Properties

Label 1050.2.a.j
Level $1050$
Weight $2$
Character orbit 1050.a
Self dual yes
Analytic conductor $8.384$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(1,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-1,1,1,0,-1,1,-1,1,0,6,1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} + q^{3} + q^{4} - q^{6} + q^{7} - q^{8} + q^{9} + 6 q^{11} + q^{12} - q^{13} - q^{14} + q^{16} + 3 q^{17} - q^{18} - 4 q^{19} + q^{21} - 6 q^{22} - 3 q^{23} - q^{24} + q^{26} + q^{27}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 1.00000 1.00000 0 −1.00000 1.00000 −1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.a.j 1
3.b odd 2 1 3150.2.a.bg 1
4.b odd 2 1 8400.2.a.a 1
5.b even 2 1 1050.2.a.l yes 1
5.c odd 4 2 1050.2.g.e 2
7.b odd 2 1 7350.2.a.r 1
15.d odd 2 1 3150.2.a.a 1
15.e even 4 2 3150.2.g.a 2
20.d odd 2 1 8400.2.a.ci 1
35.c odd 2 1 7350.2.a.cz 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.2.a.j 1 1.a even 1 1 trivial
1050.2.a.l yes 1 5.b even 2 1
1050.2.g.e 2 5.c odd 4 2
3150.2.a.a 1 15.d odd 2 1
3150.2.a.bg 1 3.b odd 2 1
3150.2.g.a 2 15.e even 4 2
7350.2.a.r 1 7.b odd 2 1
7350.2.a.cz 1 35.c odd 2 1
8400.2.a.a 1 4.b odd 2 1
8400.2.a.ci 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1050))\):

\( T_{11} - 6 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display
\( T_{17} - 3 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 1 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T + 1 \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T + 3 \) Copy content Toggle raw display
$29$ \( T - 3 \) Copy content Toggle raw display
$31$ \( T - 5 \) Copy content Toggle raw display
$37$ \( T + 10 \) Copy content Toggle raw display
$41$ \( T - 9 \) Copy content Toggle raw display
$43$ \( T + 1 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T - 9 \) Copy content Toggle raw display
$59$ \( T - 9 \) Copy content Toggle raw display
$61$ \( T - 11 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T + 12 \) Copy content Toggle raw display
$73$ \( T + 10 \) Copy content Toggle raw display
$79$ \( T + 10 \) Copy content Toggle raw display
$83$ \( T - 9 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 14 \) Copy content Toggle raw display
show more
show less