Properties

Label 105.8.a.h.1.2
Level $105$
Weight $8$
Character 105.1
Self dual yes
Analytic conductor $32.800$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,8,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.8004276758\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 277x^{2} + 80x + 15348 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-12.8099\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.41438 q^{2} -27.0000 q^{3} -116.342 q^{4} +125.000 q^{5} +92.1883 q^{6} +343.000 q^{7} +834.277 q^{8} +729.000 q^{9} -426.798 q^{10} -3379.63 q^{11} +3141.23 q^{12} -14159.0 q^{13} -1171.13 q^{14} -3375.00 q^{15} +12043.2 q^{16} -19538.0 q^{17} -2489.08 q^{18} -38098.7 q^{19} -14542.8 q^{20} -9261.00 q^{21} +11539.4 q^{22} +103511. q^{23} -22525.5 q^{24} +15625.0 q^{25} +48344.1 q^{26} -19683.0 q^{27} -39905.3 q^{28} +59794.5 q^{29} +11523.5 q^{30} +68349.9 q^{31} -147908. q^{32} +91250.1 q^{33} +66710.3 q^{34} +42875.0 q^{35} -84813.3 q^{36} +266512. q^{37} +130084. q^{38} +382292. q^{39} +104285. q^{40} +655437. q^{41} +31620.6 q^{42} -775223. q^{43} +393193. q^{44} +91125.0 q^{45} -353426. q^{46} -119729. q^{47} -325167. q^{48} +117649. q^{49} -53349.7 q^{50} +527527. q^{51} +1.64728e6 q^{52} +224102. q^{53} +67205.3 q^{54} -422454. q^{55} +286157. q^{56} +1.02867e6 q^{57} -204161. q^{58} -409602. q^{59} +392654. q^{60} +1.42274e6 q^{61} -233373. q^{62} +250047. q^{63} -1.03652e6 q^{64} -1.76987e6 q^{65} -311563. q^{66} +4.22037e6 q^{67} +2.27309e6 q^{68} -2.79479e6 q^{69} -146392. q^{70} +2.17619e6 q^{71} +608188. q^{72} +4.43912e6 q^{73} -909973. q^{74} -421875. q^{75} +4.43248e6 q^{76} -1.15921e6 q^{77} -1.30529e6 q^{78} +1.63306e6 q^{79} +1.50540e6 q^{80} +531441. q^{81} -2.23791e6 q^{82} -3.49903e6 q^{83} +1.07744e6 q^{84} -2.44225e6 q^{85} +2.64691e6 q^{86} -1.61445e6 q^{87} -2.81955e6 q^{88} +2.03583e6 q^{89} -311135. q^{90} -4.85652e6 q^{91} -1.20427e7 q^{92} -1.84545e6 q^{93} +408799. q^{94} -4.76234e6 q^{95} +3.99351e6 q^{96} +1.27049e7 q^{97} -401698. q^{98} -2.46375e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 11 q^{2} - 108 q^{3} + 141 q^{4} + 500 q^{5} - 297 q^{6} + 1372 q^{7} + 2133 q^{8} + 2916 q^{9} + 1375 q^{10} - 2708 q^{11} - 3807 q^{12} - 2212 q^{13} + 3773 q^{14} - 13500 q^{15} - 9599 q^{16} - 17016 q^{17}+ \cdots - 1974132 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.41438 −0.301791 −0.150896 0.988550i \(-0.548216\pi\)
−0.150896 + 0.988550i \(0.548216\pi\)
\(3\) −27.0000 −0.577350
\(4\) −116.342 −0.908922
\(5\) 125.000 0.447214
\(6\) 92.1883 0.174239
\(7\) 343.000 0.377964
\(8\) 834.277 0.576096
\(9\) 729.000 0.333333
\(10\) −426.798 −0.134965
\(11\) −3379.63 −0.765588 −0.382794 0.923834i \(-0.625038\pi\)
−0.382794 + 0.923834i \(0.625038\pi\)
\(12\) 3141.23 0.524766
\(13\) −14159.0 −1.78743 −0.893716 0.448633i \(-0.851911\pi\)
−0.893716 + 0.448633i \(0.851911\pi\)
\(14\) −1171.13 −0.114066
\(15\) −3375.00 −0.258199
\(16\) 12043.2 0.735061
\(17\) −19538.0 −0.964516 −0.482258 0.876029i \(-0.660183\pi\)
−0.482258 + 0.876029i \(0.660183\pi\)
\(18\) −2489.08 −0.100597
\(19\) −38098.7 −1.27430 −0.637152 0.770738i \(-0.719888\pi\)
−0.637152 + 0.770738i \(0.719888\pi\)
\(20\) −14542.8 −0.406482
\(21\) −9261.00 −0.218218
\(22\) 11539.4 0.231048
\(23\) 103511. 1.77394 0.886969 0.461828i \(-0.152806\pi\)
0.886969 + 0.461828i \(0.152806\pi\)
\(24\) −22525.5 −0.332609
\(25\) 15625.0 0.200000
\(26\) 48344.1 0.539432
\(27\) −19683.0 −0.192450
\(28\) −39905.3 −0.343540
\(29\) 59794.5 0.455269 0.227635 0.973747i \(-0.426901\pi\)
0.227635 + 0.973747i \(0.426901\pi\)
\(30\) 11523.5 0.0779222
\(31\) 68349.9 0.412071 0.206035 0.978545i \(-0.433944\pi\)
0.206035 + 0.978545i \(0.433944\pi\)
\(32\) −147908. −0.797931
\(33\) 91250.1 0.442013
\(34\) 66710.3 0.291083
\(35\) 42875.0 0.169031
\(36\) −84813.3 −0.302974
\(37\) 266512. 0.864989 0.432494 0.901637i \(-0.357634\pi\)
0.432494 + 0.901637i \(0.357634\pi\)
\(38\) 130084. 0.384574
\(39\) 382292. 1.03197
\(40\) 104285. 0.257638
\(41\) 655437. 1.48521 0.742604 0.669730i \(-0.233590\pi\)
0.742604 + 0.669730i \(0.233590\pi\)
\(42\) 31620.6 0.0658563
\(43\) −775223. −1.48692 −0.743459 0.668782i \(-0.766816\pi\)
−0.743459 + 0.668782i \(0.766816\pi\)
\(44\) 393193. 0.695860
\(45\) 91125.0 0.149071
\(46\) −353426. −0.535360
\(47\) −119729. −0.168211 −0.0841057 0.996457i \(-0.526803\pi\)
−0.0841057 + 0.996457i \(0.526803\pi\)
\(48\) −325167. −0.424388
\(49\) 117649. 0.142857
\(50\) −53349.7 −0.0603583
\(51\) 527527. 0.556864
\(52\) 1.64728e6 1.62464
\(53\) 224102. 0.206767 0.103383 0.994642i \(-0.467033\pi\)
0.103383 + 0.994642i \(0.467033\pi\)
\(54\) 67205.3 0.0580798
\(55\) −422454. −0.342382
\(56\) 286157. 0.217744
\(57\) 1.02867e6 0.735720
\(58\) −204161. −0.137396
\(59\) −409602. −0.259645 −0.129823 0.991537i \(-0.541441\pi\)
−0.129823 + 0.991537i \(0.541441\pi\)
\(60\) 392654. 0.234683
\(61\) 1.42274e6 0.802548 0.401274 0.915958i \(-0.368568\pi\)
0.401274 + 0.915958i \(0.368568\pi\)
\(62\) −233373. −0.124359
\(63\) 250047. 0.125988
