0.663221
\(583\) 5.50000 9.52628i 0.227787 0.394538i
\(584\) −3.00000 5.19615i −0.124141 0.215018i
\(585\) 0 0
\(586\) 13.5000 23.3827i 0.557680 0.965930i
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 5.50000 + 4.33013i 0.226816 + 0.178571i
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) −0.500000 0.866025i −0.0205673 0.0356235i
\(592\) 5.50000 + 9.52628i 0.226049 + 0.391528i
\(593\) 8.00000 13.8564i 0.328521 0.569014i −0.653698 0.756756i \(-0.726783\pi\)
0.982219 + 0.187741i \(0.0601166\pi\)
\(594\) −1.00000 −0.0410305
\(595\) 0 0
\(596\) 0 0
\(597\) 12.0000 20.7846i 0.491127 0.850657i
\(598\) −3.50000 6.06218i −0.143126 0.247901i
\(599\) −1.00000 1.73205i −0.0408589 0.0707697i 0.844873 0.534967i \(-0.179676\pi\)
−0.885732 + 0.464198i \(0.846343\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) 4.00000 + 20.7846i 0.163028 + 0.847117i
\(603\) 0 0
\(604\) −3.00000 + 5.19615i −0.122068 + 0.211428i
\(605\) 0 0
\(606\) 0 0
\(607\) −18.5000 + 32.0429i −0.750892 + 1.30058i 0.196499 + 0.980504i \(0.437043\pi\)
−0.947391 + 0.320079i \(0.896291\pi\)
\(608\) −3.00000 −0.121666
\(609\) −20.0000 6.92820i −0.810441 0.280745i
\(610\) 0 0
\(611\) 2.50000 4.33013i 0.101139 0.175178i
\(612\) 0 0
\(613\) −20.5000 35.5070i −0.827987 1.43412i −0.899615 0.436684i \(-0.856153\pi\)
0.0716275 0.997431i \(-0.477181\pi\)
\(614\) 10.0000 17.3205i 0.403567 0.698999i
\(615\) 0 0
\(616\) −2.50000 0.866025i −0.100728 0.0348932i
\(617\) −28.0000 −1.12724 −0.563619 0.826035i \(-0.690591\pi\)
−0.563619 + 0.826035i \(0.690591\pi\)
\(618\) −8.00000 + 13.8564i −0.321807 + 0.557386i
\(619\) −14.5000 25.1147i −0.582804 1.00945i −0.995145 0.0984169i \(-0.968622\pi\)
0.412341 0.911030i \(-0.364711\pi\)
\(620\) 0 0
\(621\) 3.50000 6.06218i 0.140450 0.243267i
\(622\) 12.0000 0.481156
\(623\) 5.00000 + 25.9808i 0.200321 + 1.04090i
\(624\) −1.00000 −0.0400320
\(625\) 0 0
\(626\) −6.00000 10.3923i −0.239808 0.415360i
\(627\) −1.50000 2.59808i −0.0599042 0.103757i
\(628\) −3.50000 + 6.06218i −0.139665 + 0.241907i
\(629\) 0 0
\(630\) 0 0
\(631\) −26.0000 −1.03504 −0.517522 0.855670i \(-0.673145\pi\)
−0.517522 + 0.855670i \(0.673145\pi\)
\(632\) 4.00000 6.92820i 0.159111 0.275589i
\(633\) −2.50000 4.33013i −0.0993661 0.172107i
\(634\) −9.00000 15.5885i −0.357436 0.619097i
\(635\) 0 0
\(636\) 11.0000 0.436178
\(637\) −1.00000 + 6.92820i −0.0396214 + 0.274505i
\(638\) 8.00000 0.316723
\(639\) 3.00000 5.19615i 0.118678 0.205557i
\(640\) 0 0
\(641\) 1.50000 + 2.59808i 0.0592464 + 0.102618i 0.894127 0.447813i \(-0.147797\pi\)
−0.834881 + 0.550431i \(0.814464\pi\)
\(642\) −5.00000 + 8.66025i −0.197334 + 0.341793i
\(643\) 10.0000 0.394362 0.197181 0.980367i \(-0.436821\pi\)
0.197181 + 0.980367i \(0.436821\pi\)
\(644\) 14.0000 12.1244i 0.551677 0.477767i
\(645\) 0 0
\(646\) 0 0
\(647\) −8.50000 14.7224i −0.334169 0.578799i 0.649155 0.760656i \(-0.275122\pi\)
