Properties

Label 1050.2.a.h.1.1
Level $1050$
Weight $2$
Character 1050.1
Self dual yes
Analytic conductor $8.384$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1050.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{6} -1.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +4.00000 q^{11} +1.00000 q^{12} +2.00000 q^{13} +1.00000 q^{14} +1.00000 q^{16} -2.00000 q^{17} -1.00000 q^{18} -4.00000 q^{19} -1.00000 q^{21} -4.00000 q^{22} +8.00000 q^{23} -1.00000 q^{24} -2.00000 q^{26} +1.00000 q^{27} -1.00000 q^{28} +6.00000 q^{29} -8.00000 q^{31} -1.00000 q^{32} +4.00000 q^{33} +2.00000 q^{34} +1.00000 q^{36} +2.00000 q^{37} +4.00000 q^{38} +2.00000 q^{39} +2.00000 q^{41} +1.00000 q^{42} +12.0000 q^{43} +4.00000 q^{44} -8.00000 q^{46} +8.00000 q^{47} +1.00000 q^{48} +1.00000 q^{49} -2.00000 q^{51} +2.00000 q^{52} -6.00000 q^{53} -1.00000 q^{54} +1.00000 q^{56} -4.00000 q^{57} -6.00000 q^{58} +4.00000 q^{59} -2.00000 q^{61} +8.00000 q^{62} -1.00000 q^{63} +1.00000 q^{64} -4.00000 q^{66} -12.0000 q^{67} -2.00000 q^{68} +8.00000 q^{69} +8.00000 q^{71} -1.00000 q^{72} +14.0000 q^{73} -2.00000 q^{74} -4.00000 q^{76} -4.00000 q^{77} -2.00000 q^{78} +1.00000 q^{81} -2.00000 q^{82} -12.0000 q^{83} -1.00000 q^{84} -12.0000 q^{86} +6.00000 q^{87} -4.00000 q^{88} +2.00000 q^{89} -2.00000 q^{91} +8.00000 q^{92} -8.00000 q^{93} -8.00000 q^{94} -1.00000 q^{96} -10.0000 q^{97} -1.00000 q^{98} +4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) −1.00000 −0.377964
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000 1.20605 0.603023 0.797724i \(-0.293963\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 1.00000 0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −1.00000 −0.235702
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) −4.00000 −0.852803
\(23\) 8.00000 1.66812 0.834058 0.551677i \(-0.186012\pi\)
0.834058 + 0.551677i \(0.186012\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 1.00000 0.192450
\(28\) −1.00000 −0.188982
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.00000 0.696311
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 4.00000 0.648886
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 1.00000 0.154303
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −8.00000 −1.17954
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.00000 −0.280056
\(52\) 2.00000 0.277350
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) −4.00000 −0.529813
\(58\) −6.00000 −0.787839
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 8.00000 1.01600
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −4.00000 −0.492366
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) −2.00000 −0.242536
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) −1.00000 −0.117851
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) −4.00000 −0.455842
\(78\) −2.00000 −0.226455
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) −1.00000 −0.109109
\(85\) 0 0
\(86\) −12.0000 −1.29399
\(87\) 6.00000 0.643268
\(88\) −4.00000 −0.426401
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 8.00000 0.834058
\(93\) −8.00000 −0.829561
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) −1.00000 −0.101015
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 2.00000 0.198030
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 1.00000 0.0962250
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) −1.00000 −0.0944911
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 2.00000 0.184900
\(118\) −4.00000 −0.368230
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 2.00000 0.181071
\(123\) 2.00000 0.180334
\(124\) −8.00000 −0.718421
\(125\) 0 0
\(126\) 1.00000 0.0890871
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 12.0000 1.05654
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 4.00000 0.348155
\(133\) 4.00000 0.346844
\(134\) 12.0000 1.03664
