Properties

Label 1050.2.d.h.1049.2
Level $1050$
Weight $2$
Character 1050.1049
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \(x^{12} + 4 x^{8} - 30 x^{6} + 36 x^{4} + 729\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1049.2
Root \(-0.721683 - 1.57454i\) of defining polynomial
Character \(\chi\) \(=\) 1050.1049
Dual form 1050.2.d.h.1049.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-1.57454 + 0.721683i) q^{3} +1.00000 q^{4} +(-1.57454 + 0.721683i) q^{6} +(-2.29622 + 1.31429i) q^{7} +1.00000 q^{8} +(1.95835 - 2.27264i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-1.57454 + 0.721683i) q^{3} +1.00000 q^{4} +(-1.57454 + 0.721683i) q^{6} +(-2.29622 + 1.31429i) q^{7} +1.00000 q^{8} +(1.95835 - 2.27264i) q^{9} -3.91669i q^{11} +(-1.57454 + 0.721683i) q^{12} +4.99166 q^{13} +(-2.29622 + 1.31429i) q^{14} +1.00000 q^{16} +3.54830i q^{17} +(1.95835 - 2.27264i) q^{18} -3.14908i q^{19} +(2.66699 - 3.72655i) q^{21} -3.91669i q^{22} +7.54528 q^{23} +(-1.57454 + 0.721683i) q^{24} +4.99166 q^{26} +(-1.44337 + 4.99166i) q^{27} +(-2.29622 + 1.31429i) q^{28} +7.54528i q^{29} +4.19323i q^{31} +1.00000 q^{32} +(2.82661 + 6.16698i) q^{33} +3.54830i q^{34} +(1.95835 - 2.27264i) q^{36} +10.4620i q^{37} -3.14908i q^{38} +(-7.85957 + 3.60240i) q^{39} +9.32176 q^{41} +(2.66699 - 3.72655i) q^{42} -2.91669i q^{43} -3.91669i q^{44} +7.54528 q^{46} -8.00387i q^{47} +(-1.57454 + 0.721683i) q^{48} +(3.54528 - 6.03581i) q^{49} +(-2.56075 - 5.58693i) q^{51} +4.99166 q^{52} -0.288109 q^{53} +(-1.44337 + 4.99166i) q^{54} +(-2.29622 + 1.31429i) q^{56} +(2.27264 + 4.95835i) q^{57} +7.54528i q^{58} +5.89894 q^{59} +2.48752i q^{61} +4.19323i q^{62} +(-1.50989 + 7.79232i) q^{63} +1.00000 q^{64} +(2.82661 + 6.16698i) q^{66} -0.545275i q^{67} +3.54830i q^{68} +(-11.8803 + 5.44530i) q^{69} -5.37142i q^{71} +(1.95835 - 2.27264i) q^{72} -4.85479 q^{73} +10.4620i q^{74} -3.14908i q^{76} +(5.14768 + 8.99360i) q^{77} +(-7.85957 + 3.60240i) q^{78} -0.742834 q^{79} +(-1.32976 - 8.90122i) q^{81} +9.32176 q^{82} -4.45557i q^{83} +(2.66699 - 3.72655i) q^{84} -2.91669i q^{86} +(-5.44530 - 11.8803i) q^{87} -3.91669i q^{88} +12.3340 q^{89} +(-11.4620 + 6.56050i) q^{91} +7.54528 q^{92} +(-3.02618 - 6.60240i) q^{93} -8.00387i q^{94} +(-1.57454 + 0.721683i) q^{96} +0.524688 q^{97} +(3.54528 - 6.03581i) q^{98} +(-8.90122 - 7.67024i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 12q^{2} + 12q^{4} + 12q^{8} + O(q^{10}) \) \( 12q + 12q^{2} + 12q^{4} + 12q^{8} + 12q^{16} + 14q^{21} + 20q^{23} + 12q^{32} - 12q^{39} + 14q^{42} + 20q^{46} - 28q^{49} + 28q^{51} + 20q^{53} - 8q^{57} + 30q^{63} + 12q^{64} - 44q^{77} - 12q^{78} - 56q^{79} - 16q^{81} + 14q^{84} - 20q^{91} + 20q^{92} - 48q^{93} - 28q^{98} - 48q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.57454 + 0.721683i −0.909060 + 0.416664i
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.57454 + 0.721683i −0.642803 + 0.294626i
\(7\) −2.29622 + 1.31429i −0.867891 + 0.496756i
\(8\) 1.00000 0.353553
\(9\) 1.95835 2.27264i 0.652782 0.757546i
\(10\) 0 0
\(11\) 3.91669i 1.18093i −0.807064 0.590464i \(-0.798945\pi\)
0.807064 0.590464i \(-0.201055\pi\)
\(12\) −1.57454 + 0.721683i −0.454530 + 0.208332i
\(13\) 4.99166 1.38444 0.692219 0.721688i \(-0.256633\pi\)
0.692219 + 0.721688i \(0.256633\pi\)
\(14\) −2.29622 + 1.31429i −0.613691 + 0.351259i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.54830i 0.860588i 0.902689 + 0.430294i \(0.141590\pi\)
−0.902689 + 0.430294i \(0.858410\pi\)
\(18\) 1.95835 2.27264i 0.461587 0.535666i
\(19\) 3.14908i 0.722448i −0.932479 0.361224i \(-0.882359\pi\)
0.932479 0.361224i \(-0.117641\pi\)
\(20\) 0 0
\(21\) 2.66699 3.72655i 0.581985 0.813200i
\(22\) 3.91669i 0.835041i
\(23\) 7.54528 1.57330 0.786649 0.617400i \(-0.211814\pi\)
0.786649 + 0.617400i \(0.211814\pi\)
\(24\) −1.57454 + 0.721683i −0.321401 + 0.147313i
\(25\) 0 0
\(26\) 4.99166 0.978946
\(27\) −1.44337 + 4.99166i −0.277776 + 0.960646i
\(28\) −2.29622 + 1.31429i −0.433945 + 0.248378i
\(29\) 7.54528i 1.40112i 0.713592 + 0.700561i \(0.247067\pi\)
−0.713592 + 0.700561i \(0.752933\pi\)
\(30\) 0 0
\(31\) 4.19323i 0.753126i 0.926391 + 0.376563i \(0.122894\pi\)
−0.926391 + 0.376563i \(0.877106\pi\)
\(32\) 1.00000 0.176777
\(33\) 2.82661 + 6.16698i 0.492050 + 1.07353i
\(34\) 3.54830i 0.608528i
\(35\) 0 0
\(36\) 1.95835 2.27264i 0.326391 0.378773i
\(37\) 10.4620i 1.71994i 0.510347 + 0.859968i \(0.329517\pi\)
−0.510347 + 0.859968i \(0.670483\pi\)
\(38\) 3.14908i 0.510848i
\(39\) −7.85957 + 3.60240i −1.25854 + 0.576846i
\(40\) 0 0
\(41\) 9.32176 1.45581 0.727907 0.685675i \(-0.240493\pi\)
0.727907 + 0.685675i \(0.240493\pi\)
