Properties

Label 1050.2.a.k.1.1
Level $1050$
Weight $2$
Character 1050.1
Self dual yes
Analytic conductor $8.384$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -1.00000 q^{12} -2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +6.00000 q^{17} +1.00000 q^{18} +8.00000 q^{19} +1.00000 q^{21} -1.00000 q^{24} -2.00000 q^{26} -1.00000 q^{27} -1.00000 q^{28} +6.00000 q^{29} -4.00000 q^{31} +1.00000 q^{32} +6.00000 q^{34} +1.00000 q^{36} +10.0000 q^{37} +8.00000 q^{38} +2.00000 q^{39} -6.00000 q^{41} +1.00000 q^{42} +4.00000 q^{43} -1.00000 q^{48} +1.00000 q^{49} -6.00000 q^{51} -2.00000 q^{52} +6.00000 q^{53} -1.00000 q^{54} -1.00000 q^{56} -8.00000 q^{57} +6.00000 q^{58} -12.0000 q^{59} -10.0000 q^{61} -4.00000 q^{62} -1.00000 q^{63} +1.00000 q^{64} +4.00000 q^{67} +6.00000 q^{68} +12.0000 q^{71} +1.00000 q^{72} +10.0000 q^{73} +10.0000 q^{74} +8.00000 q^{76} +2.00000 q^{78} +8.00000 q^{79} +1.00000 q^{81} -6.00000 q^{82} -12.0000 q^{83} +1.00000 q^{84} +4.00000 q^{86} -6.00000 q^{87} -6.00000 q^{89} +2.00000 q^{91} +4.00000 q^{93} -1.00000 q^{96} +10.0000 q^{97} +1.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 1.00000 0.235702
\(19\) 8.00000 1.83533 0.917663 0.397360i \(-0.130073\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) −1.00000 −0.192450
\(28\) −1.00000 −0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 8.00000 1.29777
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 1.00000 0.154303
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −1.00000 −0.144338
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −6.00000 −0.840168
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) −8.00000 −1.05963
\(58\) 6.00000 0.787839
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) −4.00000 −0.508001
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 1.00000 0.117851
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) 8.00000 0.917663
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −6.00000 −0.662589
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 1.00000 0.109109
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) −6.00000 −0.594089
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) −1.00000 −0.0944911
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −8.00000 −0.749269
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) −2.00000 −0.184900
\(118\) −12.0000 −1.10469
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) −10.0000 −0.905357
\(123\) 6.00000 0.541002
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) −1.00000 −0.0890871
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 1.00000 0.0883883
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 10.0000 0.827606
\(147\) −1.00000 −0.0824786
\(148\) 10.0000 0.821995
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 8.00000 0.648886
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 8.00000 0.636446
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 0 0
\(162\) 1.00000 0.0785674
\(163\) −20.0000 −1.56652 −0.783260 0.621694i \(-0.786445\pi\)
−0.783260 + 0.621694i \(0.786445\pi\)
\(164\) −6.00000 −0.468521
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 1.00000 0.0771517
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 8.00000 0.611775
\(172\) 4.00000 0.304997
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) −6.00000 −0.449719
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.00000 0.148250
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 0 0
\(186\) 4.00000 0.293294
\(187\) 0 0
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 6.00000 0.422159
\(203\) −6.00000 −0.421117
\(204\) −6.00000 −0.420084
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 6.00000 0.412082
\(213\) −12.0000 −0.822226
\(214\) −12.0000 −0.820303
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 4.00000 0.271538
\(218\) 14.0000 0.948200
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) −10.0000 −0.671156
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) −8.00000 −0.529813
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.00000 0.393919
\(233\) −30.0000 −1.96537 −0.982683 0.185296i \(-0.940675\pi\)
−0.982683 + 0.185296i \(0.940675\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) −8.00000 −0.519656
\(238\) −6.00000 −0.388922
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 26.0000 1.67481 0.837404 0.546585i \(-0.184072\pi\)
