Properties

 Label 1050.2.b.a Level $1050$ Weight $2$ Character orbit 1050.b Analytic conductor $8.384$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1050.b (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$8.38429221223$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(i, \sqrt{5})$$ Defining polynomial: $$x^{4} + 3 x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 210) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{2} q^{2} + ( -1 + \beta_{3} ) q^{3} - q^{4} + ( -\beta_{1} - \beta_{2} ) q^{6} + ( -2 - \beta_{2} + \beta_{3} ) q^{7} -\beta_{2} q^{8} + ( 1 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{9} +O(q^{10})$$ $$q + \beta_{2} q^{2} + ( -1 + \beta_{3} ) q^{3} - q^{4} + ( -\beta_{1} - \beta_{2} ) q^{6} + ( -2 - \beta_{2} + \beta_{3} ) q^{7} -\beta_{2} q^{8} + ( 1 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{9} + ( -2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} ) q^{11} + ( 1 - \beta_{3} ) q^{12} + ( \beta_{1} + \beta_{3} ) q^{13} + ( 1 - \beta_{1} - 2 \beta_{2} ) q^{14} + q^{16} + ( 4 + \beta_{1} - \beta_{3} ) q^{17} + ( 2 + \beta_{1} + \beta_{2} + \beta_{3} ) q^{18} + ( 2 \beta_{1} + 6 \beta_{2} + 2 \beta_{3} ) q^{19} + ( 2 + 2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{21} + ( 2 + 2 \beta_{1} - 2 \beta_{3} ) q^{22} -4 \beta_{2} q^{23} + ( \beta_{1} + \beta_{2} ) q^{24} + ( -\beta_{1} + \beta_{3} ) q^{26} + ( -3 + \beta_{1} + 4 \beta_{2} ) q^{27} + ( 2 + \beta_{2} - \beta_{3} ) q^{28} + ( 3 \beta_{1} + 4 \beta_{2} + 3 \beta_{3} ) q^{29} + ( \beta_{1} - 4 \beta_{2} + \beta_{3} ) q^{31} + \beta_{2} q^{32} + ( 4 + 6 \beta_{2} + 2 \beta_{3} ) q^{33} + ( \beta_{1} + 4 \beta_{2} + \beta_{3} ) q^{34} + ( -1 - \beta_{1} + 2 \beta_{2} + \beta_{3} ) q^{36} + ( -2 + \beta_{1} - \beta_{3} ) q^{37} + ( -6 - 2 \beta_{1} + 2 \beta_{3} ) q^{38} + ( -2 + \beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{39} + ( 2 \beta_{1} - 2 \beta_{3} ) q^{41} + ( 1 + 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{42} + ( 4 \beta_{1} - 4 \beta_{3} ) q^{43} + ( 2 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} ) q^{44} + 4 q^{46} + ( -4 - 2 \beta_{1} + 2 \beta_{3} ) q^{47} + ( -1 + \beta_{3} ) q^{48} + ( 3 + 3 \beta_{1} + 2 \beta_{2} - 3 \beta_{3} ) q^{49} + ( -6 - \beta_{1} + 2 \beta_{2} + 3 \beta_{3} ) q^{51} + ( -\beta_{1} - \beta_{3} ) q^{52} + ( 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} ) q^{53} + ( -4 - 3 \beta_{2} + \beta_{3} ) q^{54} + ( -1 + \beta_{1} + 2 \beta_{2} ) q^{56} + ( -4 - 4 \beta_{1} - 10 \beta_{2} - 2 \beta_{3} ) q^{57} + ( -4 - 3 \beta_{1} + 3 \beta_{3} ) q^{58} + ( -2 - 2 \beta_{1} + 2 \beta_{3} ) q^{59} + ( \beta_{1} + 6 \beta_{2} + \beta_{3} ) q^{61} + ( 4 - \beta_{1} + \beta_{3} ) q^{62} + ( -6 - \beta_{1} + 5 \beta_{2} ) q^{63} - q^{64} + ( -6 - 2 \beta_{1} + 4 \beta_{2} ) q^{66} + 12 q^{67} + ( -4 - \beta_{1} + \beta_{3} ) q^{68} + ( 4 \beta_{1} + 4 \beta_{2} ) q^{69} + ( \beta_{1} + 6 \beta_{2} + \beta_{3} ) q^{71} + ( -2 - \beta_{1} - \beta_{2} - \beta_{3} ) q^{72} + ( \beta_{1} + 10 \beta_{2} + \beta_{3} ) q^{73} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{74} + ( -2 \beta_{1} - 6 \beta_{2} - 2 \beta_{3} ) q^{76} + ( 2 + 8 \beta_{2} + 6 \beta_{3} ) q^{77} + ( 2 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{78} + ( -4 - 4 \beta_{1} + 4 \beta_{3} ) q^{79} + ( 1 - 4 \beta_{1} - 4 \beta_{2} - 4 \beta_{3} ) q^{81} + ( 2 \beta_{1} + 2 \beta_{3} ) q^{82} + ( 6 + 7 \beta_{1} - 7 \beta_{3} ) q^{83} + ( -2 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} ) q^{84} + ( 