\(42\) 2.66699 3.72655i 0.411525 0.575019i
\(43\) 2.91669i 0.444791i −0.974956 0.222396i \(-0.928612\pi\)
0.974956 0.222396i \(-0.0713877\pi\)
\(44\) 3.91669i 0.590464i
\(45\) 0 0
\(46\) 7.54528 1.11249
\(47\) 8.00387i 1.16748i −0.811939 0.583742i \(-0.801588\pi\)
0.811939 0.583742i \(-0.198412\pi\)
\(48\) −1.57454 + 0.721683i −0.227265 + 0.104166i
\(49\) 3.54528 6.03581i 0.506468 0.862259i
\(50\) 0 0
\(51\) −2.56075 5.58693i −0.358576 0.782327i
\(52\) 4.99166 0.692219
\(53\) −0.288109 −0.0395748 −0.0197874 0.999804i \(-0.506299\pi\)
−0.0197874 + 0.999804i \(0.506299\pi\)
\(54\) −1.44337 + 4.99166i −0.196417 + 0.679279i
\(55\) 0 0
\(56\) −2.29622 + 1.31429i −0.306846 + 0.175630i
\(57\) 2.27264 + 4.95835i 0.301018 + 0.656749i
\(58\) 7.54528i 0.990743i
\(59\) 5.89894 0.767976 0.383988 0.923338i \(-0.374550\pi\)
0.383988 + 0.923338i \(0.374550\pi\)
\(60\) 0 0
\(61\) 2.48752i 0.318494i 0.987239 + 0.159247i \(0.0509066\pi\)
−0.987239 + 0.159247i \(0.949093\pi\)
\(62\) 4.19323i 0.532540i
\(63\) −1.50989 + 7.79232i −0.190228 + 0.981740i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 2.82661 + 6.16698i 0.347932 + 0.759103i
\(67\) 0.545275i 0.0666160i −0.999445 0.0333080i \(-0.989396\pi\)
0.999445 0.0333080i \(-0.0106042\pi\)
\(68\) 3.54830i 0.430294i
\(69\) −11.8803 + 5.44530i −1.43022 + 0.655537i
\(70\) 0 0
\(71\) 5.37142i 0.637470i −0.947844 0.318735i \(-0.896742\pi\)
0.947844 0.318735i \(-0.103258\pi\)
\(72\) 1.95835 2.27264i 0.230793 0.267833i
\(73\) −4.85479 −0.568210 −0.284105 0.958793i \(-0.591696\pi\)
−0.284105 + 0.958793i \(0.591696\pi\)
\(74\) 10.4620i 1.21618i
\(75\) 0 0
\(76\) 3.14908i 0.361224i
\(77\) 5.14768 + 8.99360i 0.586632 + 1.02492i
\(78\) −7.85957 + 3.60240i −0.889921 + 0.407891i
\(79\) −0.742834 −0.0835753 −0.0417876 0.999127i \(-0.513305\pi\)
−0.0417876 + 0.999127i \(0.513305\pi\)
\(80\) 0 0
\(81\) −1.32976 8.90122i −0.147751 0.989025i
\(82\) 9.32176 1.02942
\(83\) 4.45557i 0.489063i −0.969641 0.244531i \(-0.921366\pi\)
0.969641 0.244531i \(-0.0786341\pi\)
\(84\) 2.66699 3.72655i 0.290992 0.406600i
\(85\) 0 0
\(86\) 2.91669i 0.314515i
\(87\) −5.44530 11.8803i −0.583797 1.27371i
\(88\) 3.91669i 0.417521i
\(89\) 12.3340 1.30740 0.653699 0.756755i \(-0.273216\pi\)
0.653699 + 0.756755i \(0.273216\pi\)
\(90\) 0 0
\(91\) −11.4620 + 6.56050i −1.20154 + 0.687727i
\(92\) 7.54528 0.786649
\(93\) −3.02618 6.60240i −0.313801 0.684637i
\(94\) 8.00387i 0.825536i
\(95\) 0 0
\(96\) −1.57454 + 0.721683i −0.160701 + 0.0736565i
\(97\) 0.524688 0.0532740 0.0266370 0.999645i \(-0.491520\pi\)
0.0266370 + 0.999645i \(0.491520\pi\)
\(98\) 3.54528 6.03581i 0.358127 0.609709i
\(99\) −8.90122 7.67024i −0.894606 0.770888i
\(100\) 0 0
\(101\) 8.00387 0.796415 0.398207 0.917295i \(-0.369632\pi\)
0.398207 + 0.917295i \(0.369632\pi\)
\(102\) −2.56075 5.58693i −0.253552 0.553188i
\(103\) −6.17269 −0.608213 −0.304106 0.952638i \(-0.598358\pi\)
−0.304106 + 0.952638i \(0.598358\pi\)
\(104\) 4.99166 0.489473
\(105\) 0 0
\(106\) −0.288109 −0.0279836
\(107\) 2.65953 0.257106 0.128553 0.991703i \(-0.458967\pi\)
0.128553 + 0.991703i \(0.458967\pi\)
\(108\) −1.44337 + 4.99166i −0.138888 + 0.480323i
\(109\) −14.9239 −1.42945 −0.714727 0.699404i \(-0.753449\pi\)
−0.714727 + 0.699404i \(0.753449\pi\)
\(110\) 0 0
\(111\) −7.55023 16.4728i −0.716636 1.56353i
\(112\) −2.29622 + 1.31429i −0.216973 + 0.124189i
\(113\) 11.8024 1.11028 0.555140 0.831757i \(-0.312665\pi\)
0.555140 + 0.831757i \(0.312665\pi\)
\(114\) 2.27264 + 4.95835i 0.212852 + 0.464392i
\(115\) 0 0
\(116\) 7.54528i 0.700561i
\(117\) 9.77540 11.3442i 0.903736 1.04878i
\(118\) 5.89894 0.543041
\(119\) −4.66349 8.14768i −0.427502 0.746896i
\(120\) 0 0
\(121\) −4.34047 −0.394589
\(122\) 2.48752i 0.225209i
\(123\) −14.6775 + 6.72736i −1.32342 + 0.606586i
\(124\) 4.19323i 0.376563i
\(125\) 0 0
\(126\) −1.50989 + 7.79232i −0.134512 + 0.694195i
\(127\) 2.00000i 0.177471i −0.996055 0.0887357i \(-0.971717\pi\)
0.996055 0.0887357i \(-0.0282826\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.10493 + 4.59244i 0.185329 + 0.404342i
\(130\) 0 0
\(131\) 14.6846 1.28300 0.641500 0.767123i \(-0.278312\pi\)
0.641500 + 0.767123i \(0.278312\pi\)
\(132\) 2.82661 + 6.16698i 0.246025 + 0.536767i
\(133\) 4.13881 + 7.23098i 0.358880 + 0.627006i
\(134\) 0.545275i 0.0471046i
\(135\) 0 0
\(136\) 3.54830i 0.304264i
\(137\) −18.3787 −1.57019 −0.785097 0.619372i \(-0.787387\pi\)
−0.785097 + 0.619372i \(0.787387\pi\)
\(138\) −11.8803 + 5.44530i −1.01132 + 0.463535i
\(139\) 12.6077i 1.06937i −0.845051 0.534686i \(-0.820430\pi\)
0.845051 0.534686i \(-0.179570\pi\)
\(140\) 0 0
\(141\) 5.77626 + 12.6024i 0.486449 + 1.06131i