0.837404 + 0.546585i \(0.184072\pi\)
\(242\) −11.0000 −0.707107
\(243\) −1.00000 −0.0641500
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 6.00000 0.382546
\(247\) −16.0000 −1.01806
\(248\) −4.00000 −0.254000
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 0 0
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) −4.00000 −0.249029
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) −12.0000 −0.741362
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.00000 −0.490511
\(267\) 6.00000 0.367194
\(268\) 4.00000 0.244339
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 6.00000 0.363803
\(273\) −2.00000 −0.121046
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) −16.0000 −0.959616
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) 0 0
\(287\) 6.00000 0.354169
\(288\) 1.00000 0.0589256
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 10.0000 0.585206
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 8.00000 0.460348
\(303\) −6.00000 −0.344691
\(304\) 8.00000 0.458831
\(305\) 0 0
\(306\) 6.00000 0.342997
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 2.00000 0.113228
\(313\) −14.0000 −0.791327 −0.395663 0.918396i \(-0.629485\pi\)
−0.395663 + 0.918396i \(0.629485\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) −6.00000 −0.336463
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 48.0000 2.67079
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −20.0000 −1.10770
\(327\) −14.0000 −0.774202
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) −12.0000 −0.658586
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 0 0
\(336\) 1.00000 0.0545545
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) −9.00000 −0.489535
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 0 0
\(342\) 8.00000 0.432590
\(343\) −1.00000 −0.0539949
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −6.00000 −0.321634
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 12.0000 0.637793
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 6.00000 0.317554
\(358\) −24.0000 −1.26844
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) −10.0000 −0.525588
\(363\) 11.0000 0.577350
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 10.0000 0.522708
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 4.00000 0.207390
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 1.00000 0.0514344
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 12.0000 0.613973
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −2.00000 −0.101797
\(387\) 4.00000 0.203331
\(388\) 10.0000 0.507673
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.00000 0.0505076
\(393\) 12.0000 0.605320
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 20.0000 1.00251
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) −4.00000 −0.199502
\(403\) 8.00000 0.398508
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −6.00000 −0.297775
\(407\) 0 0
\(408\) −6.00000 −0.297044
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) −8.00000 −0.394132
\(413\) 12.0000 0.590481
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 16.0000 0.783523
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 38.0000 1.85201 0.926003 0.377515i \(-0.123221\pi\)
0.926003 + 0.377515i \(0.123221\pi\)
\(422\) −4.00000 −0.194717
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) −12.0000 −0.581402
\(427\) 10.0000 0.483934
\(428\) −12.0000 −0.580042
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0000 −0.578020 −0.289010 0.957326i \(-0.593326\pi\)
−0.289010 + 0.957326i \(0.593326\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 10.0000 0.480569 0.240285 0.970702i \(-0.422759\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(434\) 4.00000 0.192006
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) 0 0
\(438\) −10.0000 −0.477818
\(439\) −28.0000 −1.33637 −0.668184 0.743996i \(-0.732928\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −12.0000 −0.570782
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) −10.0000 −0.474579
\(445\) 0 0
\(446\) −8.00000 −0.378811
\(447\) −6.00000 −0.283790
\(448\) −1.00000 −0.0472456
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −6.00000 −0.282216
\(453\) −8.00000 −0.375873
\(454\) −12.0000 −0.563188
\(455\) 0 0
\(456\) −8.00000 −0.374634
