Properties

Label 1050.2.g.c
Level $1050$
Weight $2$
Character orbit 1050.g
Analytic conductor $8.384$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,-2,0,0,-2,0,0,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - i q^{3} - q^{4} - q^{6} + i q^{7} + i q^{8} - q^{9} + i q^{12} - 2 i q^{13} + q^{14} + q^{16} - 6 i q^{17} + i q^{18} - 8 q^{19} + q^{21} + q^{24} - 2 q^{26} + i q^{27} - i q^{28} + \cdots + i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} + 2 q^{14} + 2 q^{16} - 16 q^{19} + 2 q^{21} + 2 q^{24} - 4 q^{26} - 12 q^{29} - 8 q^{31} - 12 q^{34} + 2 q^{36} - 4 q^{39} - 12 q^{41} - 2 q^{49} - 12 q^{51} + 2 q^{54}+ \cdots - 2 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 1.00000i 1.00000i −1.00000 0
799.2 1.00000i 1.00000i −1.00000 0 −1.00000 1.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.g.c 2
3.b odd 2 1 3150.2.g.i 2
5.b even 2 1 inner 1050.2.g.c 2
5.c odd 4 1 210.2.a.b 1
5.c odd 4 1 1050.2.a.k 1
15.d odd 2 1 3150.2.g.i 2
15.e even 4 1 630.2.a.h 1
15.e even 4 1 3150.2.a.f 1
20.e even 4 1 1680.2.a.g 1
20.e even 4 1 8400.2.a.cm 1
35.f even 4 1 1470.2.a.b 1
35.f even 4 1 7350.2.a.cs 1
35.k even 12 2 1470.2.i.s 2
35.l odd 12 2 1470.2.i.l 2
40.i odd 4 1 6720.2.a.n 1
40.k even 4 1 6720.2.a.bi 1
60.l odd 4 1 5040.2.a.g 1
105.k odd 4 1 4410.2.a.bi 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.a.b 1 5.c odd 4 1
630.2.a.h 1 15.e even 4 1
1050.2.a.k 1 5.c odd 4 1
1050.2.g.c 2 1.a even 1 1 trivial
1050.2.g.c 2 5.b even 2 1 inner
1470.2.a.b 1 35.f even 4 1
1470.2.i.l 2 35.l odd 12 2
1470.2.i.s 2 35.k even 12 2
1680.2.a.g 1 20.e even 4 1
3150.2.a.f 1 15.e even 4 1
3150.2.g.i 2 3.b odd 2 1
3150.2.g.i 2 15.d odd 2 1
4410.2.a.bi 1 105.k odd 4 1
5040.2.a.g 1 60.l odd 4 1
6720.2.a.n 1 40.i odd 4 1
6720.2.a.bi 1 40.k even 4 1
7350.2.a.cs 1 35.f even 4 1
8400.2.a.cm 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11} \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 36 \) Copy content Toggle raw display
\( T_{19} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 36 \) Copy content Toggle raw display
$19$ \( (T + 8)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 100 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 36 \) Copy content Toggle raw display
$59$ \( (T - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T + 8)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T - 6)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100 \) Copy content Toggle raw display
show more
show less