\(142\) 5.37142i 0.450759i
\(143\) 19.5508i 1.63492i
\(144\) 1.95835 2.27264i 0.163195 0.189386i
\(145\) 0 0
\(146\) −4.85479 −0.401785
\(147\) −1.22623 + 12.0622i −0.101138 + 0.994872i
\(148\) 10.4620i 0.859968i
\(149\) 5.65953i 0.463646i −0.972758 0.231823i \(-0.925531\pi\)
0.972758 0.231823i \(-0.0744691\pi\)
\(150\) 0 0
\(151\) −2.62858 −0.213911 −0.106956 0.994264i \(-0.534110\pi\)
−0.106956 + 0.994264i \(0.534110\pi\)
\(152\) 3.14908i 0.255424i
\(153\) 8.06399 + 6.94879i 0.651935 + 0.561776i
\(154\) 5.14768 + 8.99360i 0.414811 + 0.724725i
\(155\) 0 0
\(156\) −7.85957 + 3.60240i −0.629269 + 0.288423i
\(157\) −24.2853 −1.93818 −0.969091 0.246704i \(-0.920652\pi\)
−0.969091 + 0.246704i \(0.920652\pi\)
\(158\) −0.742834 −0.0590967
\(159\) 0.453638 0.207923i 0.0359758 0.0164894i
\(160\) 0 0
\(161\) −17.3256 + 9.91669i −1.36545 + 0.781545i
\(162\) −1.32976 8.90122i −0.104476 0.699346i
\(163\) 13.4620i 1.05442i 0.849734 + 0.527211i \(0.176762\pi\)
−0.849734 + 0.527211i \(0.823238\pi\)
\(164\) 9.32176 0.727907
\(165\) 0 0
\(166\) 4.45557i 0.345819i
\(167\) 21.7812i 1.68548i 0.538321 + 0.842740i \(0.319059\pi\)
−0.538321 + 0.842740i \(0.680941\pi\)
\(168\) 2.66699 3.72655i 0.205763 0.287510i
\(169\) 11.9167 0.916669
\(170\) 0 0
\(171\) −7.15671 6.16698i −0.547287 0.471601i
\(172\) 2.91669i 0.222396i
\(173\) 0.907276i 0.0689789i 0.999405 + 0.0344895i \(0.0109805\pi\)
−0.999405 + 0.0344895i \(0.989019\pi\)
\(174\) −5.44530 11.8803i −0.412807 0.900645i
\(175\) 0 0
\(176\) 3.91669i 0.295232i
\(177\) −9.28811 + 4.25717i −0.698137 + 0.319988i
\(178\) 12.3340 0.924470
\(179\) 2.08331i 0.155714i −0.996965 0.0778569i \(-0.975192\pi\)
0.996965 0.0778569i \(-0.0248077\pi\)
\(180\) 0 0
\(181\) 24.6679i 1.83355i −0.399400 0.916777i \(-0.630782\pi\)
0.399400 0.916777i \(-0.369218\pi\)
\(182\) −11.4620 + 6.56050i −0.849618 + 0.486297i
\(183\) −1.79520 3.91669i −0.132705 0.289530i
\(184\) 7.54528 0.556245
\(185\) 0 0
\(186\) −3.02618 6.60240i −0.221891 0.484111i
\(187\) 13.8976 1.01629
\(188\) 8.00387i 0.583742i
\(189\) −3.24621 13.3590i −0.236127 0.971722i
\(190\) 0 0
\(191\) 16.0072i 1.15824i 0.815241 + 0.579122i \(0.196604\pi\)
−0.815241 + 0.579122i \(0.803396\pi\)
\(192\) −1.57454 + 0.721683i −0.113633 + 0.0520830i
\(193\) 26.4310i 1.90255i −0.308349 0.951273i \(-0.599776\pi\)
0.308349 0.951273i \(-0.400224\pi\)
\(194\) 0.524688 0.0376704
\(195\) 0 0
\(196\) 3.54528 6.03581i 0.253234 0.431129i
\(197\) −17.2644 −1.23004 −0.615019 0.788512i \(-0.710852\pi\)
−0.615019 + 0.788512i \(0.710852\pi\)
\(198\) −8.90122 7.67024i −0.632582 0.545100i
\(199\) 10.8906i 0.772014i 0.922496 + 0.386007i \(0.126146\pi\)
−0.922496 + 0.386007i \(0.873854\pi\)
\(200\) 0 0
\(201\) 0.393516 + 0.858557i 0.0277565 + 0.0605579i
\(202\) 8.00387 0.563150
\(203\) −9.91669 17.3256i −0.696015 1.21602i
\(204\) −2.56075 5.58693i −0.179288 0.391163i
\(205\) 0 0
\(206\) −6.17269 −0.430071
\(207\) 14.7763 17.1477i 1.02702 1.19185i
\(208\) 4.99166 0.346110
\(209\) −12.3340 −0.853158
\(210\) 0 0
\(211\) −6.88575 −0.474035 −0.237017 0.971505i \(-0.576170\pi\)
−0.237017 + 0.971505i \(0.576170\pi\)
\(212\) −0.288109 −0.0197874
\(213\) 3.87646 + 8.45750i 0.265611 + 0.579499i
\(214\) 2.65953 0.181801
\(215\) 0 0
\(216\) −1.44337 + 4.99166i −0.0982087 + 0.339640i
\(217\) −5.51112 9.62858i −0.374119 0.653631i
\(218\) −14.9239 −1.01078
\(219\) 7.64405 3.50362i 0.516537 0.236753i
\(220\) 0 0
\(221\) 17.7119i 1.19143i
\(222\) −7.55023 16.4728i −0.506738 1.10558i
\(223\) −2.90336 −0.194424 −0.0972118 0.995264i \(-0.530992\pi\)
−0.0972118 + 0.995264i \(0.530992\pi\)
\(224\) −2.29622 + 1.31429i −0.153423 + 0.0878148i
\(225\) 0 0
\(226\) 11.8024 0.785087
\(227\) 21.6557i 1.43734i −0.695351 0.718671i \(-0.744751\pi\)
0.695351 0.718671i \(-0.255249\pi\)
\(228\) 2.27264 + 4.95835i 0.150509 + 0.328374i
\(229\) 16.9378i 1.11928i 0.828735 + 0.559641i \(0.189061\pi\)
−0.828735 + 0.559641i \(0.810939\pi\)
\(230\) 0 0
\(231\) −14.5957 10.4458i −0.960329 0.687282i
\(232\) 7.54528i 0.495372i
\(233\) 5.42378 0.355324 0.177662 0.984092i \(-0.443147\pi\)
0.177662 + 0.984092i \(0.443147\pi\)
\(234\) 9.77540 11.3442i 0.639038 0.741596i
\(235\) 0 0
\(236\) 5.89894 0.383988
\(237\) 1.16962 0.536091i 0.0759750 0.0348228i
\(238\) −4.66349 8.14768i −0.302289 0.528135i
\(239\) 13.2572i 0.857535i 0.903415 + 0.428767i \(0.141052\pi\)
−0.903415 + 0.428767i \(0.858948\pi\)
\(240\) 0 0
\(241\) 18.5233i 1.19319i 0.802543 + 0.596595i \(0.203480\pi\)
−0.802543 + 0.596595i \(0.796520\pi\)
\(242\) −4.34047 −0.279016
\(243\) 8.51763 + 13.0557i 0.546406 + 0.837520i
\(244\) 2.48752i 0.159247i
\(245\) 0 0
\(246\) −14.6775 + 6.72736i −0.935802 + 0.428921i