\(64\) −1.03652e6 −0.494252
\(65\) −1.76987e6 −0.799364
\(66\) −311563. −0.133396
\(67\) 4.22037e6 1.71431 0.857153 0.515061i \(-0.172231\pi\)
0.857153 + 0.515061i \(0.172231\pi\)
\(68\) 2.27309e6 0.876670
\(69\) −2.79479e6 −1.02418
\(70\) −146392. −0.0510121
\(71\) 2.17619e6 0.721595 0.360798 0.932644i \(-0.382505\pi\)
0.360798 + 0.932644i \(0.382505\pi\)
\(72\) 608188. 0.192032
\(73\) 4.43912e6 1.33557 0.667785 0.744354i \(-0.267242\pi\)
0.667785 + 0.744354i \(0.267242\pi\)
\(74\) −909973. −0.261046
\(75\) −421875. −0.115470
\(76\) 4.43248e6 1.15824
\(77\) −1.15921e6 −0.289365
\(78\) −1.30529e6 −0.311441
\(79\) 1.63306e6 0.372656 0.186328 0.982488i \(-0.440341\pi\)
0.186328 + 0.982488i \(0.440341\pi\)
\(80\) 1.50540e6 0.328729
\(81\) 531441. 0.111111
\(82\) −2.23791e6 −0.448223
\(83\) −3.49903e6 −0.671698 −0.335849 0.941916i \(-0.609023\pi\)
−0.335849 + 0.941916i \(0.609023\pi\)
\(84\) 1.07744e6 0.198343
\(85\) −2.44225e6 −0.431345
\(86\) 2.64691e6 0.448739
\(87\) −1.61445e6 −0.262850
\(88\) −2.81955e6 −0.441053
\(89\) 2.03583e6 0.306110 0.153055 0.988218i \(-0.451089\pi\)
0.153055 + 0.988218i \(0.451089\pi\)
\(90\) −311135. −0.0449884
\(91\) −4.85652e6 −0.675586
\(92\) −1.20427e7 −1.61237
\(93\) −1.84545e6 −0.237909
\(94\) 408799. 0.0507648
\(95\) −4.76234e6 −0.569886
\(96\) 3.99351e6 0.460686
\(97\) 1.27049e7 1.41342 0.706709 0.707505i \(-0.250179\pi\)
0.706709 + 0.707505i \(0.250179\pi\)
\(98\) −401698. −0.0431131
\(99\) −2.46375e6 −0.255196
\(100\) −1.81784e6 −0.181784
\(101\) −1.86609e7 −1.80222 −0.901110 0.433590i \(-0.857247\pi\)
−0.901110 + 0.433590i \(0.857247\pi\)
\(102\) −1.80118e6 −0.168057
\(103\) 5.30772e6 0.478606 0.239303 0.970945i \(-0.423081\pi\)
0.239303 + 0.970945i \(0.423081\pi\)
\(104\) −1.18125e7 −1.02973
\(105\) −1.15762e6 −0.0975900
\(106\) −765171. −0.0624005
\(107\) 1.74818e7 1.37957 0.689784 0.724015i \(-0.257705\pi\)
0.689784 + 0.724015i \(0.257705\pi\)
\(108\) 2.28996e6 0.174922
\(109\) 467681. 0.0345905 0.0172952 0.999850i \(-0.494494\pi\)
0.0172952 + 0.999850i \(0.494494\pi\)
\(110\) 1.44242e6 0.103328
\(111\) −7.19582e6 −0.499401
\(112\) 4.13083e6 0.277827
\(113\) −1.45523e7 −0.948763 −0.474382 0.880319i \(-0.657328\pi\)
−0.474382 + 0.880319i \(0.657328\pi\)
\(114\) −3.51226e6 −0.222034
\(115\) 1.29389e7 0.793329
\(116\) −6.95661e6 −0.413804
\(117\) −1.03219e7 −0.595811
\(118\) 1.39854e6 0.0783587
\(119\) −6.70154e6 −0.364553
\(120\) −2.81568e6 −0.148747
\(121\) −8.06524e6 −0.413874
\(122\) −4.85777e6 −0.242202
\(123\) −1.76968e7 −0.857486
\(124\) −7.95196e6 −0.374540
\(125\) 1.95312e6 0.0894427
\(126\) −853756. −0.0380222
\(127\) 2.04101e6 0.0884161 0.0442081 0.999022i \(-0.485924\pi\)
0.0442081 + 0.999022i \(0.485924\pi\)
\(128\) 2.24713e7 0.947093
\(129\) 2.09310e7 0.858472
\(130\) 6.04301e6 0.241241
\(131\) −9.14330e6 −0.355348 −0.177674 0.984089i \(-0.556857\pi\)
−0.177674 + 0.984089i \(0.556857\pi\)
\(132\) −1.06162e7 −0.401755
\(133\) −1.30679e7 −0.481642
\(134\) −1.44099e7 −0.517363
\(135\) −2.46038e6 −0.0860663
\(136\) −1.63001e7 −0.555654
\(137\) 3.62725e7 1.20519 0.602596 0.798047i \(-0.294133\pi\)
0.602596 + 0.798047i \(0.294133\pi\)
\(138\) 9.54249e6 0.309090
\(139\) −2.28823e7 −0.722682 −0.361341 0.932434i \(-0.617681\pi\)
−0.361341 + 0.932434i \(0.617681\pi\)
\(140\) −4.98816e6 −0.153636
\(141\) 3.23267e6 0.0971169
\(142\) −7.43036e6 −0.217771
\(143\) 4.78521e7 1.36844
\(144\) 8.77952e6 0.245020
\(145\) 7.47431e6 0.203603
\(146\) −1.51568e7 −0.403064
\(147\) −3.17652e6 −0.0824786
\(148\) −3.10065e7 −0.786207
\(149\) −7.18870e7 −1.78032 −0.890161 0.455646i \(-0.849408\pi\)
−0.890161 + 0.455646i \(0.849408\pi\)
\(150\) 1.44044e6 0.0348479
\(151\) 6.39974e7 1.51267 0.756333 0.654187i \(-0.226989\pi\)
0.756333 + 0.654187i \(0.226989\pi\)
\(152\) −3.17849e7 −0.734122
\(153\) −1.42432e7 −0.321505
\(154\) 3.95800e6 0.0873280
\(155\) 8.54374e6 0.184284
\(156\) −4.44766e7 −0.937984
\(157\) 6.00497e6 0.123840 0.0619202 0.998081i \(-0.480278\pi\)
0.0619202 + 0.998081i \(0.480278\pi\)
\(158\) −5.57589e6 −0.112464
\(159\) −6.05077e6 −0.119377
\(160\) −1.84885e7 −0.356846
\(161\) 3.55042e7 0.670486
\(162\) −1.81454e6 −0.0335324
\(163\) 9.83028e7 1.77791 0.888954 0.457997i \(-0.151433\pi\)
0.888954 + 0.457997i \(0.151433\pi\)
\(164\) −7.62549e7 −1.34994
\(165\) 1.14063e7 0.197674
\(166\) 1.19470e7 0.202713
\(167\) 5.80791e7 0.964966 0.482483 0.875905i \(-0.339735\pi\)
0.482483 + 0.875905i \(0.339735\pi\)
\(168\) −7.72624e6 −0.125715
\(169\) 1.37728e8 2.19491
\(170\) 8.33878e6 0.130176
\(171\) −2.77740e7 −0.424768
\(172\) 9.01909e7 1.35149
\(173\) −2.31746e7 −0.340291 −0.170146 0.985419i \(-0.554424\pi\)
−0.170146 + 0.985419i \(0.554424\pi\)
\(174\) 5.51235e6 0.0793258
\(175\) 5.35938e6 0.0755929
\(176\) −4.07017e7 −0.562754
\(177\) 1.10593e7 0.149906
\(178\) −6.95111e6 −0.0923814
\(179\) 3.77902e7 0.492486 0.246243 0.969208i \(-0.420804\pi\)
0.246243 + 0.969208i \(0.420804\pi\)
\(180\) −1.06017e7 −0.135494
\(181\) −9.09325e6 −0.113984 −0.0569920 0.998375i \(-0.518151\pi\)