\(457\) −2.00000 −0.0935561 −0.0467780 0.998905i \(-0.514895\pi\)
−0.0467780 + 0.998905i \(0.514895\pi\)
\(458\) 14.0000 0.654177
\(459\) −6.00000 −0.280056
\(460\) 0 0
\(461\) −18.0000 −0.838344 −0.419172 0.907907i \(-0.637680\pi\)
−0.419172 + 0.907907i \(0.637680\pi\)
\(462\) 0 0
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) −30.0000 −1.38972
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) −2.00000 −0.0924500
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) −12.0000 −0.552345
\(473\) 0 0
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) −6.00000 −0.275010
\(477\) 6.00000 0.274721
\(478\) −12.0000 −0.548867
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −20.0000 −0.911922
\(482\) 26.0000 1.18427
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −10.0000 −0.452679
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 6.00000 0.270501
\(493\) 36.0000 1.62136
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) −12.0000 −0.538274
\(498\) 12.0000 0.537733
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000 0.399704
\(508\) −8.00000 −0.354943
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 1.00000 0.0441942
\(513\) −8.00000 −0.353209
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) −10.0000 −0.439375
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 6.00000 0.262613
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) −12.0000 −0.524222
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) −8.00000 −0.346844
\(533\) 12.0000 0.519778
\(534\) 6.00000 0.259645
\(535\) 0 0
\(536\) 4.00000 0.172774
\(537\) 24.0000 1.03568
\(538\) −18.0000 −0.776035
\(539\) 0 0
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 20.0000 0.859074
\(543\) 10.0000 0.429141
\(544\) 6.00000 0.257248
\(545\) 0 0
\(546\) −2.00000 −0.0855921
\(547\) −44.0000 −1.88130 −0.940652 0.339372i \(-0.889785\pi\)
−0.940652 + 0.339372i \(0.889785\pi\)
\(548\) −6.00000 −0.256307
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) 48.0000 2.04487
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 10.0000 0.424859
\(555\) 0 0
\(556\) −16.0000 −0.678551
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) −4.00000 −0.169334
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 0.759284
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) −1.00000 −0.0419961
\(568\) 12.0000 0.503509
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 6.00000 0.250435
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 19.0000 0.790296
\(579\) 2.00000 0.0831172
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) −10.0000 −0.414513
\(583\) 0 0
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) −30.0000 −1.23929
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) −1.00000 −0.0412393
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 18.0000 0.740421
\(592\) 10.0000 0.410997
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) −20.0000 −0.818546
\(598\) 0 0
\(599\) 36.0000 1.47092 0.735460 0.677568i \(-0.236966\pi\)
0.735460 + 0.677568i \(0.236966\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) −4.00000 −0.163028
\(603\) 4.00000 0.162893
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) −6.00000 −0.243733
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 8.00000 0.324443
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) 6.00000 0.242536
\(613\) −38.0000 −1.53481 −0.767403 0.641165i \(-0.778451\pi\)
−0.767403 + 0.641165i \(0.778451\pi\)
\(614\) 4.00000 0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000 0.724653 0.362326 0.932051i \(-0.381983\pi\)
0.362326 + 0.932051i \(0.381983\pi\)
\(618\) 8.00000 0.321807
\(619\) 32.0000 1.28619 0.643094 0.765787i \(-0.277650\pi\)
0.643094 + 0.765787i \(0.277650\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 6.00000 0.240385
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) 22.0000 0.877896
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 8.00000 0.318223
\(633\) 4.00000 0.158986
\(634\) −18.0000 −0.714871
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 42.0000 1.65890 0.829450 0.558581i \(-0.188654\pi\)
0.829450 + 0.558581i \(0.188654\pi\)
\(642\) 12.0000 0.473602
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 48.0000 1.88853
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) −20.0000 −0.783260
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) −14.0000 −0.547443