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) −8.00000 −0.681005
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) −8.00000 −0.671345
\(143\) 8.00000 0.668994
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 1.00000 0.0824786
\(148\) 2.00000 0.164399
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 4.00000 0.324443
\(153\) −2.00000 −0.161690
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) −1.00000 −0.0785674
\(163\) −12.0000 −0.939913 −0.469956 0.882690i \(-0.655730\pi\)
−0.469956 + 0.882690i \(0.655730\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 1.00000 0.0771517
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 12.0000 0.914991
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) −6.00000 −0.454859
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 4.00000 0.300658
\(178\) −2.00000 −0.149906
\(179\) −20.0000 −1.49487 −0.747435 0.664335i \(-0.768715\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.00000 0.148250
\(183\) −2.00000 −0.147844
\(184\) −8.00000 −0.589768
\(185\) 0 0
\(186\) 8.00000 0.586588
\(187\) −8.00000 −0.585018
\(188\) 8.00000 0.583460
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 1.00000 0.0721688
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) −4.00000 −0.284268
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) −6.00000 −0.422159
\(203\) −6.00000 −0.421117
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) 8.00000 0.557386
\(207\) 8.00000 0.556038
\(208\) 2.00000 0.138675
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 20.0000 1.37686 0.688428 0.725304i \(-0.258301\pi\)
0.688428 + 0.725304i \(0.258301\pi\)
\(212\) −6.00000 −0.412082
\(213\) 8.00000 0.548151
\(214\) −20.0000 −1.36717
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 8.00000 0.543075
\(218\) 2.00000 0.135457
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) −2.00000 −0.134231
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 1.00000 0.0668153
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) −4.00000 −0.264906
\(229\) −26.0000 −1.71813 −0.859064 0.511868i \(-0.828954\pi\)
−0.859064 + 0.511868i \(0.828954\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) −6.00000 −0.393919
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) −2.00000 −0.129641
\(239\) −16.0000 −1.03495 −0.517477 0.855697i \(-0.673129\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −5.00000 −0.321412
\(243\) 1.00000 0.0641500
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) −2.00000 −0.127515
\(247\) −8.00000 −0.509028
\(248\) 8.00000 0.508001
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 4.00000 0.252478 0.126239 0.992000i \(-0.459709\pi\)
0.126239 + 0.992000i \(0.459709\pi\)
\(252\) −1.00000 −0.0629941
\(253\) 32.0000 2.01182
\(254\) 0 0
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) −12.0000 −0.747087
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) −12.0000 −0.741362
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) 2.00000 0.122398
\(268\) −12.0000 −0.733017
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −2.00000 −0.121268
\(273\) −2.00000 −0.121046
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) 8.00000 0.481543
\(277\) −14.0000 −0.841178 −0.420589 0.907251i \(-0.638177\pi\)
−0.420589 + 0.907251i \(0.638177\pi\)
\(278\) −20.0000 −1.19952
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 10.0000 0.596550 0.298275 0.954480i \(-0.403589\pi\)
0.298275 + 0.954480i \(0.403589\pi\)
\(282\) −8.00000 −0.476393
\(283\) −20.0000 −1.18888 −0.594438 0.804141i \(-0.702626\pi\)
−0.594438 + 0.804141i \(0.702626\pi\)
\(284\) 8.00000 0.474713
\(285\) 0 0
\(286\) −8.00000 −0.473050
\(287\) −2.00000 −0.118056
\(288\) −1.00000 −0.0589256
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 14.0000 0.819288
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) −1.00000 −0.0583212
\(295\) 0 0
\(296\) −2.00000 −0.116248