−0.0569920 + 0.998375i \(0.518151\pi\)
\(182\) 1.65820e7 0.203886
\(183\) −3.84140e7 −0.463351
\(184\) 8.63567e7 1.02196
\(185\) 3.33140e7 0.386835
\(186\) 6.30106e6 0.0717990
\(187\) 6.60314e7 0.738422
\(188\) 1.39295e7 0.152891
\(189\) −6.75127e6 −0.0727393
\(190\) 1.62605e7 0.171987
\(191\) −5.34900e7 −0.555464 −0.277732 0.960659i \(-0.589583\pi\)
−0.277732 + 0.960659i \(0.589583\pi\)
\(192\) 2.79861e7 0.285357
\(193\) −8.24940e7 −0.825984 −0.412992 0.910735i \(-0.635516\pi\)
−0.412992 + 0.910735i \(0.635516\pi\)
\(194\) −4.33794e7 −0.426557
\(195\) 4.77865e7 0.461513
\(196\) −1.36875e7 −0.129846
\(197\) 7.55328e7 0.703888 0.351944 0.936021i \(-0.385521\pi\)
0.351944 + 0.936021i \(0.385521\pi\)
\(198\) 8.41219e6 0.0770160
\(199\) −1.05546e6 −0.00949412 −0.00474706 0.999989i \(-0.501511\pi\)
−0.00474706 + 0.999989i \(0.501511\pi\)
\(200\) 1.30356e7 0.115219
\(201\) −1.13950e8 −0.989756
\(202\) 6.37154e7 0.543895
\(203\) 2.05095e7 0.172076
\(204\) −6.13735e7 −0.506146
\(205\) 8.19296e7 0.664205
\(206\) −1.81226e7 −0.144439
\(207\) 7.54594e7 0.591313
\(208\) −1.70520e8 −1.31387
\(209\) 1.28760e8 0.975593
\(210\) 3.95257e6 0.0294518
\(211\) 1.14474e7 0.0838916 0.0419458 0.999120i \(-0.486644\pi\)
0.0419458 + 0.999120i \(0.486644\pi\)
\(212\) −2.60725e7 −0.187935
\(213\) −5.87573e7 −0.416613
\(214\) −5.96896e7 −0.416342
\(215\) −9.69028e7 −0.664970
\(216\) −1.64211e7 −0.110870
\(217\) 2.34440e7 0.155748
\(218\) −1.59684e6 −0.0104391
\(219\) −1.19856e8 −0.771092
\(220\) 4.91492e7 0.311198
\(221\) 2.76638e8 1.72401
\(222\) 2.45693e7 0.150715
\(223\) 2.81598e8 1.70044 0.850222 0.526425i \(-0.176468\pi\)
0.850222 + 0.526425i \(0.176468\pi\)
\(224\) −5.07323e7 −0.301590
\(225\) 1.13906e7 0.0666667
\(226\) 4.96872e7 0.286329
\(227\) −4.00301e7 −0.227141 −0.113571 0.993530i \(-0.536229\pi\)
−0.113571 + 0.993530i \(0.536229\pi\)
\(228\) −1.19677e8 −0.668712
\(229\) −1.24592e8 −0.685591 −0.342796 0.939410i \(-0.611374\pi\)
−0.342796 + 0.939410i \(0.611374\pi\)
\(230\) −4.41782e7 −0.239420
\(231\) 3.12988e7 0.167065
\(232\) 4.98852e7 0.262279
\(233\) −3.21485e8 −1.66500 −0.832500 0.554025i \(-0.813091\pi\)
−0.832500 + 0.554025i \(0.813091\pi\)
\(234\) 3.52428e7 0.179811
\(235\) −1.49661e7 −0.0752264
\(236\) 4.76540e7 0.235997
\(237\) −4.40927e7 −0.215153
\(238\) 2.28816e7 0.110019
\(239\) −2.95076e8 −1.39811 −0.699054 0.715068i \(-0.746395\pi\)
−0.699054 + 0.715068i \(0.746395\pi\)
\(240\) −4.06459e7 −0.189792
\(241\) 1.00887e8 0.464273 0.232137 0.972683i \(-0.425428\pi\)
0.232137 + 0.972683i \(0.425428\pi\)
\(242\) 2.75378e7 0.124904
\(243\) −1.43489e7 −0.0641500
\(244\) −1.65524e8 −0.729453
\(245\) 1.47061e7 0.0638877
\(246\) 6.04236e7 0.258782
\(247\) 5.39439e8 2.27773
\(248\) 5.70227e7 0.237393
\(249\) 9.44737e7 0.387805
\(250\) −6.66871e6 −0.0269931
\(251\) −9.30364e7 −0.371360 −0.185680 0.982610i \(-0.559449\pi\)
−0.185680 + 0.982610i \(0.559449\pi\)
\(252\) −2.90910e7 −0.114513
\(253\) −3.49829e8 −1.35811
\(254\) −6.96877e6 −0.0266832
\(255\) 6.59408e7 0.249037
\(256\) 5.59493e7 0.208428
\(257\) 3.64584e8 1.33978 0.669888 0.742462i \(-0.266342\pi\)
0.669888 + 0.742462i \(0.266342\pi\)
\(258\) −7.14664e7 −0.259080
\(259\) 9.14136e7 0.326935
\(260\) 2.05910e8 0.726559
\(261\) 4.35902e7 0.151756
\(262\) 3.12187e7 0.107241
\(263\) 1.11633e8 0.378396 0.189198 0.981939i \(-0.439411\pi\)
0.189198 + 0.981939i \(0.439411\pi\)
\(264\) 7.61279e7 0.254642
\(265\) 2.80128e7 0.0924690
\(266\) 4.46187e7 0.145355
\(267\) −5.49675e7 −0.176733
\(268\) −4.91006e8 −1.55817
\(269\) −1.53396e8 −0.480487 −0.240244 0.970713i \(-0.577227\pi\)
−0.240244 + 0.970713i \(0.577227\pi\)
\(270\) 8.40066e6 0.0259741
\(271\) −4.17128e8 −1.27314 −0.636571 0.771218i \(-0.719648\pi\)
−0.636571 + 0.771218i \(0.719648\pi\)
\(272\) −2.35301e8 −0.708978
\(273\) 1.31126e8 0.390050
\(274\) −1.23848e8 −0.363717
\(275\) −5.28068e7 −0.153118
\(276\) 3.25152e8 0.930903
\(277\) −4.05683e8 −1.14685 −0.573426 0.819257i \(-0.694386\pi\)
−0.573426 + 0.819257i \(0.694386\pi\)
\(278\) 7.81288e7 0.218099
\(279\) 4.98271e7 0.137357
\(280\) 3.57696e7 0.0973781
\(281\) −1.50774e8 −0.405371 −0.202686 0.979244i \(-0.564967\pi\)
−0.202686 + 0.979244i \(0.564967\pi\)
\(282\) −1.10376e7 −0.0293091
\(283\) −3.69597e7 −0.0969338 −0.0484669 0.998825i \(-0.515434\pi\)
−0.0484669 + 0.998825i \(0.515434\pi\)
\(284\) −2.53183e8 −0.655874
\(285\) 1.28583e8 0.329024
\(286\) −1.63385e8 −0.412983
\(287\) 2.24815e8 0.561356
\(288\) −1.07825e8 −0.265977
\(289\) −2.86042e7 −0.0697088
\(290\) −2.55202e7 −0.0614455
\(291\) −3.43032e8 −0.816037
\(292\) −5.16456e8 −1.21393
\(293\) −6.00426e8 −1.39451 −0.697257 0.716822i \(-0.745596\pi\)
−0.697257 + 0.716822i \(0.745596\pi\)
\(294\) 1.08459e7 0.0248913
\(295\) −5.12003e7 −0.116117
\(296\) 2.22345e8 0.498317
\(297\) 6.65214e7 0.147338
\(298\) 2.45450e8 0.537286
\(299\) −1.46561e9 −3.17079
\(300\) 4.90818e7 0.104953
\(301\) −2.65901e8 −0.562002
\(302\) −2.18511e8 −0.456510
\(303\) 5.03844e8 1.04051
\(304\) −4.58832e8 −0.936691
\(305\) 1.77842e8 0.358910
\(306\) 4.86318e7 0.0970276