4 \beta_{1} + 4 \beta_{3} ) q^{86} + ( -6 - \beta_{1} - 10 \beta_{2} - 3 \beta_{3} ) q^{87} + ( -2 - 2 \beta_{1} + 2 \beta_{3} ) q^{88} + ( 8 - 2 \beta_{1} + 2 \beta_{3} ) q^{89} + ( -2 + \beta_{1} - 2 \beta_{2} - 3 \beta_{3} ) q^{91} + 4 \beta_{2} q^{92} + ( -2 + 5 \beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{93} + ( -2 \beta_{1} - 4 \beta_{2} - 2 \beta_{3} ) q^{94} + ( -\beta_{1} - \beta_{2} ) q^{96} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{97} + ( -2 + 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{98} + ( -4 - 4 \beta_{1} - 10 \beta_{2} + 4 \beta_{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 2q^{3} - 4q^{4} + 2q^{6} - 6q^{7} + O(q^{10})$$ $$4q - 2q^{3} - 4q^{4} + 2q^{6} - 6q^{7} + 2q^{12} + 6q^{14} + 4q^{16} + 12q^{17} + 8q^{18} - 2q^{24} + 4q^{26} - 14q^{27} + 6q^{28} + 20q^{33} - 12q^{37} - 16q^{38} - 12q^{39} - 8q^{41} + 4q^{42} - 16q^{43} + 16q^{46} - 8q^{47} - 2q^{48} - 16q^{51} - 14q^{54} - 6q^{56} - 12q^{57} - 4q^{58} + 20q^{62} - 22q^{63} - 4q^{64} - 20q^{66} + 48q^{67} - 12q^{68} - 8q^{69} - 8q^{72} + 20q^{77} + 8q^{78} + 4q^{81} - 4q^{83} - 28q^{87} + 40q^{89} - 16q^{91} - 20q^{93} + 2q^{96} - 8q^{98} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 3 x^{2} + 1$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu^{2} + \nu + 1$$ $$\beta_{2}$$ $$=$$ $$\nu^{3} + 2 \nu$$ $$\beta_{3}$$ $$=$$ $$-\nu^{2} + \nu - 1$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$($$$$\beta_{3} + \beta_{1}$$$$)/2$$ $$\nu^{2}$$ $$=$$ $$($$$$-\beta_{3} + \beta_{1} - 2$$$$)/2$$ $$\nu^{3}$$ $$=$$ $$-\beta_{3} + \beta_{2} - \beta_{1}$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$451$$ $$701$$ $$\chi(n)$$ $$1$$ $$-1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
251.1
 − 0.618034i 1.61803i 0.618034i − 1.61803i
1.00000i −1.61803 0.618034i −1.00000 0 −0.618034 + 1.61803i −2.61803 + 0.381966i 1.00000i 2.23607 + 2.00000i 0
251.2 1.00000i 0.618034 + 1.61803i −1.00000 0 1.61803 0.618034i −0.381966 + 2.61803i 1.00000i −2.23607 + 2.00000i 0
251.3 1.00000i −1.61803 + 0.618034i −1.00000 0 −0.618034 1.61803i −2.61803 0.381966i 1.00000i 2.23607 2.00000i 0
251.4 1.00000i 0.618034 1.61803i −1.00000 0 1.61803 + 0.618034i −0.381966 2.61803i 1.00000i −2.23607 2.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.b.a 4
3.b odd 2 1 1050.2.b.c 4
5.b even 2 1 210.2.b.b yes 4
5.c odd 4 1 1050.2.d.a 4
5.c odd 4 1 1050.2.d.f 4
7.b odd 2 1 1050.2.b.c 4
15.d odd 2 1 210.2.b.a 4
15.e even 4 1 1050.2.d.c 4
15.e even 4 1 1050.2.d.d 4
20.d odd 2 1 1680.2.f.e 4
21.c even 2 1 inner 1050.2.b.a 4
35.c odd 2 1 210.2.b.a 4
35.f even 4 1 1050.2.d.c 4
35.f even 4 1 1050.2.d.d 4
60.h even 2 1 1680.2.f.i 4
105.g even 2 1 210.2.b.b yes 4
105.k odd 4 1 1050.2.d.a 4
105.k odd 4 1 1050.2.d.f 4
140.c even 2 1 1680.2.f.i 4
420.o odd 2 1 1680.2.f.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.2.b.a 4 15.d odd 2 1
210.2.b.a 4 35.c odd 2 1
210.2.b.b yes 4 5.b even 2 1
210.2.b.b yes 4 105.g even 2 1
1050.2.b.a 4 1.a even 1 1 trivial
1050.2.b.a 4 21.c even 2 1 inner
1050.2.b.c 4 3.b odd 2 1
1050.2.b.c 4 7.b odd 2 1
1050.2.d.a 4 5.c odd 4 1
1050.2.d.a 4 105.k odd 4 1
1050.2.d.c 4 15.e even 4 1
1050.2.d.c 4 35.f even 4 1
1050.2.d.d 4 15.e even 4 1
1050.2.d.d 4 35.f even 4 1
1050.2.d.f 4 5.c odd 4 1
1050.2.d.f 4 105.k odd 4 1
1680.2.f.e 4 20.d odd 2 1
1680.2.f.e 4 420.o odd 2 1
1680.2.f.i 4 60.h even 2 1
1680.2.f.i 4 140.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1050, [\chi])$$:

 $$T_{11}^{2} + 20$$ $$T_{17}^{2} - 6 T_{17} + 4$$ $$T_{37}^{2} + 6 T_{37} + 4$$