\(297\) 4.00000 0.232104
\(298\) 18.0000 1.04271
\(299\) 16.0000 0.925304
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) −8.00000 −0.460348
\(303\) 6.00000 0.344691
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) −4.00000 −0.227921
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) −2.00000 −0.113228
\(313\) −34.0000 −1.92179 −0.960897 0.276907i \(-0.910691\pi\)
−0.960897 + 0.276907i \(0.910691\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0000 −0.786318 −0.393159 0.919470i \(-0.628618\pi\)
−0.393159 + 0.919470i \(0.628618\pi\)
\(318\) 6.00000 0.336463
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) 20.0000 1.11629
\(322\) 8.00000 0.445823
\(323\) 8.00000 0.445132
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 12.0000 0.664619
\(327\) −2.00000 −0.110600
\(328\) −2.00000 −0.110432
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) −12.0000 −0.658586
\(333\) 2.00000 0.109599
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) −1.00000 −0.0545545
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 9.00000 0.489535
\(339\) 14.0000 0.760376
\(340\) 0 0
\(341\) −32.0000 −1.73290
\(342\) 4.00000 0.216295
\(343\) −1.00000 −0.0539949
\(344\) −12.0000 −0.646997
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 6.00000 0.321634
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) −4.00000 −0.213201
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) 2.00000 0.106000
\(357\) 2.00000 0.105851
\(358\) 20.0000 1.05703
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 10.0000 0.525588
\(363\) 5.00000 0.262432
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) 32.0000 1.67039 0.835193 0.549957i \(-0.185356\pi\)
0.835193 + 0.549957i \(0.185356\pi\)
\(368\) 8.00000 0.417029
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 6.00000 0.311504
\(372\) −8.00000 −0.414781
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) 12.0000 0.618031
\(378\) 1.00000 0.0514344
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16.0000 0.818631
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 12.0000 0.609994
\(388\) −10.0000 −0.507673
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −16.0000 −0.809155
\(392\) −1.00000 −0.0505076
\(393\) 12.0000 0.605320
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 4.00000 0.201008
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 16.0000 0.802008
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 12.0000 0.598506
\(403\) −16.0000 −0.797017
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) 6.00000 0.297775
\(407\) 8.00000 0.396545
\(408\) 2.00000 0.0990148
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) −8.00000 −0.394132
\(413\) −4.00000 −0.196827
\(414\) −8.00000 −0.393179
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 20.0000 0.979404
\(418\) 16.0000 0.782586
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) −26.0000 −1.26716 −0.633581 0.773676i \(-0.718416\pi\)
−0.633581 + 0.773676i \(0.718416\pi\)
\(422\) −20.0000 −0.973585
\(423\) 8.00000 0.388973
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) −8.00000 −0.387601
\(427\) 2.00000 0.0967868
\(428\) 20.0000 0.966736
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000 0.0481125
\(433\) 6.00000 0.288342 0.144171 0.989553i \(-0.453949\pi\)
0.144171 + 0.989553i \(0.453949\pi\)
\(434\) −8.00000 −0.384012
\(435\) 0 0
\(436\) −2.00000 −0.0957826
\(437\) −32.0000 −1.53077
\(438\) −14.0000 −0.668946
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 4.00000 0.190261
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 2.00000 0.0949158
\(445\) 0 0
\(446\) 0 0
\(447\) −18.0000 −0.851371
\(448\) −1.00000 −0.0472456
\(449\) −14.0000 −0.660701 −0.330350 0.943858i \(-0.607167\pi\)
−0.330350 + 0.943858i \(0.607167\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 14.0000 0.658505
\(453\) 8.00000 0.375873
\(454\) 12.0000 0.563188