\(247\) 15.7191i 1.00018i
\(248\) 4.19323i 0.266270i
\(249\) 3.21551 + 7.01547i 0.203775 + 0.444587i
\(250\) 0 0
\(251\) −21.5355 −1.35931 −0.679654 0.733533i \(-0.737870\pi\)
−0.679654 + 0.733533i \(0.737870\pi\)
\(252\) −1.50989 + 7.79232i −0.0951141 + 0.490870i
\(253\) 29.5525i 1.85795i
\(254\) 2.00000i 0.125491i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 31.8900i 1.98924i −0.103575 0.994622i \(-0.533028\pi\)
0.103575 0.994622i \(-0.466972\pi\)
\(258\) 2.10493 + 4.59244i 0.131047 + 0.285913i
\(259\) −13.7501 24.0230i −0.854388 1.49272i
\(260\) 0 0
\(261\) 17.1477 + 14.7763i 1.06141 + 0.914627i
\(262\) 14.6846 0.907218
\(263\) −14.1739 −0.873998 −0.436999 0.899462i \(-0.643959\pi\)
−0.436999 + 0.899462i \(0.643959\pi\)
\(264\) 2.82661 + 6.16698i 0.173966 + 0.379552i
\(265\) 0 0
\(266\) 4.13881 + 7.23098i 0.253767 + 0.443360i
\(267\) −19.4203 + 8.90122i −1.18850 + 0.544746i
\(268\) 0.545275i 0.0333080i
\(269\) −6.68074 −0.407332 −0.203666 0.979040i \(-0.565286\pi\)
−0.203666 + 0.979040i \(0.565286\pi\)
\(270\) 0 0
\(271\) 9.45864i 0.574571i 0.957845 + 0.287286i \(0.0927529\pi\)
−0.957845 + 0.287286i \(0.907247\pi\)
\(272\) 3.54830i 0.215147i
\(273\) 13.3127 18.6017i 0.805722 1.12582i
\(274\) −18.3787 −1.11030
\(275\) 0 0
\(276\) −11.8803 + 5.44530i −0.715112 + 0.327769i
\(277\) 11.2048i 0.673231i 0.941642 + 0.336616i \(0.109282\pi\)
−0.941642 + 0.336616i \(0.890718\pi\)
\(278\) 12.6077i 0.756160i
\(279\) 9.52969 + 8.21179i 0.570527 + 0.491627i
\(280\) 0 0
\(281\) 2.90945i 0.173563i −0.996227 0.0867816i \(-0.972342\pi\)
0.996227 0.0867816i \(-0.0276582\pi\)
\(282\) 5.77626 + 12.6024i 0.343971 + 0.750462i
\(283\) −24.4056 −1.45076 −0.725381 0.688348i \(-0.758336\pi\)
−0.725381 + 0.688348i \(0.758336\pi\)
\(284\) 5.37142i 0.318735i
\(285\) 0 0
\(286\) 19.5508i 1.15606i
\(287\) −21.4048 + 12.2515i −1.26349 + 0.723184i
\(288\) 1.95835 2.27264i 0.115397 0.133916i
\(289\) 4.40960 0.259388
\(290\) 0 0
\(291\) −0.826142 + 0.378659i −0.0484293 + 0.0221974i
\(292\) −4.85479 −0.284105
\(293\) 17.0799i 0.997819i −0.866654 0.498910i \(-0.833734\pi\)
0.866654 0.498910i \(-0.166266\pi\)
\(294\) −1.22623 + 12.0622i −0.0715151 + 0.703481i
\(295\) 0 0
\(296\) 10.4620i 0.608089i
\(297\) 19.5508 + 5.65322i 1.13445 + 0.328033i
\(298\) 5.65953i 0.327847i
\(299\) 37.6635 2.17813
\(300\) 0 0
\(301\) 3.83338 + 6.69737i 0.220953 + 0.386030i
\(302\) −2.62858 −0.151258
\(303\) −12.6024 + 5.77626i −0.723989 + 0.331837i
\(304\) 3.14908i 0.180612i
\(305\) 0 0
\(306\) 8.06399 + 6.94879i 0.460988 + 0.397236i
\(307\) −11.8093 −0.673991 −0.336996 0.941506i \(-0.609411\pi\)
−0.336996 + 0.941506i \(0.609411\pi\)
\(308\) 5.14768 + 8.99360i 0.293316 + 0.512458i
\(309\) 9.71913 4.45472i 0.552902 0.253420i
\(310\) 0 0
\(311\) 2.88673 0.163692 0.0818458 0.996645i \(-0.473918\pi\)
0.0818458 + 0.996645i \(0.473918\pi\)
\(312\) −7.85957 + 3.60240i −0.444960 + 0.203946i
\(313\) 4.20986 0.237955 0.118978 0.992897i \(-0.462038\pi\)
0.118978 + 0.992897i \(0.462038\pi\)
\(314\) −24.2853 −1.37050
\(315\) 0 0
\(316\) −0.742834 −0.0417876
\(317\) 23.2644 1.30666 0.653330 0.757074i \(-0.273372\pi\)
0.653330 + 0.757074i \(0.273372\pi\)
\(318\) 0.453638 0.207923i 0.0254388 0.0116598i
\(319\) 29.5525 1.65462
\(320\) 0 0
\(321\) −4.18753 + 1.91934i −0.233725 + 0.107127i
\(322\) −17.3256 + 9.91669i −0.965520 + 0.552636i
\(323\) 11.1739 0.621730
\(324\) −1.32976 8.90122i −0.0738757 0.494512i
\(325\) 0 0
\(326\) 13.4620i 0.745589i
\(327\) 23.4983 10.7704i 1.29946 0.595602i
\(328\) 9.32176 0.514708
\(329\) 10.5194 + 18.3787i 0.579954 + 1.01325i
\(330\) 0 0
\(331\) −25.4620 −1.39952 −0.699758 0.714380i \(-0.746709\pi\)
−0.699758 + 0.714380i \(0.746709\pi\)
\(332\) 4.45557i 0.244531i
\(333\) 23.7763 + 20.4881i 1.30293 + 1.12274i
\(334\) 21.7812i 1.19181i
\(335\) 0 0
\(336\) 2.66699 3.72655i 0.145496 0.203300i
\(337\) 7.68095i 0.418408i −0.977872 0.209204i \(-0.932913\pi\)
0.977872 0.209204i \(-0.0670873\pi\)
\(338\) 11.9167 0.648183
\(339\) −18.5834 + 8.51763i −1.00931 + 0.462614i
\(340\) 0 0
\(341\) 16.4236 0.889387
\(342\) −7.15671 6.16698i −0.386991 0.333472i
\(343\) −0.207923 + 18.5191i −0.0112268 + 0.999937i
\(344\) 2.91669i 0.157257i
\(345\) 0 0
\(346\) 0.907276i 0.0487755i
\(347\) 8.26441 0.443657 0.221828 0.975086i \(-0.428798\pi\)
0.221828 + 0.975086i \(0.428798\pi\)
\(348\) −5.44530 11.8803i −0.291899 0.636853i
\(349\) 24.6846i 1.32133i 0.750679 + 0.660667i \(0.229727\pi\)
−0.750679 + 0.660667i \(0.770273\pi\)
\(350\) 0 0
\(351\) −7.20480 + 24.9167i −0.384564 + 1.32995i
\(352\) 3.91669i 0.208760i
\(353\) 18.8945i 1.00565i 0.864388 + 0.502826i \(0.167706\pi\)