\(307\) 9.08890e8 1.79278 0.896390 0.443267i \(-0.146181\pi\)
0.896390 + 0.443267i \(0.146181\pi\)
\(308\) 1.34865e8 0.263010
\(309\) −1.43309e8 −0.276323
\(310\) −2.91716e7 −0.0556153
\(311\) 6.45862e8 1.21753 0.608763 0.793352i \(-0.291666\pi\)
0.608763 + 0.793352i \(0.291666\pi\)
\(312\) 3.18937e8 0.594517
\(313\) −8.96603e8 −1.65270 −0.826352 0.563154i \(-0.809588\pi\)
−0.826352 + 0.563154i \(0.809588\pi\)
\(314\) −2.05033e7 −0.0373740
\(315\) 3.12559e7 0.0563436
\(316\) −1.89994e8 −0.338715
\(317\) 8.47295e8 1.49392 0.746959 0.664870i \(-0.231513\pi\)
0.746959 + 0.664870i \(0.231513\pi\)
\(318\) 2.06596e7 0.0360269
\(319\) −2.02084e8 −0.348549
\(320\) −1.29565e8 −0.221036
\(321\) −4.72009e8 −0.796494
\(322\) −1.21225e8 −0.202347
\(323\) 7.44374e8 1.22909
\(324\) −6.18289e7 −0.100991
\(325\) −2.21234e8 −0.357486
\(326\) −3.35643e8 −0.536557
\(327\) −1.26274e7 −0.0199708
\(328\) 5.46816e8 0.855623
\(329\) −4.10669e7 −0.0635779
\(330\) −3.89453e7 −0.0596564
\(331\) 7.42401e8 1.12523 0.562614 0.826720i \(-0.309796\pi\)
0.562614 + 0.826720i \(0.309796\pi\)
\(332\) 4.07084e8 0.610521
\(333\) 1.94287e8 0.288330
\(334\) −1.98304e8 −0.291219
\(335\) 5.27546e8 0.766661
\(336\) −1.11532e8 −0.160403
\(337\) −7.24512e8 −1.03120 −0.515598 0.856831i \(-0.672430\pi\)
−0.515598 + 0.856831i \(0.672430\pi\)
\(338\) −4.70254e8 −0.662406
\(339\) 3.92913e8 0.547769
\(340\) 2.84137e8 0.392059
\(341\) −2.30998e8 −0.315477
\(342\) 9.48310e7 0.128191
\(343\) 4.03536e7 0.0539949
\(344\) −6.46750e8 −0.856608
\(345\) −3.49349e8 −0.458029
\(346\) 7.91269e7 0.102697
\(347\) 5.09846e8 0.655068 0.327534 0.944839i \(-0.393782\pi\)
0.327534 + 0.944839i \(0.393782\pi\)
\(348\) 1.87829e8 0.238910
\(349\) −8.76052e8 −1.10317 −0.551583 0.834120i \(-0.685976\pi\)
−0.551583 + 0.834120i \(0.685976\pi\)
\(350\) −1.82989e7 −0.0228133
\(351\) 2.78691e8 0.343991
\(352\) 4.99874e8 0.610887
\(353\) 1.26670e9 1.53272 0.766358 0.642413i \(-0.222067\pi\)
0.766358 + 0.642413i \(0.222067\pi\)
\(354\) −3.77605e7 −0.0452404
\(355\) 2.72024e8 0.322707
\(356\) −2.36853e8 −0.278230
\(357\) 1.80942e8 0.210475
\(358\) −1.29030e8 −0.148628
\(359\) 1.66558e9 1.89992 0.949961 0.312369i \(-0.101122\pi\)
0.949961 + 0.312369i \(0.101122\pi\)
\(360\) 7.60235e7 0.0858794
\(361\) 5.57643e8 0.623851
\(362\) 3.10478e7 0.0343994
\(363\) 2.17761e8 0.238950
\(364\) 5.65018e8 0.614055
\(365\) 5.54890e8 0.597285
\(366\) 1.31160e8 0.139835
\(367\) 1.67575e9 1.76961 0.884807 0.465957i \(-0.154290\pi\)
0.884807 + 0.465957i \(0.154290\pi\)
\(368\) 1.24661e9 1.30395
\(369\) 4.77814e8 0.495070
\(370\) −1.13747e8 −0.116743
\(371\) 7.68672e7 0.0781506
\(372\) 2.14703e8 0.216241
\(373\) 1.47694e9 1.47360 0.736802 0.676109i \(-0.236335\pi\)
0.736802 + 0.676109i \(0.236335\pi\)
\(374\) −2.25456e8 −0.222850
\(375\) −5.27344e7 −0.0516398
\(376\) −9.98868e7 −0.0969060
\(377\) −8.46628e8 −0.813763
\(378\) 2.30514e7 0.0219521
\(379\) −1.64279e9 −1.55005 −0.775024 0.631932i \(-0.782262\pi\)
−0.775024 + 0.631932i \(0.782262\pi\)
\(380\) 5.54061e8 0.517982
\(381\) −5.51072e7 −0.0510471
\(382\) 1.82635e8 0.167634
\(383\) −1.89784e9 −1.72609 −0.863044 0.505129i \(-0.831445\pi\)
−0.863044 + 0.505129i \(0.831445\pi\)
\(384\) −6.06724e8 −0.546804
\(385\) −1.44902e8 −0.129408
\(386\) 2.81666e8 0.249275
\(387\) −5.65137e8 −0.495639
\(388\) −1.47811e9 −1.28469
\(389\) 1.05432e9 0.908131 0.454065 0.890968i \(-0.349973\pi\)
0.454065 + 0.890968i \(0.349973\pi\)
\(390\) −1.63161e8 −0.139281
\(391\) −2.02240e9 −1.71099
\(392\) 9.81518e7 0.0822995
\(393\) 2.46869e8 0.205160
\(394\) −2.57898e8 −0.212428
\(395\) 2.04133e8 0.166657
\(396\) 2.86638e8 0.231953
\(397\) 2.96848e8 0.238104 0.119052 0.992888i \(-0.462014\pi\)
0.119052 + 0.992888i \(0.462014\pi\)
\(398\) 3.60373e6 0.00286525
\(399\) 3.52832e8 0.278076
\(400\) 1.88176e8 0.147012
\(401\) −7.79941e8 −0.604028 −0.302014 0.953304i \(-0.597659\pi\)
−0.302014 + 0.953304i \(0.597659\pi\)
\(402\) 3.89069e8 0.298700
\(403\) −9.67763e8 −0.736549
\(404\) 2.17105e9 1.63808
\(405\) 6.64301e7 0.0496904
\(406\) −7.00273e7 −0.0519310
\(407\) −9.00713e8 −0.662225
\(408\) 4.40103e8 0.320807
\(409\) 8.75152e8 0.632488 0.316244 0.948678i \(-0.397578\pi\)
0.316244 + 0.948678i \(0.397578\pi\)
\(410\) −2.79739e8 −0.200452
\(411\) −9.79359e8 −0.695818
\(412\) −6.17511e8 −0.435015
\(413\) −1.40494e8 −0.0981367
\(414\) −2.57647e8 −0.178453
\(415\) −4.37378e8 −0.300392
\(416\) 2.09422e9 1.42625
\(417\) 6.17821e8 0.417241
\(418\) −4.39635e8 −0.294426
\(419\) 1.07058e9 0.711000 0.355500 0.934676i \(-0.384311\pi\)
0.355500 + 0.934676i \(0.384311\pi\)
\(420\) 1.34680e8 0.0887017
\(421\) 2.54184e9 1.66020 0.830100 0.557614i \(-0.188283\pi\)
0.830100 + 0.557614i \(0.188283\pi\)
\(422\) −3.90858e7 −0.0253178
\(423\) −8.72822e7 −0.0560705
\(424\) 1.86963e8 0.119118
\(425\) −3.05282e8 −0.192903
\(426\) 2.00620e8 0.125730
\(427\) 4.87999e8 0.303335
\(428\) −2.03387e9 −1.25392
\(429\) −1.29201e9 −0.790068
\(430\) 3.30863e8 0.200682
\(431\) 8.91747e8 0.536502 0.268251 0.963349i \(-0.413554\pi\)