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) 26.0000 1.21490
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) −34.0000 −1.58354 −0.791769 0.610821i \(-0.790840\pi\)
−0.791769 + 0.610821i \(0.790840\pi\)
\(462\) 4.00000 0.186097
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) 20.0000 0.925490 0.462745 0.886492i \(-0.346865\pi\)
0.462745 + 0.886492i \(0.346865\pi\)
\(468\) 2.00000 0.0924500
\(469\) 12.0000 0.554109
\(470\) 0 0
\(471\) −14.0000 −0.645086
\(472\) −4.00000 −0.184115
\(473\) 48.0000 2.20704
\(474\) 0 0
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) −6.00000 −0.274721
\(478\) 16.0000 0.731823
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) −18.0000 −0.819878
\(483\) −8.00000 −0.364013
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) 2.00000 0.0905357
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 36.0000 1.62466 0.812329 0.583200i \(-0.198200\pi\)
0.812329 + 0.583200i \(0.198200\pi\)
\(492\) 2.00000 0.0901670
\(493\) −12.0000 −0.540453
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −8.00000 −0.359211
\(497\) −8.00000 −0.358849
\(498\) 12.0000 0.537733
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) −4.00000 −0.178529
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 1.00000 0.0445435
\(505\) 0 0
\(506\) −32.0000 −1.42257
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) −14.0000 −0.619324
\(512\) −1.00000 −0.0441942
\(513\) −4.00000 −0.176604
\(514\) 2.00000 0.0882162
\(515\) 0 0
\(516\) 12.0000 0.528271
\(517\) 32.0000 1.40736
\(518\) 2.00000 0.0878750
\(519\) −14.0000 −0.614532
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) −6.00000 −0.262613
\(523\) 28.0000 1.22435 0.612177 0.790721i \(-0.290294\pi\)
0.612177 + 0.790721i \(0.290294\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 16.0000 0.696971
\(528\) 4.00000 0.174078
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 4.00000 0.173422
\(533\) 4.00000 0.173259
\(534\) −2.00000 −0.0865485
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) −20.0000 −0.863064
\(538\) −30.0000 −1.29339
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 24.0000 1.03089
\(543\) −10.0000 −0.429141
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) 2.00000 0.0855921
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −10.0000 −0.427179
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) −8.00000 −0.340503
\(553\) 0 0
\(554\) 14.0000 0.594803
\(555\) 0 0
\(556\) 20.0000 0.848189
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 8.00000 0.338667
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) −10.0000 −0.421825
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) 8.00000 0.336861
\(565\) 0 0
\(566\) 20.0000 0.840663
\(567\) −1.00000 −0.0419961
\(568\) −8.00000 −0.335673
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −20.0000 −0.836974 −0.418487 0.908223i \(-0.637439\pi\)
−0.418487 + 0.908223i \(0.637439\pi\)
\(572\) 8.00000 0.334497
\(573\) −16.0000 −0.668410
\(574\) 2.00000 0.0834784
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 13.0000 0.540729
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 10.0000 0.414513
\(583\) −24.0000 −0.993978
\(584\) −14.0000 −0.579324
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 1.00000 0.0412393
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 2.00000 0.0821995
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) −16.0000 −0.654836
\(598\) −16.0000 −0.654289
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 12.0000 0.489083
\(603\) −12.0000 −0.488678
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) −6.00000 −0.243733
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 4.00000 0.162221
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) −2.00000 −0.0808452
\(613\) 34.0000 1.37325 0.686624 0.727013i \(-0.259092\pi\)
0.686624 + 0.727013i \(0.259092\pi\)
\(614\) −4.00000 −0.161427
