Properties

Label 1050.2.d
Level $1050$
Weight $2$
Character orbit 1050.d
Rep. character $\chi_{1050}(1049,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $8$
Sturm bound $480$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(480\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(11\), \(13\), \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1050, [\chi])\).

Total New Old
Modular forms 264 48 216
Cusp forms 216 48 168
Eisenstein series 48 0 48

Trace form

\( 48 q + 48 q^{4} + 48 q^{16} + 20 q^{21} + 48 q^{39} + 56 q^{46} - 16 q^{49} + 40 q^{51} + 48 q^{64} - 32 q^{79} - 88 q^{81} + 20 q^{84} - 56 q^{91} - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1050, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1050.2.d.a 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(-4\) \(-2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(-\beta _{2}-\beta _{3})q^{3}+q^{4}+(\beta _{2}+\beta _{3})q^{6}+\cdots\)
1050.2.d.b 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{6})\) None 42.2.d.a \(-4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}-\beta _{3}q^{3}+q^{4}+\beta _{3}q^{6}+(\beta _{1}+\beta _{2}+\cdots)q^{7}+\cdots\)
1050.2.d.c 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(-4\) \(2\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+(\beta _{2}+\beta _{3})q^{3}+q^{4}+(-\beta _{2}-\beta _{3})q^{6}+\cdots\)
1050.2.d.d 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(4\) \(-2\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(-\beta _{2}-\beta _{3})q^{3}+q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)
1050.2.d.e 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{6})\) None 42.2.d.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta _{3}q^{3}+q^{4}+\beta _{3}q^{6}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1050.2.d.f 1050.d 105.g $4$ $8.384$ \(\Q(i, \sqrt{5})\) None 210.2.b.a \(4\) \(2\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+(\beta _{2}+\beta _{3})q^{3}+q^{4}+(\beta _{2}+\beta _{3})q^{6}+\cdots\)
1050.2.d.g 1050.d 105.g $12$ $8.384$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1050.2.b.d \(-12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta _{10}q^{3}+q^{4}-\beta _{10}q^{6}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1050.2.d.h 1050.d 105.g $12$ $8.384$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1050.2.b.d \(12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}-\beta _{10}q^{3}+q^{4}-\beta _{10}q^{6}+(\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1050, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1050, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(210, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 2}\)