0.268251 + 0.963349i \(0.413554\pi\)
\(432\) −2.37047e8 −0.141463
\(433\) −1.03966e9 −0.615440 −0.307720 0.951477i \(-0.599566\pi\)
−0.307720 + 0.951477i \(0.599566\pi\)
\(434\) −8.00468e7 −0.0470035
\(435\) −2.01806e8 −0.117550
\(436\) −5.44109e7 −0.0314400
\(437\) −3.94363e9 −2.26054
\(438\) 4.09235e8 0.232709
\(439\) −1.55931e9 −0.879641 −0.439821 0.898086i \(-0.644958\pi\)
−0.439821 + 0.898086i \(0.644958\pi\)
\(440\) −3.52444e8 −0.197245
\(441\) 8.57661e7 0.0476190
\(442\) −9.44548e8 −0.520291
\(443\) −2.79970e8 −0.153002 −0.0765012 0.997069i \(-0.524375\pi\)
−0.0765012 + 0.997069i \(0.524375\pi\)
\(444\) 8.37176e8 0.453917
\(445\) 2.54479e8 0.136897
\(446\) −9.61482e8 −0.513179
\(447\) 1.94095e9 1.02787
\(448\) −3.55527e8 −0.186810
\(449\) 6.18452e8 0.322436 0.161218 0.986919i \(-0.448458\pi\)
0.161218 + 0.986919i \(0.448458\pi\)
\(450\) −3.88919e7 −0.0201194
\(451\) −2.21514e9 −1.13706
\(452\) 1.69305e9 0.862352
\(453\) −1.72793e9 −0.873338
\(454\) 1.36678e8 0.0685494
\(455\) −6.07065e8 −0.302131
\(456\) 8.58192e8 0.423846
\(457\) 9.07329e8 0.444691 0.222345 0.974968i \(-0.428629\pi\)
0.222345 + 0.974968i \(0.428629\pi\)
\(458\) 4.25404e8 0.206906
\(459\) 3.84567e8 0.185621
\(460\) −1.50533e9 −0.721075
\(461\) −2.41729e9 −1.14915 −0.574573 0.818453i \(-0.694832\pi\)
−0.574573 + 0.818453i \(0.694832\pi\)
\(462\) −1.06866e8 −0.0504188
\(463\) −3.14336e8 −0.147184 −0.0735921 0.997288i \(-0.523446\pi\)
−0.0735921 + 0.997288i \(0.523446\pi\)
\(464\) 7.20120e8 0.334651
\(465\) −2.30681e8 −0.106396
\(466\) 1.09767e9 0.502483
\(467\) 4.74332e7 0.0215513 0.0107757 0.999942i \(-0.496570\pi\)
0.0107757 + 0.999942i \(0.496570\pi\)
\(468\) 1.20087e9 0.541545
\(469\) 1.44759e9 0.647947
\(470\) 5.10999e7 0.0227027
\(471\) −1.62134e8 −0.0714993
\(472\) −3.41722e8 −0.149581
\(473\) 2.61997e9 1.13837
\(474\) 1.50549e8 0.0649313
\(475\) −5.95293e8 −0.254861
\(476\) 7.79671e8 0.331350
\(477\) 1.63371e8 0.0689223
\(478\) 1.00750e9 0.421937
\(479\) −2.08794e9 −0.868048 −0.434024 0.900901i \(-0.642907\pi\)
−0.434024 + 0.900901i \(0.642907\pi\)
\(480\) 4.99188e8 0.206025
\(481\) −3.77353e9 −1.54611
\(482\) −3.44465e8 −0.140114
\(483\) −9.58614e8 −0.387105
\(484\) 9.38326e8 0.376179
\(485\) 1.58811e9 0.632099
\(486\) 4.89926e7 0.0193599
\(487\) −2.19273e9 −0.860267 −0.430134 0.902765i \(-0.641534\pi\)
−0.430134 + 0.902765i \(0.641534\pi\)
\(488\) 1.18696e9 0.462345
\(489\) −2.65417e9 −1.02648
\(490\) −5.02123e7 −0.0192808
\(491\) 2.19027e9 0.835050 0.417525 0.908666i \(-0.362898\pi\)
0.417525 + 0.908666i \(0.362898\pi\)
\(492\) 2.05888e9 0.779387
\(493\) −1.16827e9 −0.439115
\(494\) −1.84185e9 −0.687400
\(495\) −3.07969e8 −0.114127
\(496\) 8.23154e8 0.302897
\(497\) 7.46435e8 0.272737
\(498\) −3.22569e8 −0.117036
\(499\) 6.56737e8 0.236614 0.118307 0.992977i \(-0.462253\pi\)
0.118307 + 0.992977i \(0.462253\pi\)
\(500\) −2.27230e8 −0.0812964
\(501\) −1.56813e9 −0.557123
\(502\) 3.17662e8 0.112073
\(503\) −2.58040e9 −0.904065 −0.452033 0.892001i \(-0.649301\pi\)
−0.452033 + 0.892001i \(0.649301\pi\)
\(504\) 2.08608e8 0.0725813
\(505\) −2.33261e9 −0.805977
\(506\) 1.19445e9 0.409865
\(507\) −3.71864e9 −1.26723
\(508\) −2.37455e8 −0.0803633
\(509\) −2.07943e9 −0.698928 −0.349464 0.936950i \(-0.613636\pi\)
−0.349464 + 0.936950i \(0.613636\pi\)
\(510\) −2.25147e8 −0.0751572
\(511\) 1.52262e9 0.504798
\(512\) −3.06735e9 −1.00999
\(513\) 7.49898e8 0.245240
\(514\) −1.24483e9 −0.404333
\(515\) 6.63465e8 0.214039
\(516\) −2.43516e9 −0.780284
\(517\) 4.04639e8 0.128781
\(518\) −3.12121e8 −0.0986662
\(519\) 6.25714e8 0.196467
\(520\) −1.47656e9 −0.460511
\(521\) −2.82646e9 −0.875609 −0.437804 0.899070i \(-0.644244\pi\)
−0.437804 + 0.899070i \(0.644244\pi\)
\(522\) −1.48834e8 −0.0457988
\(523\) 4.81610e9 1.47211 0.736055 0.676922i \(-0.236687\pi\)
0.736055 + 0.676922i \(0.236687\pi\)
\(524\) 1.06375e9 0.322983
\(525\) −1.44703e8 −0.0436436
\(526\) −3.81157e8 −0.114197
\(527\) −1.33542e9 −0.397449
\(528\) 1.09895e9 0.324906
\(529\) 7.30968e9 2.14686
\(530\) −9.56464e7 −0.0279064
\(531\) −2.98600e8 −0.0865484
\(532\) 1.52034e9 0.437775
\(533\) −9.28030e9 −2.65471
\(534\) 1.87680e8 0.0533364
\(535\) 2.18523e9 0.616962
\(536\) 3.52096e9 0.987606
\(537\) −1.02034e9 −0.284337
\(538\) 5.23754e8 0.145007
\(539\) −3.97611e8 −0.109370
\(540\) 2.86245e8 0.0782275
\(541\) 1.56108e9 0.423871 0.211936 0.977284i \(-0.432023\pi\)
0.211936 + 0.977284i \(0.432023\pi\)
\(542\) 1.42423e9 0.384223
\(543\) 2.45518e8 0.0658087
\(544\) 2.88982e9 0.769618
\(545\) 5.84601e7 0.0154693
\(546\) −4.47714e8 −0.117714
\(547\) −3.82511e8 −0.0999282 −0.0499641 0.998751i \(-0.515911\pi\)
−0.0499641 + 0.998751i \(0.515911\pi\)
\(548\) −4.22002e9 −1.09543
\(549\) 1.03718e9 0.267516
\(550\) 1.80303e8 0.0462096
\(551\) −2.27810e9 −0.580152
\(552\) −2.33163e9 −0.590029
\(553\) 5.60140e8 0.140851
\(554\) 1.38516e9 0.346110
\(555\) −8.99477e8 −0.223339
\(556\) 2.66217e9 0.656861
\(557\) −7.35207e9 −1.80267 −0.901335 0.433122i \(-0.857412\pi\)
−0.901335 + 0.433122i \(0.857412\pi\)
\(558\) −1.70129e8 −0.0414532