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) −10.0000 −0.402585 −0.201292 0.979531i \(-0.564514\pi\)
−0.201292 + 0.979531i \(0.564514\pi\)
\(618\) 8.00000 0.321807
\(619\) −44.0000 −1.76851 −0.884255 0.467005i \(-0.845333\pi\)
−0.884255 + 0.467005i \(0.845333\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) −8.00000 −0.320771
\(623\) −2.00000 −0.0801283
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) 34.0000 1.35891
\(627\) −16.0000 −0.638978
\(628\) −14.0000 −0.558661
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 24.0000 0.955425 0.477712 0.878516i \(-0.341466\pi\)
0.477712 + 0.878516i \(0.341466\pi\)
\(632\) 0 0
\(633\) 20.0000 0.794929
\(634\) 14.0000 0.556011
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) 2.00000 0.0792429
\(638\) −24.0000 −0.950169
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) −20.0000 −0.789337
\(643\) 20.0000 0.788723 0.394362 0.918955i \(-0.370966\pi\)
0.394362 + 0.918955i \(0.370966\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) −12.0000 −0.469956
\(653\) 34.0000 1.33052 0.665261 0.746611i \(-0.268320\pi\)
0.665261 + 0.746611i \(0.268320\pi\)
\(654\) 2.00000 0.0782062
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) 14.0000 0.546192
\(658\) 8.00000 0.311872
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) −28.0000 −1.08825
\(663\) −4.00000 −0.155347
\(664\) 12.0000 0.465690
\(665\) 0 0
\(666\) −2.00000 −0.0774984
\(667\) 48.0000 1.85857
\(668\) 16.0000 0.619059
\(669\) 0 0
\(670\) 0 0
\(671\) −8.00000 −0.308837
\(672\) 1.00000 0.0385758
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 2.00000 0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) −14.0000 −0.537667
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 32.0000 1.22534
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) 1.00000 0.0381802
\(687\) −26.0000 −0.991962
\(688\) 12.0000 0.457496
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) −14.0000 −0.532200
\(693\) −4.00000 −0.151947
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) −6.00000 −0.227429
\(697\) −4.00000 −0.151511
\(698\) 34.0000 1.28692
\(699\) −10.0000 −0.378235
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −8.00000 −0.301726
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −6.00000 −0.225653
\(708\) 4.00000 0.150329
\(709\) −26.0000 −0.976450 −0.488225 0.872718i \(-0.662356\pi\)
−0.488225 + 0.872718i \(0.662356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2.00000 −0.0749532
\(713\) −64.0000 −2.39682
\(714\) −2.00000 −0.0748481
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) −16.0000 −0.597531
\(718\) 8.00000 0.298557
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 3.00000 0.111648
\(723\) 18.0000 0.669427
\(724\) −10.0000 −0.371647
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) 24.0000 0.890111 0.445055 0.895503i \(-0.353184\pi\)
0.445055 + 0.895503i \(0.353184\pi\)
\(728\) 2.00000 0.0741249
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −24.0000 −0.887672
\(732\) −2.00000 −0.0739221
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) −8.00000 −0.294884
\(737\) −48.0000 −1.76810
\(738\) −2.00000 −0.0736210
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) −6.00000 −0.220267
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 8.00000 0.293294
\(745\) 0 0
\(746\) 14.0000 0.512576
\(747\) −12.0000 −0.439057
\(748\) −8.00000 −0.292509
\(749\) −20.0000 −0.730784
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 8.00000 0.291730
\(753\) 4.00000 0.145768
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) −1.00000 −0.0363696
\(757\) 34.0000 1.23575 0.617876 0.786276i \(-0.287994\pi\)
0.617876 + 0.786276i \(0.287994\pi\)
\(758\) −28.0000 −1.01701
\(759\) 32.0000 1.16153
\(760\) 0 0
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 0 0
\(763\) 2.00000 0.0724049
\(764\) −16.0000 −0.578860
