# Properties

 Label 1050.2.g.j Level 1050 Weight 2 Character orbit 1050.g Analytic conductor 8.384 Analytic rank 0 Dimension 2 CM no Inner twists 2

# Related objects

## Newspace parameters

 Level: $$N$$ = $$1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 1050.g (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.38429221223$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{7} + i q^{8} - q^{9} +O(q^{10})$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{7} + i q^{8} - q^{9} + 2 q^{11} -i q^{12} + i q^{13} + q^{14} + q^{16} + i q^{17} + i q^{18} -4 q^{19} - q^{21} -2 i q^{22} + 7 i q^{23} - q^{24} + q^{26} -i q^{27} -i q^{28} - q^{29} + 3 q^{31} -i q^{32} + 2 i q^{33} + q^{34} + q^{36} + 6 i q^{37} + 4 i q^{38} - q^{39} -3 q^{41} + i q^{42} -i q^{43} -2 q^{44} + 7 q^{46} + 12 i q^{47} + i q^{48} - q^{49} - q^{51} -i q^{52} + 11 i q^{53} - q^{54} - q^{56} -4 i q^{57} + i q^{58} + 3 q^{59} + 5 q^{61} -3 i q^{62} -i q^{63} - q^{64} + 2 q^{66} + 12 i q^{67} -i q^{68} -7 q^{69} + 4 q^{71} -i q^{72} -14 i q^{73} + 6 q^{74} + 4 q^{76} + 2 i q^{77} + i q^{78} + 2 q^{79} + q^{81} + 3 i q^{82} -3 i q^{83} + q^{84} - q^{86} -i q^{87} + 2 i q^{88} -10 q^{89} - q^{91} -7 i q^{92} + 3 i q^{93} + 12 q^{94} + q^{96} + 10 i q^{97} + i q^{98} -2 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} + 2q^{6} - 2q^{9} + 4q^{11} + 2q^{14} + 2q^{16} - 8q^{19} - 2q^{21} - 2q^{24} + 2q^{26} - 2q^{29} + 6q^{31} + 2q^{34} + 2q^{36} - 2q^{39} - 6q^{41} - 4q^{44} + 14q^{46} - 2q^{49} - 2q^{51} - 2q^{54} - 2q^{56} + 6q^{59} + 10q^{61} - 2q^{64} + 4q^{66} - 14q^{69} + 8q^{71} + 12q^{74} + 8q^{76} + 4q^{79} + 2q^{81} + 2q^{84} - 2q^{86} - 20q^{89} - 2q^{91} + 24q^{94} + 2q^{96} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$701$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
799.1
 1.00000i − 1.00000i
1.00000i 1.00000i −1.00000 0 1.00000 1.00000i 1.00000i −1.00000 0
799.2 1.00000i 1.00000i −1.00000 0 1.00000 1.00000i 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.g.j 2
3.b odd 2 1 3150.2.g.g 2
5.b even 2 1 inner 1050.2.g.j 2
5.c odd 4 1 1050.2.a.e 1
5.c odd 4 1 1050.2.a.o yes 1
15.d odd 2 1 3150.2.g.g 2
15.e even 4 1 3150.2.a.c 1
15.e even 4 1 3150.2.a.bl 1
20.e even 4 1 8400.2.a.t 1
20.e even 4 1 8400.2.a.bt 1
35.f even 4 1 7350.2.a.bj 1
35.f even 4 1 7350.2.a.ca 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.a.e 1 5.c odd 4 1
1050.2.a.o yes 1 5.c odd 4 1
1050.2.g.j 2 1.a even 1 1 trivial
1050.2.g.j 2 5.b even 2 1 inner
3150.2.a.c 1 15.e even 4 1
3150.2.a.bl 1 15.e even 4 1
3150.2.g.g 2 3.b odd 2 1
3150.2.g.g 2 15.d odd 2 1
7350.2.a.bj 1 35.f even 4 1
7350.2.a.ca 1 35.f even 4 1
8400.2.a.t 1 20.e even 4 1
8400.2.a.bt 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1050, [\chi])$$:

 $$T_{11} - 2$$ $$T_{13}^{2} + 1$$ $$T_{17}^{2} + 1$$ $$T_{19} + 4$$

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ 
$7$ $$1 + T^{2}$$
$11$ $$( 1 - 2 T + 11 T^{2} )^{2}$$
$13$ $$1 - 25 T^{2} + 169 T^{4}$$
$17$ $$1 - 33 T^{2} + 289 T^{4}$$
$19$ $$( 1 + 4 T + 19 T^{2} )^{2}$$
$23$ $$1 + 3 T^{2} + 529 T^{4}$$
$29$ $$( 1 + T + 29 T^{2} )^{2}$$
$31$ $$( 1 - 3 T + 31 T^{2} )^{2}$$
$37$ $$1 - 38 T^{2} + 1369 T^{4}$$
$41$ $$( 1 + 3 T + 41 T^{2} )^{2}$$
$43$ $$1 - 85 T^{2} + 1849 T^{4}$$
$47$ $$1 + 50 T^{2} + 2209 T^{4}$$
$53$ $$1 + 15 T^{2} + 2809 T^{4}$$
$59$ $$( 1 - 3 T + 59 T^{2} )^{2}$$
$61$ $$( 1 - 5 T + 61 T^{2} )^{2}$$
$67$ $$1 + 10 T^{2} + 4489 T^{4}$$
$71$ $$( 1 - 4 T + 71 T^{2} )^{2}$$
$73$ $$1 + 50 T^{2} + 5329 T^{4}$$
$79$ $$( 1 - 2 T + 79 T^{2} )^{2}$$
$83$ $$1 - 157 T^{2} + 6889 T^{4}$$
$89$ $$( 1 + 10 T + 89 T^{2} )^{2}$$
$97$ $$1 - 94 T^{2} + 9409 T^{4}$$