\(559\) 1.09763e10 2.65776
\(560\) 5.16354e8 0.124248
\(561\) −1.78285e9 −0.426328
\(562\) 5.14798e8 0.122338
\(563\) 7.91584e9 1.86947 0.934733 0.355352i \(-0.115639\pi\)
0.934733 + 0.355352i \(0.115639\pi\)
\(564\) −3.76096e8 −0.0882717
\(565\) −1.81904e9 −0.424300
\(566\) 1.26194e8 0.0292538
\(567\) 1.82284e8 0.0419961
\(568\) 1.81555e9 0.415708
\(569\) 4.49464e9 1.02283 0.511414 0.859335i \(-0.329122\pi\)
0.511414 + 0.859335i \(0.329122\pi\)
\(570\) −4.39032e8 −0.0992966
\(571\) −2.15052e9 −0.483412 −0.241706 0.970350i \(-0.577707\pi\)
−0.241706 + 0.970350i \(0.577707\pi\)
\(572\) −5.56721e9 −1.24380
\(573\) 1.44423e9 0.320697
\(574\) −7.67604e8 −0.169412
\(575\) 1.61736e9 0.354788
\(576\) −7.55624e8 −0.164751
\(577\) −1.73438e9 −0.375862 −0.187931 0.982182i \(-0.560178\pi\)
−0.187931 + 0.982182i \(0.560178\pi\)
\(578\) 9.76656e7 0.0210375
\(579\) 2.22734e9 0.476882
\(580\) −8.69577e8 −0.185059
\(581\) −1.20017e9 −0.253878
\(582\) 1.17124e9 0.246273
\(583\) −7.57385e8 −0.158298
\(584\) 3.70345e9 0.769418
\(585\) −1.29024e9 −0.266455
\(586\) 2.05008e9 0.420852
\(587\) −2.98775e9 −0.609692 −0.304846 0.952402i \(-0.598605\pi\)
−0.304846 + 0.952402i \(0.598605\pi\)
\(588\) 3.69563e8 0.0749666
\(589\) −2.60405e9 −0.525104
\(590\) 1.74817e8 0.0350431
\(591\) −2.03939e9 −0.406390
\(592\) 3.20967e9 0.635819
\(593\) 5.56485e9 1.09588 0.547938 0.836519i \(-0.315413\pi\)
0.547938 + 0.836519i \(0.315413\pi\)
\(594\) −2.27129e8 −0.0444652
\(595\) −8.37693e8 −0.163033
\(596\) 8.36348e9 1.61817
\(597\) 2.84973e7 0.00548143
\(598\) 5.00414e9 0.956919
\(599\) −5.39399e9 −1.02545 −0.512727 0.858552i \(-0.671365\pi\)
−0.512727 + 0.858552i \(0.671365\pi\)
\(600\) −3.51960e8 −0.0665219
\(601\) −5.88616e8 −0.110604 −0.0553021 0.998470i \(-0.517612\pi\)
−0.0553021 + 0.998470i \(0.517612\pi\)
\(602\) 9.07888e8 0.169607
\(603\) 3.07665e9 0.571436
\(604\) −7.44558e9 −1.37489
\(605\) −1.00815e9 −0.185090
\(606\) −1.72032e9 −0.314018
\(607\) 5.38304e9 0.976938 0.488469 0.872581i \(-0.337556\pi\)
0.488469 + 0.872581i \(0.337556\pi\)
\(608\) 5.63509e9 1.01681
\(609\) −5.53757e8 −0.0993479
\(610\) −6.07222e8 −0.108316
\(611\) 1.69523e9 0.300667
\(612\) 1.65708e9 0.292223
\(613\) 8.87502e9 1.55617 0.778086 0.628158i \(-0.216191\pi\)
0.778086 + 0.628158i \(0.216191\pi\)
\(614\) −3.10330e9 −0.541046
\(615\) −2.21210e9 −0.383479
\(616\) −9.67106e8 −0.166702
\(617\) 5.94996e6 0.00101980 0.000509901 1.00000i \(-0.499838\pi\)
0.000509901 1.00000i \(0.499838\pi\)
\(618\) 4.89310e8 0.0833920
\(619\) 8.21425e9 1.39204 0.696019 0.718024i \(-0.254953\pi\)
0.696019 + 0.718024i \(0.254953\pi\)
\(620\) −9.93996e8 −0.167500
\(621\) −2.03740e9 −0.341395
\(622\) −2.20522e9 −0.367439
\(623\) 6.98291e8 0.115699
\(624\) 4.60403e9 0.758564
\(625\) 2.44141e8 0.0400000
\(626\) 3.06134e9 0.498772
\(627\) −3.47652e9 −0.563259
\(628\) −6.98631e8 −0.112561
\(629\) −5.20711e9 −0.834295
\(630\) −1.06719e8 −0.0170040
\(631\) 2.53051e9 0.400964 0.200482 0.979697i \(-0.435749\pi\)
0.200482 + 0.979697i \(0.435749\pi\)
\(632\) 1.36243e9 0.214686
\(633\) −3.09080e8 −0.0484348
\(634\) −2.89299e9 −0.450852
\(635\) 2.55126e8 0.0395409
\(636\) 7.03958e8 0.108504
\(637\) −1.66579e9 −0.255347
\(638\) 6.89990e8 0.105189
\(639\) 1.58645e9 0.240532
\(640\) 2.80891e9 0.423553
\(641\) 6.96698e9 1.04482 0.522410 0.852694i \(-0.325033\pi\)
0.522410 + 0.852694i \(0.325033\pi\)
\(642\) 1.61162e9 0.240375
\(643\) 1.21823e10 1.80714 0.903572 0.428437i \(-0.140936\pi\)
0.903572 + 0.428437i \(0.140936\pi\)
\(644\) −4.13063e9 −0.609419
\(645\) 2.61638e9 0.383920
\(646\) −2.54158e9 −0.370928
\(647\) −9.95454e9 −1.44496 −0.722481 0.691391i \(-0.756998\pi\)
−0.722481 + 0.691391i \(0.756998\pi\)
\(648\) 4.43369e8 0.0640107
\(649\) 1.38431e9 0.198781
\(650\) 7.55376e8 0.107886
\(651\) −6.32988e8 −0.0899213
\(652\) −1.14367e10 −1.61598
\(653\) 2.38576e9 0.335297 0.167649 0.985847i \(-0.446383\pi\)
0.167649 + 0.985847i \(0.446383\pi\)
\(654\) 4.31147e7 0.00602702
\(655\) −1.14291e9 −0.158916
\(656\) 7.89358e9 1.09172
\(657\) 3.23612e9 0.445190
\(658\) 1.40218e8 0.0191873
\(659\) 1.98573e8 0.0270284 0.0135142 0.999909i \(-0.495698\pi\)
0.0135142 + 0.999909i \(0.495698\pi\)
\(660\) −1.32703e9 −0.179670
\(661\) 1.68735e9 0.227247 0.113624 0.993524i \(-0.463754\pi\)
0.113624 + 0.993524i \(0.463754\pi\)
\(662\) −2.53484e9 −0.339584
\(663\) −7.46923e9 −0.995356
\(664\) −2.91916e9 −0.386963
\(665\) −1.63348e9 −0.215397
\(666\) −6.63370e8 −0.0870154
\(667\) 6.18938e9 0.807620
\(668\) −6.75704e9 −0.877079
\(669\) −7.60314e9 −0.981752
\(670\) −1.80124e9 −0.231372
\(671\) −4.80834e9 −0.614421
\(672\) 1.36977e9 0.174123
\(673\) −5.02352e9 −0.635266 −0.317633 0.948214i \(-0.602888\pi\)
−0.317633 + 0.948214i \(0.602888\pi\)
\(674\) 2.47376e9 0.311206
\(675\) −3.07547e8 −0.0384900
\(676\) −1.60235e10 −1.99501
\(677\) −1.03907e10 −1.28702 −0.643510 0.765438i \(-0.722523\pi\)
−0.643510 + 0.765438i \(0.722523\pi\)
\(678\) −1.34155e9 −0.165312
\(679\) 4.35778e9 0.534222
\(680\) −2.03751e9 −0.248496
\(681\) 1.08081e9 0.131140