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) 8.00000 0.288863
\(768\) 1.00000 0.0360844
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) −2.00000 −0.0720282
\(772\) 14.0000 0.503871
\(773\) 26.0000 0.935155 0.467578 0.883952i \(-0.345127\pi\)
0.467578 + 0.883952i \(0.345127\pi\)
\(774\) −12.0000 −0.431331
\(775\) 0 0
\(776\) 10.0000 0.358979
\(777\) −2.00000 −0.0717496
\(778\) 18.0000 0.645331
\(779\) −8.00000 −0.286630
\(780\) 0 0
\(781\) 32.0000 1.14505
\(782\) 16.0000 0.572159
\(783\) 6.00000 0.214423
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) −12.0000 −0.428026
\(787\) 4.00000 0.142585 0.0712923 0.997455i \(-0.477288\pi\)
0.0712923 + 0.997455i \(0.477288\pi\)
\(788\) −6.00000 −0.213741
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) −14.0000 −0.497783
\(792\) −4.00000 −0.142134
\(793\) −4.00000 −0.142044
\(794\) −2.00000 −0.0709773
\(795\) 0 0
\(796\) −16.0000 −0.567105
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) −4.00000 −0.141598
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) −18.0000 −0.635602
\(803\) 56.0000 1.97620
\(804\) −12.0000 −0.423207
\(805\) 0 0
\(806\) 16.0000 0.563576
\(807\) 30.0000 1.05605
\(808\) −6.00000 −0.211079
\(809\) −38.0000 −1.33601 −0.668004 0.744157i \(-0.732851\pi\)
−0.668004 + 0.744157i \(0.732851\pi\)
\(810\) 0 0
\(811\) 36.0000 1.26413 0.632065 0.774915i \(-0.282207\pi\)
0.632065 + 0.774915i \(0.282207\pi\)
\(812\) −6.00000 −0.210559
\(813\) −24.0000 −0.841717
\(814\) −8.00000 −0.280400
\(815\) 0 0
\(816\) −2.00000 −0.0700140
\(817\) −48.0000 −1.67931
\(818\) −10.0000 −0.349642
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 46.0000 1.60541 0.802706 0.596376i \(-0.203393\pi\)
0.802706 + 0.596376i \(0.203393\pi\)
\(822\) 10.0000 0.348790
\(823\) 8.00000 0.278862 0.139431 0.990232i \(-0.455473\pi\)
0.139431 + 0.990232i \(0.455473\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 4.00000 0.139178
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 8.00000 0.278019
\(829\) −34.0000 −1.18087 −0.590434 0.807086i \(-0.701044\pi\)
−0.590434 + 0.807086i \(0.701044\pi\)
\(830\) 0 0
\(831\) −14.0000 −0.485655
\(832\) 2.00000 0.0693375
\(833\) −2.00000 −0.0692959
\(834\) −20.0000 −0.692543
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) −8.00000 −0.276520
\(838\) −12.0000 −0.414533
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 26.0000 0.896019
\(843\) 10.0000 0.344418
\(844\) 20.0000 0.688428
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) −5.00000 −0.171802
\(848\) −6.00000 −0.206041
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) 16.0000 0.548473
\(852\) 8.00000 0.274075
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) −2.00000 −0.0684386
\(855\) 0 0
\(856\) −20.0000 −0.683586
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) −8.00000 −0.273115
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) −2.00000 −0.0681598
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) −6.00000 −0.203888
\(867\) −13.0000 −0.441503
\(868\) 8.00000 0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 2.00000 0.0677285
\(873\) −10.0000 −0.338449
\(874\) 32.0000 1.08242
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) 10.0000 0.337676 0.168838 0.985644i \(-0.445999\pi\)
0.168838 + 0.985644i \(0.445999\pi\)
\(878\) −32.0000 −1.07995
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) 42.0000 1.41502 0.707508 0.706705i \(-0.249819\pi\)
0.707508 + 0.706705i \(0.249819\pi\)
\(882\) −1.00000 −0.0336718
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −4.00000 −0.134383
\(887\) −16.0000 −0.537227 −0.268614 0.963248i \(-0.586566\pi\)
−0.268614 + 0.963248i \(0.586566\pi\)
\(888\) −2.00000 −0.0671156
\(889\) 0 0
\(890\) 0 0
\(891\) 4.00000 0.134005
\(892\) 0 0
\(893\) −32.0000 −1.07084
\(894\) 18.0000 0.602010
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) 16.0000 0.534224