−0.983325 + 0.181857i \(0.941789\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) 2.00000 3.46410i 0.0785069 0.135978i
\(650\) 0 0
\(651\) 1.00000 + 5.19615i 0.0391931 + 0.203653i
\(652\) −16.0000 −0.626608
\(653\) 3.50000 6.06218i 0.136966 0.237231i −0.789381 0.613904i \(-0.789598\pi\)
0.926347 + 0.376672i \(0.122932\pi\)
\(654\) −3.00000 5.19615i −0.117309 0.203186i
\(655\) 0 0
\(656\) 5.50000 9.52628i 0.214739 0.371939i
\(657\) 6.00000 0.234082
\(658\) 12.5000 + 4.33013i 0.487301 + 0.168806i
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) 12.0000 + 20.7846i 0.466746 + 0.808428i 0.999278 0.0379819i \(-0.0120929\pi\)
−0.532533 + 0.846410i \(0.678760\pi\)
\(662\) 6.50000 + 11.2583i 0.252630 + 0.437567i
\(663\) 0 0
\(664\) −8.00000 −0.310460
\(665\) 0 0
\(666\) −11.0000 −0.426241
\(667\) −28.0000 + 48.4974i −1.08416 + 1.87783i
\(668\) −1.50000 2.59808i −0.0580367 0.100523i
\(669\) 6.00000 + 10.3923i 0.231973 + 0.401790i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.500000 2.59808i −0.0192879 0.100223i
\(673\) −28.0000 −1.07932 −0.539660 0.841883i \(-0.681447\pi\)
−0.539660 + 0.841883i \(0.681447\pi\)
\(674\) −6.00000 + 10.3923i −0.231111 + 0.400297i
\(675\) 0 0
\(676\) 6.00000 + 10.3923i 0.230769 + 0.399704i
\(677\) −6.50000 + 11.2583i −0.249815 + 0.432693i −0.963474 0.267800i \(-0.913703\pi\)
0.713659 + 0.700493i \(0.247037\pi\)
\(678\) −6.00000 −0.230429
\(679\) −32.0000 + 27.7128i −1.22805 + 1.06352i
\(680\) 0 0
\(681\) 4.00000 6.92820i 0.153280 0.265489i
\(682\) −1.00000 1.73205i −0.0382920 0.0663237i
\(683\) 2.00000 + 3.46410i 0.0765279 + 0.132550i 0.901750 0.432259i \(-0.142283\pi\)
−0.825222 + 0.564809i \(0.808950\pi\)
\(684\) 1.50000 2.59808i 0.0573539 0.0993399i
\(685\) 0 0
\(686\) −18.5000 + 0.866025i −0.706333 + 0.0330650i
\(687\) 14.0000 0.534133
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 5.50000 + 9.52628i 0.209533 + 0.362922i
\(690\) 0 0
\(691\) 6.00000 10.3923i 0.228251 0.395342i −0.729039 0.684472i \(-0.760033\pi\)
0.957290 + 0.289130i \(0.0933661\pi\)
\(692\) 15.0000 0.570214
\(693\) 2.00000 1.73205i 0.0759737 0.0657952i
\(694\) −14.0000 −0.531433
\(695\) 0 0
\(696\) 4.00000 + 6.92820i 0.151620 + 0.262613i
\(697\) 0 0
\(698\) −6.00000 + 10.3923i −0.227103 + 0.393355i
\(699\) −18.0000 −0.680823
\(700\) 0 0
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0.500000 0.866025i 0.0188713 0.0326860i
\(703\) −16.5000 28.5788i −0.622309 1.07787i
\(704\) 0.500000 + 0.866025i 0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) −24.0000 −0.903252
\(707\) 0 0
\(708\) 4.00000 0.150329
\(709\) −22.0000 + 38.1051i −0.826227 + 1.43107i 0.0747503 + 0.997202i \(0.476184\pi\)
−0.900978 + 0.433865i \(0.857149\pi\)
\(710\) 0 0
\(711\) 4.00000 + 6.92820i 0.150012 + 0.259828i
\(712\) 5.00000 8.66025i 0.187383 0.324557i
\(713\) 14.0000 0.524304
\(714\) 0 0
\(715\) 0 0
\(716\) 9.50000 16.4545i 0.355032 0.614933i
\(717\) 9.00000 + 15.5885i 0.336111 + 0.582162i
\(718\) −2.00000 3.46410i −0.0746393 0.129279i