\(682\) 7.88714e8 0.0952082
\(683\) 3.61608e9 0.434276 0.217138 0.976141i \(-0.430328\pi\)
0.217138 + 0.976141i \(0.430328\pi\)
\(684\) 3.23128e9 0.386081
\(685\) 4.53407e9 0.538978
\(686\) −1.37783e8 −0.0162952
\(687\) 3.36398e9 0.395826
\(688\) −9.33619e9 −1.09297
\(689\) −3.17306e9 −0.369582
\(690\) 1.19281e9 0.138229
\(691\) 1.65856e10 1.91231 0.956153 0.292869i \(-0.0946100\pi\)
0.956153 + 0.292869i \(0.0946100\pi\)
\(692\) 2.69618e9 0.309298
\(693\) −8.45068e8 −0.0964551
\(694\) −1.74081e9 −0.197694
\(695\) −2.86028e9 −0.323193
\(696\) −1.34690e9 −0.151427
\(697\) −1.28059e10 −1.43251
\(698\) 2.99117e9 0.332926
\(699\) 8.68008e9 0.961289
\(700\) −6.23520e8 −0.0687080
\(701\) 1.42971e10 1.56760 0.783798 0.621015i \(-0.213280\pi\)
0.783798 + 0.621015i \(0.213280\pi\)
\(702\) −9.51556e8 −0.103814
\(703\) −1.01538e10 −1.10226
\(704\) 3.50306e9 0.378394
\(705\) 4.04084e8 0.0434320
\(706\) −4.32499e9 −0.462561
\(707\) −6.40069e9 −0.681175
\(708\) −1.28666e9 −0.136253
\(709\) 4.66391e9 0.491460 0.245730 0.969338i \(-0.420972\pi\)
0.245730 + 0.969338i \(0.420972\pi\)
\(710\) −9.28795e8 −0.0973903
\(711\) 1.19050e9 0.124219
\(712\) 1.69845e9 0.176349
\(713\) 7.07496e9 0.730989
\(714\) −6.17804e8 −0.0635195
\(715\) 5.98151e9 0.611984
\(716\) −4.39659e9 −0.447631
\(717\) 7.96705e9 0.807199
\(718\) −5.68694e9 −0.573380
\(719\) 4.82173e9 0.483784 0.241892 0.970303i \(-0.422232\pi\)
0.241892 + 0.970303i \(0.422232\pi\)
\(720\) 1.09744e9 0.109576
\(721\) 1.82055e9 0.180896
\(722\) −1.90400e9 −0.188273
\(723\) −2.72394e9 −0.268048
\(724\) 1.05793e9 0.103603
\(725\) 9.34289e8 0.0910539
\(726\) −7.43521e8 −0.0721132
\(727\) 2.17621e9 0.210054 0.105027 0.994469i \(-0.466507\pi\)
0.105027 + 0.994469i \(0.466507\pi\)
\(728\) −4.05168e9 −0.389203
\(729\) 3.87420e8 0.0370370
\(730\) −1.89461e9 −0.180256
\(731\) 1.51463e10 1.43416
\(732\) 4.46916e9 0.421150
\(733\) 4.65228e9 0.436317 0.218158 0.975913i \(-0.429995\pi\)
0.218158 + 0.975913i \(0.429995\pi\)
\(734\) −5.72166e9 −0.534055
\(735\) −3.97065e8 −0.0368856
\(736\) −1.53100e10 −1.41548
\(737\) −1.42633e10 −1.31245
\(738\) −1.63144e9 −0.149408
\(739\) 4.05338e8 0.0369456 0.0184728 0.999829i \(-0.494120\pi\)
0.0184728 + 0.999829i \(0.494120\pi\)
\(740\) −3.87581e9 −0.351603
\(741\) −1.45648e10 −1.31505
\(742\) −2.62454e8 −0.0235852
\(743\) 1.08140e10 0.967223 0.483611 0.875283i \(-0.339325\pi\)
0.483611 + 0.875283i \(0.339325\pi\)
\(744\) −1.53961e9 −0.137059
\(745\) −8.98588e9 −0.796184
\(746\) −5.04282e9 −0.444721
\(747\) −2.55079e9 −0.223899
\(748\) −7.68222e9 −0.671168
\(749\) 5.99626e9 0.521428
\(750\) 1.80055e8 0.0155844
\(751\) −1.42070e10 −1.22394 −0.611972 0.790880i \(-0.709623\pi\)
−0.611972 + 0.790880i \(0.709623\pi\)
\(752\) −1.44192e9 −0.123646
\(753\) 2.51198e9 0.214405
\(754\) 2.89071e9 0.245587
\(755\) 7.99967e9 0.676485
\(756\) 7.85456e8 0.0661143
\(757\) 3.78427e9 0.317064 0.158532 0.987354i \(-0.449324\pi\)
0.158532 + 0.987354i \(0.449324\pi\)
\(758\) 5.60911e9 0.467791
\(759\) 9.44538e9 0.784103
\(760\) −3.97311e9 −0.328309
\(761\) 1.01511e10 0.834966 0.417483 0.908685i \(-0.362912\pi\)
0.417483 + 0.908685i \(0.362912\pi\)
\(762\) 1.88157e8 0.0154056
\(763\) 1.60414e8 0.0130740
\(764\) 6.22314e9 0.504874
\(765\) −1.78040e9 −0.143782
\(766\) 6.47993e9 0.520919
\(767\) 5.79954e9 0.464098
\(768\) −1.51063e9 −0.120336
\(769\) −1.31076e10 −1.03939 −0.519696 0.854351i \(-0.673955\pi\)
−0.519696 + 0.854351i \(0.673955\pi\)
\(770\) 4.94750e8 0.0390543
\(771\) −9.84378e9 −0.773520
\(772\) 9.59751e9 0.750755
\(773\) −1.40370e10 −1.09307 −0.546533 0.837438i \(-0.684053\pi\)
−0.546533 + 0.837438i \(0.684053\pi\)
\(774\) 1.92959e9 0.149580
\(775\) 1.06797e9 0.0824142
\(776\) 1.05994e10 0.814265
\(777\) −2.46817e9 −0.188756
\(778\) −3.59985e9 −0.274066
\(779\) −2.49713e10 −1.89261
\(780\) −5.55958e9 −0.419479
\(781\) −7.35474e9 −0.552445
\(782\) 6.90524e9 0.516363
\(783\) −1.17694e9 −0.0876166
\(784\) 1.41687e9 0.105009
\(785\) 7.50622e8 0.0553831
\(786\) −8.42905e8 −0.0619155
\(787\) −3.87288e9 −0.283219 −0.141610 0.989923i \(-0.545228\pi\)
−0.141610 + 0.989923i \(0.545228\pi\)
\(788\) −8.78764e9 −0.639780
\(789\) −3.01409e9 −0.218467
\(790\) −6.96987e8 −0.0502956
\(791\) −4.99145e9 −0.358599
\(792\) −2.05545e9 −0.147018
\(793\) −2.01445e10 −1.43450
\(794\) −1.01355e9 −0.0718578
\(795\) −7.56346e8 −0.0533870
\(796\) 1.22794e8 0.00862942
\(797\) −8.56688e9 −0.599403 −0.299701 0.954033i \(-0.596887\pi\)
−0.299701 + 0.954033i \(0.596887\pi\)
\(798\) −1.20470e9 −0.0839210
\(799\) 2.33926e9 0.162243
\(800\) −2.31106e9 −0.159586
\(801\) 1.48412e9 0.102037
\(802\) 2.66302e9 0.182290
\(803\) −1.50026e10 −1.02250
\(804\) 1.32572e10 0.899611
\(805\) 4.43803e9 0.299850
\(806\) 3.30431e9 0.222284
\(807\) 4.14170e9 0.277410
\(808\) −1.55684e10 −1.03825
\(809\) −1.49503e10 −0.992731 −0.496365 0.868114i \(-0.665332\pi\)
−0.496365 + 0.868114i \(0.665332\pi\)
\(810\) −2.26818e8 −0.0149961
\(811\) −8.61940e9 −0.567419 −0.283710 0.958910i \(-0.591565\pi\)
−0.283710 + 0.958910i \(0.591565\pi\)