−0.864388 + 0.502826i \(0.832294\pi\)
\(354\) −9.28811 + 4.25717i −0.493657 + 0.226266i
\(355\) 0 0
\(356\) 12.3340 0.653699
\(357\) 13.2229 + 9.46326i 0.699830 + 0.500849i
\(358\) 2.08331i 0.110106i
\(359\) 1.49291i 0.0787927i 0.999224 + 0.0393964i \(0.0125435\pi\)
−0.999224 + 0.0393964i \(0.987457\pi\)
\(360\) 0 0
\(361\) 9.08331 0.478069
\(362\) 24.6679i 1.29652i
\(363\) 6.83425 3.13245i 0.358705 0.164411i
\(364\) −11.4620 + 6.56050i −0.600770 + 0.343864i
\(365\) 0 0
\(366\) −1.79520 3.91669i −0.0938366 0.204729i
\(367\) 16.9544 0.885015 0.442507 0.896765i \(-0.354089\pi\)
0.442507 + 0.896765i \(0.354089\pi\)
\(368\) 7.54528 0.393325
\(369\) 18.2552 21.1850i 0.950330 1.10285i
\(370\) 0 0
\(371\) 0.661561 0.378659i 0.0343466 0.0196590i
\(372\) −3.02618 6.60240i −0.156900 0.342319i
\(373\) 22.8097i 1.18104i −0.807023 0.590520i \(-0.798923\pi\)
0.807023 0.590520i \(-0.201077\pi\)
\(374\) 13.8976 0.718627
\(375\) 0 0
\(376\) 8.00387i 0.412768i
\(377\) 37.6635i 1.93977i
\(378\) −3.24621 13.3590i −0.166967 0.687111i
\(379\) −0.371417 −0.0190784 −0.00953920 0.999955i \(-0.503036\pi\)
−0.00953920 + 0.999955i \(0.503036\pi\)
\(380\) 0 0
\(381\) 1.44337 + 3.14908i 0.0739459 + 0.161332i
\(382\) 16.0072i 0.819002i
\(383\) 32.8367i 1.67788i 0.544226 + 0.838939i \(0.316823\pi\)
−0.544226 + 0.838939i \(0.683177\pi\)
\(384\) −1.57454 + 0.721683i −0.0803504 + 0.0368283i
\(385\) 0 0
\(386\) 26.4310i 1.34530i
\(387\) −6.62858 5.71189i −0.336950 0.290352i
\(388\) 0.524688 0.0266370
\(389\) 24.1287i 1.22338i −0.791099 0.611688i \(-0.790491\pi\)
0.791099 0.611688i \(-0.209509\pi\)
\(390\) 0 0
\(391\) 26.7729i 1.35396i
\(392\) 3.54528 6.03581i 0.179063 0.304855i
\(393\) −23.1215 + 10.5976i −1.16632 + 0.534580i
\(394\) −17.2644 −0.869768
\(395\) 0 0
\(396\) −8.90122 7.67024i −0.447303 0.385444i
\(397\) 7.35371 0.369072 0.184536 0.982826i \(-0.440922\pi\)
0.184536 + 0.982826i \(0.440922\pi\)
\(398\) 10.8906i 0.545896i
\(399\) −11.7352 8.39856i −0.587495 0.420454i
\(400\) 0 0
\(401\) 17.1215i 0.855007i −0.904014 0.427503i \(-0.859393\pi\)
0.904014 0.427503i \(-0.140607\pi\)
\(402\) 0.393516 + 0.858557i 0.0196268 + 0.0428209i
\(403\) 20.9312i 1.04266i
\(404\) 8.00387 0.398207
\(405\) 0 0
\(406\) −9.91669 17.3256i −0.492157 0.859857i
\(407\) 40.9763 2.03112
\(408\) −2.56075 5.58693i −0.126776 0.276594i
\(409\) 23.2246i 1.14838i 0.818722 + 0.574191i \(0.194683\pi\)
−0.818722 + 0.574191i \(0.805317\pi\)
\(410\) 0 0
\(411\) 28.9379 13.2636i 1.42740 0.654244i
\(412\) −6.17269 −0.304106
\(413\) −13.5453 + 7.75293i −0.666519 + 0.381497i
\(414\) 14.7763 17.1477i 0.726213 0.842762i
\(415\) 0 0
\(416\) 4.99166 0.244736
\(417\) 9.09878 + 19.8513i 0.445569 + 0.972124i
\(418\) −12.3340 −0.603274
\(419\) −11.5522 −0.564360 −0.282180 0.959361i \(-0.591058\pi\)
−0.282180 + 0.959361i \(0.591058\pi\)
\(420\) 0 0
\(421\) 36.9239 1.79956 0.899781 0.436341i \(-0.143726\pi\)
0.899781 + 0.436341i \(0.143726\pi\)
\(422\) −6.88575 −0.335193
\(423\) −18.1899 15.6743i −0.884423 0.762112i
\(424\) −0.288109 −0.0139918
\(425\) 0 0
\(426\) 3.87646 + 8.45750i 0.187815 + 0.409767i
\(427\) −3.26932 5.71189i −0.158214 0.276418i
\(428\) 2.65953 0.128553
\(429\) 14.1095 + 30.7835i 0.681213 + 1.48624i
\(430\) 0 0
\(431\) 5.03094i 0.242332i 0.992632 + 0.121166i \(0.0386633\pi\)
−0.992632 + 0.121166i \(0.961337\pi\)
\(432\) −1.44337 + 4.99166i −0.0694440 + 0.240161i
\(433\) 3.04024 0.146104 0.0730522 0.997328i \(-0.476726\pi\)
0.0730522 + 0.997328i \(0.476726\pi\)
\(434\) −5.51112 9.62858i −0.264542 0.462187i
\(435\) 0 0
\(436\) −14.9239 −0.714727
\(437\) 23.7607i 1.13663i
\(438\) 7.64405 3.50362i 0.365247 0.167409i
\(439\) 19.8184i 0.945879i −0.881095 0.472940i \(-0.843193\pi\)
0.881095 0.472940i \(-0.156807\pi\)
\(440\) 0 0
\(441\) −6.77434 19.8773i −0.322588 0.946540i
\(442\) 17.7119i 0.842469i
\(443\) −10.5976 −0.503509 −0.251755 0.967791i \(-0.581008\pi\)
−0.251755 + 0.967791i \(0.581008\pi\)
\(444\) −7.55023 16.4728i −0.358318 0.781763i
\(445\) 0 0
\(446\) −2.90336 −0.137478
\(447\) 4.08439 + 8.91114i 0.193185 + 0.421483i
\(448\) −2.29622 + 1.31429i −0.108486 + 0.0620944i
\(449\) 6.19756i 0.292481i 0.989249 + 0.146240i \(0.0467173\pi\)
−0.989249 + 0.146240i \(0.953283\pi\)
\(450\) 0 0
\(451\) 36.5105i 1.71921i
\(452\) 11.8024 0.555140
\(453\) 4.13881 1.89701i 0.194458 0.0891291i
\(454\) 21.6557i 1.01635i
\(455\) 0 0
\(456\) 2.27264 + 4.95835i 0.106426 + 0.232196i
\(457\) 19.7573i 0.924208i −0.886826 0.462104i \(-0.847095\pi\)
0.886826 0.462104i \(-0.152905\pi\)
\(458\) 16.9378i 0.791452i
\(459\) −17.7119 5.12149i −0.826720 0.239051i
\(460\) 0 0
\(461\) −26.8983 −1.25278 −0.626390 0.779510i \(-0.715468\pi\)