\(898\) 14.0000 0.467186
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) −8.00000 −0.266371
\(903\) −12.0000 −0.399335
\(904\) −14.0000 −0.465633
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) −12.0000 −0.398234
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 48.0000 1.59031 0.795155 0.606406i \(-0.207389\pi\)
0.795155 + 0.606406i \(0.207389\pi\)
\(912\) −4.00000 −0.132453
\(913\) −48.0000 −1.58857
\(914\) −38.0000 −1.25693
\(915\) 0 0
\(916\) −26.0000 −0.859064
\(917\) −12.0000 −0.396275
\(918\) 2.00000 0.0660098
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 34.0000 1.11973
\(923\) 16.0000 0.526646
\(924\) −4.00000 −0.131590
\(925\) 0 0
\(926\) −16.0000 −0.525793
\(927\) −8.00000 −0.262754
\(928\) −6.00000 −0.196960
\(929\) 10.0000 0.328089 0.164045 0.986453i \(-0.447546\pi\)
0.164045 + 0.986453i \(0.447546\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) −10.0000 −0.327561
\(933\) 8.00000 0.261908
\(934\) −20.0000 −0.654420
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) −18.0000 −0.588034 −0.294017 0.955800i \(-0.594992\pi\)
−0.294017 + 0.955800i \(0.594992\pi\)
\(938\) −12.0000 −0.391814
\(939\) −34.0000 −1.10955
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 14.0000 0.456145
\(943\) 16.0000 0.521032
\(944\) 4.00000 0.130189
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 28.0000 0.908918
\(950\) 0 0
\(951\) −14.0000 −0.453981
\(952\) −2.00000 −0.0648204
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) −16.0000 −0.517477
\(957\) 24.0000 0.775810
\(958\) 0 0
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) −4.00000 −0.128965
\(963\) 20.0000 0.644491
\(964\) 18.0000 0.579741
\(965\) 0 0
\(966\) 8.00000 0.257396
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) −5.00000 −0.160706
\(969\) 8.00000 0.256997
\(970\) 0 0
\(971\) 36.0000 1.15529 0.577647 0.816286i \(-0.303971\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(972\) 1.00000 0.0320750
\(973\) −20.0000 −0.641171
\(974\) −24.0000 −0.769010
\(975\) 0 0
\(976\) −2.00000 −0.0640184
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 12.0000 0.383718
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −2.00000 −0.0638551
\(982\) −36.0000 −1.14881
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) −2.00000 −0.0637577
\(985\) 0 0
\(986\) 12.0000 0.382158
\(987\) −8.00000 −0.254643
\(988\) −8.00000 −0.254514
\(989\) 96.0000 3.05262
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 8.00000 0.254000
\(993\) 28.0000 0.888553
\(994\) 8.00000 0.253745
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) −4.00000 −0.126618
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.a.h.1.1 1
3.2 odd 2 3150.2.a.w.1.1 1
4.3 odd 2 8400.2.a.p.1.1 1
5.2 odd 4 1050.2.g.d.799.1 2
5.3 odd 4 1050.2.g.d.799.2 2
5.4 even 2 210.2.a.c.1.1 1
7.6 odd 2 7350.2.a.p.1.1 1
15.2 even 4 3150.2.g.e.2899.2 2
15.8 even 4 3150.2.g.e.2899.1 2
15.14 odd 2 630.2.a.b.1.1 1
20.19 odd 2 1680.2.a.q.1.1 1
35.4 even 6 1470.2.i.f.961.1 2
35.9 even 6 1470.2.i.f.361.1 2
35.19 odd 6 1470.2.i.b.361.1 2
35.24 odd 6 1470.2.i.b.961.1 2
35.34 odd 2 1470.2.a.q.1.1 1
40.19 odd 2 6720.2.a.k.1.1 1
40.29 even 2 6720.2.a.bp.1.1 1
60.59 even 2 5040.2.a.i.1.1 1
105.104 even 2 4410.2.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.a.c.1.1 1 5.4 even 2
630.2.a.b.1.1 1 15.14 odd 2
1050.2.a.h.1.1 1 1.1 even 1 trivial
1050.2.g.d.799.1 2 5.2 odd 4
1050.2.g.d.799.2 2 5.3 odd 4
1470.2.a.q.1.1 1 35.34 odd 2
1470.2.i.b.361.1 2 35.19 odd 6
1470.2.i.b.961.1 2 35.24 odd 6
1470.2.i.f.361.1 2 35.9 even 6
1470.2.i.f.961.1 2 35.4 even 6
1680.2.a.q.1.1 1 20.19 odd 2
3150.2.a.w.1.1 1 3.2 odd 2
3150.2.g.e.2899.1 2 15.8 even 4
3150.2.g.e.2899.2 2 15.2 even 4
4410.2.a.l.1.1 1 105.104 even 2
5040.2.a.i.1.1 1 60.59 even 2
6720.2.a.k.1.1 1 40.19 odd 2
6720.2.a.bp.1.1 1 40.29 even 2
7350.2.a.p.1.1 1 7.6 odd 2
8400.2.a.p.1.1 1 4.3 odd 2