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 10.0000 0.390137
\(658\) 0 0
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) −28.0000 −1.08825
\(663\) 12.0000 0.466041
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 10.0000 0.387492
\(667\) 0 0
\(668\) 0 0
\(669\) 8.00000 0.309298
\(670\) 0 0
\(671\) 0 0
\(672\) 1.00000 0.0385758
\(673\) −26.0000 −1.00223 −0.501113 0.865382i \(-0.667076\pi\)
−0.501113 + 0.865382i \(0.667076\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 6.00000 0.230429
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) 8.00000 0.305888
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) −14.0000 −0.534133
\(688\) 4.00000 0.152499
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −16.0000 −0.608669 −0.304334 0.952565i \(-0.598434\pi\)
−0.304334 + 0.952565i \(0.598434\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) −36.0000 −1.36360
\(698\) −10.0000 −0.378506
\(699\) 30.0000 1.13470
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 2.00000 0.0754851
\(703\) 80.0000 3.01726
\(704\) 0 0
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −6.00000 −0.225653
\(708\) 12.0000 0.450988
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) −6.00000 −0.224860
\(713\) 0 0
\(714\) 6.00000 0.224544
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 12.0000 0.448148
\(718\) −12.0000 −0.447836
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 45.0000 1.67473
\(723\) −26.0000 −0.966950
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) 11.0000 0.408248
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 2.00000 0.0741249
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 10.0000 0.369611
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −6.00000 −0.220863
\(739\) −28.0000 −1.03000 −0.514998 0.857191i \(-0.672207\pi\)
−0.514998 + 0.857191i \(0.672207\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) −6.00000 −0.220267
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 4.00000 0.146647
\(745\) 0 0
\(746\) 34.0000 1.24483
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 12.0000 0.438470
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 12.0000 0.437304
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 1.00000 0.0363696
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) −4.00000 −0.145287
\(759\) 0 0
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 8.00000 0.289809
\(763\) −14.0000 −0.506834
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) −24.0000 −0.867155
\(767\) 24.0000 0.866590
\(768\) −1.00000 −0.0360844
\(769\) 26.0000 0.937584 0.468792 0.883309i \(-0.344689\pi\)
0.468792 + 0.883309i \(0.344689\pi\)
\(770\) 0 0
\(771\) −30.0000 −1.08042
\(772\) −2.00000 −0.0719816
\(773\) 18.0000 0.647415 0.323708 0.946157i \(-0.395071\pi\)
0.323708 + 0.946157i \(0.395071\pi\)
\(774\) 4.00000 0.143777
\(775\) 0 0
\(776\) 10.0000 0.358979
\(777\) 10.0000 0.358748
\(778\) 6.00000 0.215110
\(779\) −48.0000 −1.71978
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 12.0000 0.428026
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −18.0000 −0.641223
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) 20.0000 0.708881
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 8.00000 0.283197
\(799\) 0 0
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) −30.0000 −1.05934
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 18.0000 0.633630
\(808\) 6.00000 0.211079
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) −6.00000 −0.210559
\(813\) −20.0000 −0.701431
\(814\) 0 0
\(815\) 0 0
\(816\) −6.00000 −0.210042
\(817\) 32.0000 1.11954
\(818\) 26.0000 0.909069
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 6.00000 0.209274
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) −2.00000 −0.0693375
\(833\) 6.00000 0.207888
\(834\) 16.0000 0.554035
\(835\) 0 0
\(836\) 0 0
\(837\) 4.00000 0.138260
\(838\) −12.0000 −0.414533
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 38.0000 1.30957
\(843\) −18.0000 −0.619953
\(844\) −4.00000 −0.137686
\(845\) 0 0
\(846\) 0 0
\(847\) 11.0000 0.377964
\(848\) 6.00000 0.206041
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 0 0
\(852\) −12.0000 −0.411113
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) −6.00000 −0.204479
\(862\) −12.0000 −0.408722