−0.626390 + 0.779510i \(0.715468\pi\)
\(462\) −14.5957 10.4458i −0.679055 0.485981i
\(463\) 38.7573i 1.80121i 0.434643 + 0.900603i \(0.356874\pi\)
−0.434643 + 0.900603i \(0.643126\pi\)
\(464\) 7.54528i 0.350281i
\(465\) 0 0
\(466\) 5.42378 0.251252
\(467\) 18.5181i 0.856913i 0.903562 + 0.428457i \(0.140943\pi\)
−0.903562 + 0.428457i \(0.859057\pi\)
\(468\) 9.77540 11.3442i 0.451868 0.524388i
\(469\) 0.716650 + 1.25207i 0.0330918 + 0.0578154i
\(470\) 0 0
\(471\) 38.2382 17.5263i 1.76192 0.807571i
\(472\) 5.89894 0.271521
\(473\) −11.4238 −0.525266
\(474\) 1.16962 0.536091i 0.0537224 0.0246235i
\(475\) 0 0
\(476\) −4.66349 8.14768i −0.213751 0.373448i
\(477\) −0.564216 + 0.654766i −0.0258337 + 0.0299797i
\(478\) 13.2572i 0.606369i
\(479\) −14.4337 −0.659491 −0.329746 0.944070i \(-0.606963\pi\)
−0.329746 + 0.944070i \(0.606963\pi\)
\(480\) 0 0
\(481\) 52.2226i 2.38115i
\(482\) 18.5233i 0.843712i
\(483\) 20.1232 28.1178i 0.915636 1.27941i
\(484\) −4.34047 −0.197294
\(485\) 0 0
\(486\) 8.51763 + 13.0557i 0.386367 + 0.592216i
\(487\) 26.2430i 1.18918i −0.804028 0.594592i \(-0.797314\pi\)
0.804028 0.594592i \(-0.202686\pi\)
\(488\) 2.48752i 0.112605i
\(489\) −9.71528 21.1964i −0.439340 0.958534i
\(490\) 0 0
\(491\) 30.0000i 1.35388i −0.736038 0.676941i \(-0.763305\pi\)
0.736038 0.676941i \(-0.236695\pi\)
\(492\) −14.6775 + 6.72736i −0.661712 + 0.303293i
\(493\) −26.7729 −1.20579
\(494\) 15.7191i 0.707237i
\(495\) 0 0
\(496\) 4.19323i 0.188281i
\(497\) 7.05961 + 12.3340i 0.316667 + 0.553254i
\(498\) 3.21551 + 7.01547i 0.144091 + 0.314371i
\(499\) −41.6740 −1.86558 −0.932792 0.360414i \(-0.882635\pi\)
−0.932792 + 0.360414i \(0.882635\pi\)
\(500\) 0 0
\(501\) −15.7191 34.2954i −0.702279 1.53220i
\(502\) −21.5355 −0.961176
\(503\) 0.415846i 0.0185417i 0.999957 + 0.00927084i \(0.00295104\pi\)
−0.999957 + 0.00927084i \(0.997049\pi\)
\(504\) −1.50989 + 7.79232i −0.0672558 + 0.347097i
\(505\) 0 0
\(506\) 29.5525i 1.31377i
\(507\) −18.7633 + 8.60008i −0.833307 + 0.381943i
\(508\) 2.00000i 0.0887357i
\(509\) −11.3064 −0.501149 −0.250575 0.968097i \(-0.580620\pi\)
−0.250575 + 0.968097i \(0.580620\pi\)
\(510\) 0 0
\(511\) 11.1477 6.38061i 0.493144 0.282261i
\(512\) 1.00000 0.0441942
\(513\) 15.7191 + 4.54528i 0.694017 + 0.200679i
\(514\) 31.8900i 1.40661i
\(515\) 0 0
\(516\) 2.10493 + 4.59244i 0.0926643 + 0.202171i
\(517\) −31.3487 −1.37871
\(518\) −13.7501 24.0230i −0.604144 1.05551i
\(519\) −0.654766 1.42854i −0.0287411 0.0627060i
\(520\) 0 0
\(521\) −2.47611 −0.108481 −0.0542403 0.998528i \(-0.517274\pi\)
−0.0542403 + 0.998528i \(0.517274\pi\)
\(522\) 17.1477 + 14.7763i 0.750533 + 0.646739i
\(523\) 12.0602 0.527357 0.263678 0.964611i \(-0.415064\pi\)
0.263678 + 0.964611i \(0.415064\pi\)
\(524\) 14.6846 0.641500
\(525\) 0 0
\(526\) −14.1739 −0.618010
\(527\) −14.8788 −0.648131
\(528\) 2.82661 + 6.16698i 0.123012 + 0.268384i
\(529\) 33.9312 1.47527
\(530\) 0 0
\(531\) 11.5522 13.4061i 0.501321 0.581777i
\(532\) 4.13881 + 7.23098i 0.179440 + 0.313503i
\(533\) 46.5311 2.01549
\(534\) −19.4203 + 8.90122i −0.840399 + 0.385193i
\(535\) 0 0
\(536\) 0.545275i 0.0235523i
\(537\) 1.50349 + 3.28025i 0.0648803 + 0.141553i
\(538\) −6.68074 −0.288027
\(539\) −23.6404 13.8857i −1.01826 0.598102i
\(540\) 0 0
\(541\) 5.14292 0.221111 0.110556 0.993870i \(-0.464737\pi\)
0.110556 + 0.993870i \(0.464737\pi\)
\(542\) 9.45864i 0.406283i
\(543\) 17.8024 + 38.8406i 0.763976 + 1.66681i
\(544\) 3.54830i 0.152132i
\(545\) 0 0
\(546\) 13.3127 18.6017i 0.569731 0.796078i
\(547\) 3.11425i 0.133156i −0.997781 0.0665779i \(-0.978792\pi\)
0.997781 0.0665779i \(-0.0212081\pi\)
\(548\) −18.3787 −0.785097
\(549\) 5.65322 + 4.87142i 0.241274 + 0.207907i
\(550\) 0 0
\(551\) 23.7607 1.01224
\(552\) −11.8803 + 5.44530i −0.505660 + 0.231767i
\(553\) 1.70571 0.976300i 0.0725342 0.0415165i
\(554\) 11.2048i 0.476046i
\(555\) 0 0
\(556\) 12.6077i 0.534686i
\(557\) −1.93812 −0.0821206 −0.0410603 0.999157i \(-0.513074\pi\)
−0.0410603 + 0.999157i \(0.513074\pi\)
\(558\) 9.52969 + 8.21179i 0.403424 + 0.347633i
\(559\) 14.5591i 0.615786i
\(560\) 0 0
\(561\) −21.8823 + 10.0297i −0.923871 + 0.423452i
\(562\) 2.90945i 0.122728i
\(563\) 25.8656i 1.09010i 0.838402 + 0.545052i \(0.183490\pi\)
−0.838402 + 0.545052i \(0.816510\pi\)
\(564\) 5.77626 + 12.6024i 0.243224 + 0.530657i
\(565\) 0 0
\(566\) −24.4056 −1.02584
\(567\) 14.7522 + 18.6915i 0.619535 + 0.784969i
\(568\) 5.37142i 0.225380i
\(569\) 30.3787i 1.27354i 0.771054 + 0.636770i \(0.219730\pi\)
−0.771054 + 0.636770i \(0.780270\pi\)
\(570\) 0 0
\(571\) 4.56898 0.191206 0.0956028 0.995420i \(-0.469522\pi\)
0.0956028 + 0.995420i \(0.469522\pi\)
