Properties

Label 1050.2.g.a
Level 1050
Weight 2
Character orbit 1050.g
Analytic conductor 8.384
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} -i q^{7} -i q^{8} - q^{9} +O(q^{10})\) \( q + i q^{2} + i q^{3} - q^{4} - q^{6} -i q^{7} -i q^{8} - q^{9} -4 q^{11} -i q^{12} -6 i q^{13} + q^{14} + q^{16} + 2 i q^{17} -i q^{18} + 4 q^{19} + q^{21} -4 i q^{22} -8 i q^{23} + q^{24} + 6 q^{26} -i q^{27} + i q^{28} + 2 q^{29} + i q^{32} -4 i q^{33} -2 q^{34} + q^{36} -10 i q^{37} + 4 i q^{38} + 6 q^{39} -6 q^{41} + i q^{42} + 4 i q^{43} + 4 q^{44} + 8 q^{46} + i q^{48} - q^{49} -2 q^{51} + 6 i q^{52} -6 i q^{53} + q^{54} - q^{56} + 4 i q^{57} + 2 i q^{58} -4 q^{59} + 6 q^{61} + i q^{63} - q^{64} + 4 q^{66} + 4 i q^{67} -2 i q^{68} + 8 q^{69} + 8 q^{71} + i q^{72} -10 i q^{73} + 10 q^{74} -4 q^{76} + 4 i q^{77} + 6 i q^{78} + q^{81} -6 i q^{82} + 4 i q^{83} - q^{84} -4 q^{86} + 2 i q^{87} + 4 i q^{88} + 6 q^{89} -6 q^{91} + 8 i q^{92} - q^{96} -14 i q^{97} -i q^{98} + 4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 2q^{6} - 2q^{9} - 8q^{11} + 2q^{14} + 2q^{16} + 8q^{19} + 2q^{21} + 2q^{24} + 12q^{26} + 4q^{29} - 4q^{34} + 2q^{36} + 12q^{39} - 12q^{41} + 8q^{44} + 16q^{46} - 2q^{49} - 4q^{51} + 2q^{54} - 2q^{56} - 8q^{59} + 12q^{61} - 2q^{64} + 8q^{66} + 16q^{69} + 16q^{71} + 20q^{74} - 8q^{76} + 2q^{81} - 2q^{84} - 8q^{86} + 12q^{89} - 12q^{91} - 2q^{96} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
799.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 −1.00000 1.00000i 1.00000i −1.00000 0
799.2 1.00000i 1.00000i −1.00000 0 −1.00000 1.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.g.a 2
3.b odd 2 1 3150.2.g.r 2
5.b even 2 1 inner 1050.2.g.a 2
5.c odd 4 1 42.2.a.a 1
5.c odd 4 1 1050.2.a.i 1
15.d odd 2 1 3150.2.g.r 2
15.e even 4 1 126.2.a.a 1
15.e even 4 1 3150.2.a.bo 1
20.e even 4 1 336.2.a.d 1
20.e even 4 1 8400.2.a.k 1
35.f even 4 1 294.2.a.g 1
35.f even 4 1 7350.2.a.f 1
35.k even 12 2 294.2.e.a 2
35.l odd 12 2 294.2.e.c 2
40.i odd 4 1 1344.2.a.q 1
40.k even 4 1 1344.2.a.i 1
45.k odd 12 2 1134.2.f.g 2
45.l even 12 2 1134.2.f.j 2
55.e even 4 1 5082.2.a.d 1
60.l odd 4 1 1008.2.a.j 1
65.h odd 4 1 7098.2.a.f 1
80.i odd 4 1 5376.2.c.bc 2
80.j even 4 1 5376.2.c.e 2
80.s even 4 1 5376.2.c.e 2
80.t odd 4 1 5376.2.c.bc 2
105.k odd 4 1 882.2.a.b 1
105.w odd 12 2 882.2.g.j 2
105.x even 12 2 882.2.g.h 2
120.q odd 4 1 4032.2.a.m 1
120.w even 4 1 4032.2.a.e 1
140.j odd 4 1 2352.2.a.l 1
140.w even 12 2 2352.2.q.i 2
140.x odd 12 2 2352.2.q.n 2
280.s even 4 1 9408.2.a.n 1
280.y odd 4 1 9408.2.a.bw 1
420.w even 4 1 7056.2.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.a.a 1 5.c odd 4 1
126.2.a.a 1 15.e even 4 1
294.2.a.g 1 35.f even 4 1
294.2.e.a 2 35.k even 12 2
294.2.e.c 2 35.l odd 12 2
336.2.a.d 1 20.e even 4 1
882.2.a.b 1 105.k odd 4 1
882.2.g.h 2 105.x even 12 2
882.2.g.j 2 105.w odd 12 2
1008.2.a.j 1 60.l odd 4 1
1050.2.a.i 1 5.c odd 4 1
1050.2.g.a 2 1.a even 1 1 trivial
1050.2.g.a 2 5.b even 2 1 inner
1134.2.f.g 2 45.k odd 12 2
1134.2.f.j 2 45.l even 12 2
1344.2.a.i 1 40.k even 4 1
1344.2.a.q 1 40.i odd 4 1
2352.2.a.l 1 140.j odd 4 1
2352.2.q.i 2 140.w even 12 2
2352.2.q.n 2 140.x odd 12 2
3150.2.a.bo 1 15.e even 4 1
3150.2.g.r 2 3.b odd 2 1
3150.2.g.r 2 15.d odd 2 1
4032.2.a.e 1 120.w even 4 1
4032.2.a.m 1 120.q odd 4 1
5082.2.a.d 1 55.e even 4 1
5376.2.c.e 2 80.j even 4 1
5376.2.c.e 2 80.s even 4 1
5376.2.c.bc 2 80.i odd 4 1
5376.2.c.bc 2 80.t odd 4 1
7056.2.a.k 1 420.w even 4 1
7098.2.a.f 1 65.h odd 4 1
7350.2.a.f 1 35.f even 4 1
8400.2.a.k 1 20.e even 4 1
9408.2.a.n 1 280.s even 4 1
9408.2.a.bw 1 280.y odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11} + 4 \)
\( T_{13}^{2} + 36 \)
\( T_{17}^{2} + 4 \)
\( T_{19} - 4 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ 1
$7$ \( 1 + T^{2} \)
$11$ \( ( 1 + 4 T + 11 T^{2} )^{2} \)
$13$ \( ( 1 - 4 T + 13 T^{2} )( 1 + 4 T + 13 T^{2} ) \)
$17$ \( ( 1 - 8 T + 17 T^{2} )( 1 + 8 T + 17 T^{2} ) \)
$19$ \( ( 1 - 4 T + 19 T^{2} )^{2} \)
$23$ \( 1 + 18 T^{2} + 529 T^{4} \)
$29$ \( ( 1 - 2 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 + 31 T^{2} )^{2} \)
$37$ \( 1 + 26 T^{2} + 1369 T^{4} \)
$41$ \( ( 1 + 6 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 70 T^{2} + 1849 T^{4} \)
$47$ \( ( 1 - 47 T^{2} )^{2} \)
$53$ \( 1 - 70 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 + 4 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 6 T + 61 T^{2} )^{2} \)
$67$ \( 1 - 118 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 - 8 T + 71 T^{2} )^{2} \)
$73$ \( 1 - 46 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 79 T^{2} )^{2} \)
$83$ \( 1 - 150 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 - 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 + 2 T^{2} + 9409 T^{4} \)
show more
show less