\(719\) −1.00000 + 1.73205i −0.0372937 + 0.0645946i −0.884070 0.467355i \(-0.845207\pi\)
0.846776 + 0.531949i \(0.178540\pi\)
\(720\) 0 0
\(721\) −8.00000 41.5692i −0.297936 1.54812i
\(722\) −10.0000 −0.372161
\(723\) −3.50000 + 6.06218i −0.130166 + 0.225455i
\(724\) 12.0000 + 20.7846i 0.445976 + 0.772454i
\(725\) 0 0
\(726\) 5.00000 8.66025i 0.185567 0.321412i
\(727\) −11.0000 −0.407967 −0.203984 0.978974i \(-0.565389\pi\)
−0.203984 + 0.978974i \(0.565389\pi\)
\(728\) 2.00000 1.73205i 0.0741249 0.0641941i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 5.50000 9.52628i 0.203147 0.351861i −0.746394 0.665505i \(-0.768216\pi\)
0.949541 + 0.313644i \(0.101550\pi\)
\(734\) −25.0000 −0.922767
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) 0 0
\(738\) 5.50000 + 9.52628i 0.202458 + 0.350667i
\(739\) 9.50000 + 16.4545i 0.349463 + 0.605288i 0.986154 0.165831i \(-0.0530307\pi\)
−0.636691 + 0.771119i \(0.719697\pi\)
\(740\) 0 0
\(741\) 3.00000 0.110208
\(742\) −22.0000 + 19.0526i −0.807645 + 0.699441i
\(743\) −49.0000 −1.79764 −0.898818 0.438322i \(-0.855573\pi\)
−0.898818 + 0.438322i \(0.855573\pi\)
\(744\) 1.00000 1.73205i 0.0366618 0.0635001i
\(745\) 0 0
\(746\) 3.00000 + 5.19615i 0.109838 + 0.190245i
\(747\) 4.00000 6.92820i 0.146352 0.253490i
\(748\) 0 0
\(749\) −5.00000 25.9808i −0.182696 0.949316i
\(750\) 0 0
\(751\) −13.0000 + 22.5167i −0.474377 + 0.821645i −0.999570 0.0293387i \(-0.990660\pi\)
0.525193 + 0.850983i \(0.323993\pi\)
\(752\) −2.50000 4.33013i −0.0911656 0.157903i
\(753\) −6.50000 11.2583i −0.236873 0.410276i
\(754\) −4.00000 + 6.92820i −0.145671 + 0.252310i
\(755\) 0 0
\(756\) 2.50000 + 0.866025i 0.0909241 + 0.0314970i
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 9.50000 16.4545i 0.345056 0.597654i
\(759\) −3.50000 6.06218i −0.127042 0.220043i
\(760\) 0 0
\(761\) −13.5000 + 23.3827i −0.489375 + 0.847622i −0.999925 0.0122260i \(-0.996108\pi\)
0.510551 + 0.859848i \(0.329442\pi\)
\(762\) 17.0000 0.615845
\(763\) 15.0000 + 5.19615i 0.543036 + 0.188113i
\(764\) −6.00000 −0.217072
\(765\) 0 0
\(766\) 17.5000 + 30.3109i 0.632301 + 1.09518i
\(767\) 2.00000 + 3.46410i 0.0722158 + 0.125081i
\(768\) −0.500000 + 0.866025i −0.0180422 + 0.0312500i
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 20.0000 0.720282
\(772\) 11.0000 19.0526i 0.395899 0.685717i
\(773\) 16.5000 + 28.5788i 0.593464 + 1.02791i 0.993762 + 0.111524i \(0.0355733\pi\)
−0.400298 + 0.916385i \(0.631093\pi\)
\(774\) 4.00000 + 6.92820i 0.143777 + 0.249029i
\(775\) 0 0
\(776\) 16.0000 0.574367
\(777\) 22.0000 19.0526i 0.789246 0.683507i
\(778\) 10.0000 0.358517
\(779\) −16.5000 + 28.5788i −0.591174 + 1.02394i
\(780\) 0 0
\(781\) −3.00000 5.19615i −0.107348 0.185933i
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 5.50000 + 4.33013i 0.196429 + 0.154647i
\(785\) 0 0
\(786\) 2.50000 4.33013i 0.0891720 0.154451i
\(787\) 11.0000 + 19.0526i 0.392108 + 0.679150i 0.992727 0.120384i \(-0.0384127\pi\)