\(572\) 19.5508i 0.817460i
\(573\) −11.5522 25.2040i −0.482598 1.05291i
\(574\) −21.4048 + 12.2515i −0.893421 + 0.511368i
\(575\) 0 0
\(576\) 1.95835 2.27264i 0.0815977 0.0946932i
\(577\) −23.7493 −0.988694 −0.494347 0.869265i \(-0.664593\pi\)
−0.494347 + 0.869265i \(0.664593\pi\)
\(578\) 4.40960 0.183415
\(579\) 19.0748 + 41.6167i 0.792723 + 1.72953i
\(580\) 0 0
\(581\) 5.85592 + 10.2310i 0.242945 + 0.424453i
\(582\) −0.826142 + 0.378659i −0.0342447 + 0.0156959i
\(583\) 1.12843i 0.0467349i
\(584\) −4.85479 −0.200893
\(585\) 0 0
\(586\) 17.0799i 0.705565i
\(587\) 28.8726i 1.19170i −0.803096 0.595849i \(-0.796816\pi\)
0.803096 0.595849i \(-0.203184\pi\)
\(588\) −1.22623 + 12.0622i −0.0505688 + 0.497436i
\(589\) 13.2048 0.544094
\(590\) 0 0
\(591\) 27.1835 12.4594i 1.11818 0.512513i
\(592\) 10.4620i 0.429984i
\(593\) 4.74595i 0.194893i −0.995241 0.0974463i \(-0.968933\pi\)
0.995241 0.0974463i \(-0.0310674\pi\)
\(594\) 19.5508 + 5.65322i 0.802179 + 0.231955i
\(595\) 0 0
\(596\) 5.65953i 0.231823i
\(597\) −7.85957 17.1477i −0.321671 0.701808i
\(598\) 37.6635 1.54017
\(599\) 3.19756i 0.130649i −0.997864 0.0653243i \(-0.979192\pi\)
0.997864 0.0653243i \(-0.0208082\pi\)
\(600\) 0 0
\(601\) 1.16962i 0.0477098i 0.999715 + 0.0238549i \(0.00759397\pi\)
−0.999715 + 0.0238549i \(0.992406\pi\)
\(602\) 3.83338 + 6.69737i 0.156237 + 0.272965i
\(603\) −1.23921 1.06784i −0.0504646 0.0434857i
\(604\) −2.62858 −0.106956
\(605\) 0 0
\(606\) −12.6024 + 5.77626i −0.511938 + 0.234644i
\(607\) 42.5463 1.72690 0.863450 0.504434i \(-0.168299\pi\)
0.863450 + 0.504434i \(0.168299\pi\)
\(608\) 3.14908i 0.127712i
\(609\) 28.1178 + 20.1232i 1.13939 + 0.815432i
\(610\) 0 0
\(611\) 39.9526i 1.61631i
\(612\) 8.06399 + 6.94879i 0.325967 + 0.280888i
\(613\) 11.1524i 0.450443i −0.974308 0.225221i \(-0.927689\pi\)
0.974308 0.225221i \(-0.0723105\pi\)
\(614\) −11.8093 −0.476584
\(615\) 0 0
\(616\) 5.14768 + 8.99360i 0.207406 + 0.362362i
\(617\) 42.1811 1.69815 0.849074 0.528275i \(-0.177161\pi\)
0.849074 + 0.528275i \(0.177161\pi\)
\(618\) 9.71913 4.45472i 0.390961 0.179195i
\(619\) 11.0327i 0.443442i 0.975110 + 0.221721i \(0.0711674\pi\)
−0.975110 + 0.221721i \(0.928833\pi\)
\(620\) 0 0
\(621\) −10.8906 + 37.6635i −0.437025 + 1.51138i
\(622\) 2.88673 0.115747
\(623\) −28.3215 + 16.2104i −1.13468 + 0.649457i
\(624\) −7.85957 + 3.60240i −0.314634 + 0.144211i
\(625\) 0 0
\(626\) 4.20986 0.168260
\(627\) 19.4203 8.90122i 0.775573 0.355481i
\(628\) −24.2853 −0.969091
\(629\) −37.1221 −1.48016
\(630\) 0 0
\(631\) 4.46197 0.177628 0.0888140 0.996048i \(-0.471692\pi\)
0.0888140 + 0.996048i \(0.471692\pi\)
\(632\) −0.742834 −0.0295483
\(633\) 10.8419 4.96933i 0.430926 0.197513i
\(634\) 23.2644 0.923948
\(635\) 0 0
\(636\) 0.453638 0.207923i 0.0179879 0.00824469i
\(637\) 17.6968 30.1287i 0.701173 1.19374i
\(638\) 29.5525 1.17000
\(639\) −12.2073 10.5191i −0.482913 0.416129i
\(640\) 0 0
\(641\) 2.90945i 0.114916i 0.998348 + 0.0574582i \(0.0182996\pi\)
−0.998348 + 0.0574582i \(0.981700\pi\)
\(642\) −4.18753 + 1.91934i −0.165268 + 0.0757501i
\(643\) −31.7645 −1.25267 −0.626335 0.779554i \(-0.715446\pi\)
−0.626335 + 0.779554i \(0.715446\pi\)
\(644\) −17.3256 + 9.91669i −0.682725 + 0.390772i
\(645\) 0 0
\(646\) 11.1739 0.439630
\(647\) 23.3448i 0.917779i 0.888493 + 0.458890i \(0.151753\pi\)
−0.888493 + 0.458890i \(0.848247\pi\)
\(648\) −1.32976 8.90122i −0.0522380 0.349673i
\(649\) 23.1043i 0.906924i
\(650\) 0 0
\(651\) 15.6263 + 11.1833i 0.612442 + 0.438308i
\(652\) 13.4620i 0.527211i
\(653\) 2.28087 0.0892572 0.0446286 0.999004i \(-0.485790\pi\)
0.0446286 + 0.999004i \(0.485790\pi\)
\(654\) 23.4983 10.7704i 0.918857 0.421154i
\(655\) 0 0
\(656\) 9.32176 0.363954
\(657\) −9.50736 + 11.0332i −0.370917 + 0.430445i
\(658\) 10.5194 + 18.3787i 0.410089 + 0.716475i
\(659\) 2.08331i 0.0811542i −0.999176 0.0405771i \(-0.987080\pi\)
0.999176 0.0405771i \(-0.0129196\pi\)
\(660\) 0 0
\(661\) 4.34150i 0.168865i 0.996429 + 0.0844325i \(0.0269077\pi\)
−0.996429 + 0.0844325i \(0.973092\pi\)
\(662\) −25.4620 −0.989607
\(663\) −12.7824 27.8881i −0.496426 1.08308i
\(664\) 4.45557i 0.172910i
\(665\) 0 0
\(666\) 23.7763 + 20.4881i 0.921311 + 0.793900i
\(667\) 56.9312i 2.20438i
\(668\) 21.7812i 0.842740i
\(669\) 4.57146 2.09531i 0.176743 0.0810093i
\(670\) 0 0
\(671\) 9.74284 0.376118
\(672\) 2.66699 3.72655i 0.102881 0.143755i
\(673\) 2.00724i 0.0773735i 0.999251 + 0.0386867i \(0.0123174\pi\)
−0.999251 + 0.0386867i \(0.987683\pi\)
\(674\) 7.68095i 0.295859i
\(675\) 0 0
\(676\) 11.9167 0.458334
\(677\) 27.5547i 1.05901i −0.848306 0.529506i \(-0.822377\pi\)
0.848306 0.529506i \(-0.177623\pi\)