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) 10.0000 0.339814
\(867\) −19.0000 −0.645274
\(868\) 4.00000 0.135769
\(869\) 0 0
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 14.0000 0.474100
\(873\) 10.0000 0.338449
\(874\) 0 0
\(875\) 0 0
\(876\) −10.0000 −0.337869
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) −28.0000 −0.944954
\(879\) 30.0000 1.01187
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 1.00000 0.0336718
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) 12.0000 0.403148
\(887\) −24.0000 −0.805841 −0.402921 0.915235i \(-0.632005\pi\)
−0.402921 + 0.915235i \(0.632005\pi\)
\(888\) −10.0000 −0.335578
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) −8.00000 −0.267860
\(893\) 0 0
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) 18.0000 0.600668
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) −6.00000 −0.199557
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 28.0000 0.929725 0.464862 0.885383i \(-0.346104\pi\)
0.464862 + 0.885383i \(0.346104\pi\)
\(908\) −12.0000 −0.398234
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) −8.00000 −0.264906
\(913\) 0 0
\(914\) −2.00000 −0.0661541
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) 12.0000 0.396275
\(918\) −6.00000 −0.198030
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) −18.0000 −0.592798
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) −8.00000 −0.262754
\(928\) 6.00000 0.196960
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 8.00000 0.262189
\(932\) −30.0000 −0.982683
\(933\) −24.0000 −0.785725
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) −4.00000 −0.130605
\(939\) 14.0000 0.456873
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) −22.0000 −0.716799
\(943\) 0 0
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000 1.16984 0.584921 0.811090i \(-0.301125\pi\)
0.584921 + 0.811090i \(0.301125\pi\)
\(948\) −8.00000 −0.259828
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) −6.00000 −0.194461
\(953\) −30.0000 −0.971795 −0.485898 0.874016i \(-0.661507\pi\)
−0.485898 + 0.874016i \(0.661507\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) −12.0000 −0.388108
\(957\) 0 0
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) −20.0000 −0.644826
\(963\) −12.0000 −0.386695
\(964\) 26.0000 0.837404
\(965\) 0 0
\(966\) 0 0
\(967\) −8.00000 −0.257263 −0.128631 0.991692i \(-0.541058\pi\)
−0.128631 + 0.991692i \(0.541058\pi\)
\(968\) −11.0000 −0.353553
\(969\) −48.0000 −1.54198
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 16.0000 0.512936
\(974\) −32.0000 −1.02535
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 20.0000 0.639529
\(979\) 0 0
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 6.00000 0.191273
\(985\) 0 0
\(986\) 36.0000 1.14647
\(987\) 0 0
\(988\) −16.0000 −0.509028
\(989\) 0 0
\(990\) 0 0
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) −4.00000 −0.127000
\(993\) 28.0000 0.888553
\(994\) −12.0000 −0.380617
\(995\) 0 0
\(996\) 12.0000 0.380235
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) 20.0000 0.633089
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.a.k.1.1 1
3.2 odd 2 3150.2.a.f.1.1 1
4.3 odd 2 8400.2.a.cm.1.1 1
5.2 odd 4 1050.2.g.c.799.2 2
5.3 odd 4 1050.2.g.c.799.1 2
5.4 even 2 210.2.a.b.1.1 1
7.6 odd 2 7350.2.a.cs.1.1 1
15.2 even 4 3150.2.g.i.2899.1 2
15.8 even 4 3150.2.g.i.2899.2 2
15.14 odd 2 630.2.a.h.1.1 1
20.19 odd 2 1680.2.a.g.1.1 1
35.4 even 6 1470.2.i.l.961.1 2
35.9 even 6 1470.2.i.l.361.1 2
35.19 odd 6 1470.2.i.s.361.1 2
35.24 odd 6 1470.2.i.s.961.1 2
35.34 odd 2 1470.2.a.b.1.1 1
40.19 odd 2 6720.2.a.bi.1.1 1
40.29 even 2 6720.2.a.n.1.1 1
60.59 even 2 5040.2.a.g.1.1 1
105.104 even 2 4410.2.a.bi.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.b.1.1 1 5.4 even 2
630.2.a.h.1.1 1 15.14 odd 2
1050.2.a.k.1.1 1 1.1 even 1 trivial
1050.2.g.c.799.1 2 5.3 odd 4
1050.2.g.c.799.2 2 5.2 odd 4
1470.2.a.b.1.1 1 35.34 odd 2
1470.2.i.l.361.1 2 35.9 even 6
1470.2.i.l.961.1 2 35.4 even 6
1470.2.i.s.361.1 2 35.19 odd 6
1470.2.i.s.961.1 2 35.24 odd 6
1680.2.a.g.1.1 1 20.19 odd 2
3150.2.a.f.1.1 1 3.2 odd 2
3150.2.g.i.2899.1 2 15.2 even 4
3150.2.g.i.2899.2 2 15.8 even 4
4410.2.a.bi.1.1 1 105.104 even 2
5040.2.a.g.1.1 1 60.59 even 2
6720.2.a.n.1.1 1 40.29 even 2
6720.2.a.bi.1.1 1 40.19 odd 2
7350.2.a.cs.1.1 1 7.6 odd 2
8400.2.a.cm.1.1 1 4.3 odd 2