\(678\) −18.5834 + 8.51763i −0.713691 + 0.327117i
\(679\) −1.20480 + 0.689593i −0.0462360 + 0.0264642i
\(680\) 0 0
\(681\) 15.6286 + 34.0978i 0.598889 + 1.30663i
\(682\) 16.4236 0.628891
\(683\) 5.75008 0.220021 0.110010 0.993930i \(-0.464912\pi\)
0.110010 + 0.993930i \(0.464912\pi\)
\(684\) −7.15671 6.16698i −0.273644 0.235801i
\(685\) 0 0
\(686\) −0.207923 + 18.5191i −0.00793854 + 0.707062i
\(687\) −12.2237 26.6693i −0.466365 1.01750i
\(688\) 2.91669i 0.111198i
\(689\) −1.43814 −0.0547888
\(690\) 0 0
\(691\) 23.6404i 0.899324i −0.893199 0.449662i \(-0.851544\pi\)
0.893199 0.449662i \(-0.148456\pi\)
\(692\) 0.907276i 0.0344895i
\(693\) 30.5201 + 5.91377i 1.15936 + 0.224646i
\(694\) 8.26441 0.313713
\(695\) 0 0
\(696\) −5.44530 11.8803i −0.206404 0.450323i
\(697\) 33.0764i 1.25286i
\(698\) 24.6846i 0.934325i
\(699\) −8.53996 + 3.91425i −0.323011 + 0.148051i
\(700\) 0 0
\(701\) 46.6882i 1.76339i −0.471821 0.881694i \(-0.656403\pi\)
0.471821 0.881694i \(-0.343597\pi\)
\(702\) −7.20480 + 24.9167i −0.271928 + 0.940420i
\(703\) 32.9455 1.24256
\(704\) 3.91669i 0.147616i
\(705\) 0 0
\(706\) 18.8945i 0.711103i
\(707\) −18.3787 + 10.5194i −0.691201 + 0.395623i
\(708\) −9.28811 + 4.25717i −0.349068 + 0.159994i
\(709\) −17.8334 −0.669747 −0.334873 0.942263i \(-0.608694\pi\)
−0.334873 + 0.942263i \(0.608694\pi\)
\(710\) 0 0
\(711\) −1.45472 + 1.68819i −0.0545564 + 0.0633121i
\(712\) 12.3340 0.462235
\(713\) 31.6391i 1.18489i
\(714\) 13.2229 + 9.46326i 0.494854 + 0.354154i
\(715\) 0 0
\(716\) 2.08331i 0.0778569i
\(717\) −9.56748 20.8739i −0.357304 0.779551i
\(718\) 1.49291i 0.0557149i
\(719\) −18.4786 −0.689136 −0.344568 0.938761i \(-0.611975\pi\)
−0.344568 + 0.938761i \(0.611975\pi\)
\(720\) 0 0
\(721\) 14.1739 8.11271i 0.527862 0.302133i
\(722\) 9.08331 0.338046
\(723\) −13.3679 29.1656i −0.497159 1.08468i
\(724\) 24.6679i 0.916777i
\(725\) 0 0
\(726\) 6.83425 3.13245i 0.253643 0.116256i
\(727\) −8.92777 −0.331113 −0.165556 0.986200i \(-0.552942\pi\)
−0.165556 + 0.986200i \(0.552942\pi\)
\(728\) −11.4620 + 6.56050i −0.424809 + 0.243148i
\(729\) −22.8334 14.4096i −0.845681 0.533689i
\(730\) 0 0
\(731\) 10.3493 0.382782
\(732\) −1.79520 3.91669i −0.0663525 0.144765i
\(733\) −24.7934 −0.915765 −0.457883 0.889013i \(-0.651392\pi\)
−0.457883 + 0.889013i \(0.651392\pi\)
\(734\) 16.9544 0.625800
\(735\) 0 0
\(736\) 7.54528 0.278123
\(737\) −2.13567 −0.0786686
\(738\) 18.2552 21.1850i 0.671985 0.779830i
\(739\) −5.32629 −0.195931 −0.0979654 0.995190i \(-0.531233\pi\)
−0.0979654 + 0.995190i \(0.531233\pi\)
\(740\) 0 0
\(741\) 11.3442 + 24.7504i 0.416741 + 0.909228i
\(742\) 0.661561 0.378659i 0.0242867 0.0139010i
\(743\) −45.7409 −1.67807 −0.839035 0.544078i \(-0.816880\pi\)
−0.839035 + 0.544078i \(0.816880\pi\)
\(744\) −3.02618 6.60240i −0.110945 0.242056i
\(745\) 0 0
\(746\) 22.8097i 0.835122i
\(747\) −10.1259 8.72555i −0.370487 0.319251i
\(748\) 13.8976 0.508146
\(749\) −6.10686 + 3.49539i −0.223140 + 0.127719i
\(750\) 0 0
\(751\) −21.8857 −0.798622 −0.399311 0.916815i \(-0.630751\pi\)
−0.399311 + 0.916815i \(0.630751\pi\)
\(752\) 8.00387i 0.291871i
\(753\) 33.9085 15.5418i 1.23569 0.566375i
\(754\) 37.6635i 1.37162i
\(755\) 0 0
\(756\) −3.24621 13.3590i −0.118063 0.485861i
\(757\) 14.0524i 0.510742i 0.966843 + 0.255371i \(0.0821976\pi\)
−0.966843 + 0.255371i \(0.917802\pi\)
\(758\) −0.371417 −0.0134905
\(759\) 21.3276 + 46.5316i 0.774142 + 1.68899i
\(760\) 0 0
\(761\) −49.6210 −1.79876 −0.899380 0.437167i \(-0.855982\pi\)
−0.899380 + 0.437167i \(0.855982\pi\)
\(762\) 1.44337 + 3.14908i 0.0522877 + 0.114079i
\(763\) 34.2687 19.6144i 1.24061 0.710089i
\(764\) 16.0072i 0.579122i
\(765\) 0 0
\(766\) 32.8367i 1.18644i
\(767\) 29.4455 1.06322
\(768\) −1.57454 + 0.721683i −0.0568163 + 0.0260415i
\(769\) 12.9903i 0.468442i 0.972183 + 0.234221i \(0.0752540\pi\)
−0.972183 + 0.234221i \(0.924746\pi\)
\(770\) 0 0
\(771\) 23.0145 + 50.2120i 0.828846 + 1.80834i
\(772\) 26.4310i 0.951273i
\(773\) 29.9500i 1.07723i −0.842553 0.538613i \(-0.818949\pi\)
0.842553 0.538613i \(-0.181051\pi\)
\(774\) −6.62858 5.71189i −0.238260 0.205310i
\(775\) 0 0
\(776\) 0.524688 0.0188352
\(777\) 38.9870 + 27.9020i 1.39865 + 1.00098i
\(778\) 24.1287i 0.865057i
\(779\) 29.3550i 1.05175i
\(780\) 0 0
\(781\) −21.0382 −0.752805
\(782\) 26.7729i 0.957396i
\(783\) −37.6635 10.8906i −1.34598 0.389198i
\(784\) 3.54528 6.03581i 0.126617 0.215565i
\(785\) 0 0
\(786\) −23.1215 + 10.5976i −0.824716 + 0.378005i
\(787\) 1.01612 0.0362207 0.0181103 0.999836i \(-0.494235\pi\)
0.0181103 + 0.999836i \(0.494235\pi\)
\(788\) −17.2644 −0.615019
\(789\) 22.3173 10.2290i 0.794517 0.364163i
\(790\)