\(812\) −2.38612e9 −0.156403
\(813\) 1.12625e10 0.735049
\(814\) 3.07538e9 0.199854
\(815\) 1.22878e10 0.795104
\(816\) 6.35313e9 0.409329
\(817\) 2.95350e10 1.89478
\(818\) −2.98810e9 −0.190879
\(819\) −3.54041e9 −0.225195
\(820\) −9.53186e9 −0.603711
\(821\) 2.53165e10 1.59663 0.798313 0.602243i \(-0.205726\pi\)
0.798313 + 0.602243i \(0.205726\pi\)
\(822\) 3.34390e9 0.209992
\(823\) 1.51790e9 0.0949171 0.0474586 0.998873i \(-0.484888\pi\)
0.0474586 + 0.998873i \(0.484888\pi\)
\(824\) 4.42811e9 0.275723
\(825\) 1.42578e9 0.0884025
\(826\) 4.79699e8 0.0296168
\(827\) 1.68322e10 1.03484 0.517418 0.855733i \(-0.326893\pi\)
0.517418 + 0.855733i \(0.326893\pi\)
\(828\) −8.77910e9 −0.537457
\(829\) −1.54259e10 −0.940396 −0.470198 0.882561i \(-0.655818\pi\)
−0.470198 + 0.882561i \(0.655818\pi\)
\(830\) 1.49338e9 0.0906559
\(831\) 1.09534e10 0.662135
\(832\) 1.46761e10 0.883442
\(833\) −2.29863e9 −0.137788
\(834\) −2.10948e9 −0.125920
\(835\) 7.25988e9 0.431546
\(836\) −1.49802e10 −0.886737
\(837\) −1.34533e9 −0.0793031
\(838\) −3.65536e9 −0.214574
\(839\) −1.06044e9 −0.0619894 −0.0309947 0.999520i \(-0.509868\pi\)
−0.0309947 + 0.999520i \(0.509868\pi\)
\(840\) −9.65780e8 −0.0562212
\(841\) −1.36745e10 −0.792730
\(842\) −8.67880e9 −0.501034
\(843\) 4.07089e9 0.234041
\(844\) −1.33181e9 −0.0762509
\(845\) 1.72159e10 0.981595
\(846\) 2.98015e8 0.0169216
\(847\) −2.76638e9 −0.156430
\(848\) 2.69892e9 0.151986
\(849\) 9.97911e8 0.0559648
\(850\) 1.04235e9 0.0582165
\(851\) 2.75869e10 1.53444
\(852\) 6.83594e9 0.378669
\(853\) 3.03756e10 1.67573 0.837864 0.545878i \(-0.183804\pi\)
0.837864 + 0.545878i \(0.183804\pi\)
\(854\) −1.66622e9 −0.0915438
\(855\) −3.47175e9 −0.189962
\(856\) 1.45847e10 0.794764
\(857\) −1.27509e10 −0.692001 −0.346001 0.938234i \(-0.612461\pi\)
−0.346001 + 0.938234i \(0.612461\pi\)
\(858\) 4.41140e9 0.238436
\(859\) 1.08205e10 0.582467 0.291233 0.956652i \(-0.405934\pi\)
0.291233 + 0.956652i \(0.405934\pi\)
\(860\) 1.12739e10 0.604405
\(861\) −6.07000e9 −0.324099
\(862\) −3.04476e9 −0.161912
\(863\) 6.05794e9 0.320839 0.160419 0.987049i \(-0.448715\pi\)
0.160419 + 0.987049i \(0.448715\pi\)
\(864\) 2.91127e9 0.153562
\(865\) −2.89682e9 −0.152183
\(866\) 3.54981e9 0.185734
\(867\) 7.72313e8 0.0402464
\(868\) −2.72752e9 −0.141563
\(869\) −5.51915e9 −0.285301
\(870\) 6.89044e8 0.0354756
\(871\) −5.97560e10 −3.06421
\(872\) 3.90175e8 0.0199274
\(873\) 9.26188e9 0.471139
\(874\) 1.34651e10 0.682211
\(875\) 6.69922e8 0.0338062
\(876\) 1.39443e10 0.700863
\(877\) 5.64172e9 0.282431 0.141216 0.989979i \(-0.454899\pi\)
0.141216 + 0.989979i \(0.454899\pi\)
\(878\) 5.32407e9 0.265468
\(879\) 1.62115e10 0.805123
\(880\) −5.08772e9 −0.251671
\(881\) −1.41128e9 −0.0695339 −0.0347669 0.999395i \(-0.511069\pi\)
−0.0347669 + 0.999395i \(0.511069\pi\)
\(882\) −2.92838e8 −0.0143710
\(883\) 1.83461e10 0.896773 0.448386 0.893840i \(-0.351999\pi\)
0.448386 + 0.893840i \(0.351999\pi\)
\(884\) −3.21846e10 −1.56699
\(885\) 1.38241e9 0.0670401
\(886\) 9.55923e8 0.0461748
\(887\) 6.77821e9 0.326124 0.163062 0.986616i \(-0.447863\pi\)
0.163062 + 0.986616i \(0.447863\pi\)
\(888\) −6.00330e9 −0.287703
\(889\) 7.00065e8 0.0334182
\(890\) −8.68889e8 −0.0413142
\(891\) −1.79608e9 −0.0850654
\(892\) −3.27617e10 −1.54557
\(893\) 4.56151e9 0.214353
\(894\) −6.62714e9 −0.310202
\(895\) 4.72378e9 0.220246
\(896\) 7.70764e9 0.357967
\(897\) 3.95714e10 1.83066
\(898\) −2.11163e9 −0.0973085
\(899\) 4.08695e9 0.187603
\(900\) −1.32521e9 −0.0605948
\(901\) −4.37852e9 −0.199430
\(902\) 7.56332e9 0.343155
\(903\) 7.17934e9 0.324472
\(904\) −1.21407e10 −0.546579
\(905\) −1.13666e9 −0.0509752
\(906\) 5.89981e9 0.263566
\(907\) −3.32813e9 −0.148107 −0.0740535 0.997254i \(-0.523594\pi\)
−0.0740535 + 0.997254i \(0.523594\pi\)
\(908\) 4.65718e9 0.206454
\(909\) −1.36038e10 −0.600740
\(910\) 2.07275e9 0.0911806
\(911\) 7.48533e9 0.328017 0.164009 0.986459i \(-0.447558\pi\)
0.164009 + 0.986459i \(0.447558\pi\)
\(912\) 1.23885e10 0.540799
\(913\) 1.18254e10 0.514244
\(914\) −3.09797e9 −0.134204
\(915\) −4.80174e9 −0.207217
\(916\) 1.44953e10 0.623149
\(917\) −3.13615e9 −0.134309
\(918\) −1.31306e9 −0.0560189
\(919\) 3.84326e10 1.63341 0.816705 0.577056i \(-0.195799\pi\)
0.816705 + 0.577056i \(0.195799\pi\)
\(920\) 1.07946e10 0.457034
\(921\) −2.45400e10 −1.03506
\(922\) 8.25354e9 0.346802
\(923\) −3.08127e10 −1.28980
\(924\) −3.64136e9 −0.151849
\(925\) 4.16425e9 0.172998
\(926\) 1.07326e9 0.0444189
\(927\) 3.86933e9 0.159535
\(928\) −8.84406e9 −0.363274
\(929\) 2.74203e10 1.12206 0.561032 0.827794i \(-0.310404\pi\)
0.561032 + 0.827794i \(0.310404\pi\)
\(930\) 7.87633e8 0.0321095
\(931\) −4.48228e9 −0.182043
\(932\) 3.74022e10 1.51336
\(933\) −1.74383e10 −0.702939
\(934\) −1.61955e8 −0.00650400
\(935\) 8.25392e9 0.330233
\(936\) −8.61130e9 −0.343244
\(937\) −2.33959e9 −0.0929077 −0.0464539 0.998920i \(-0.514792\pi\)
−0.0464539 + 0.998920i \(0.514792\pi\)
\(938\) −4.94261e9 −0.195545
\(939\) 2.42083e10 0.954189
\(940\) 1.74118e9 0.0683750
\(941\) −4.04198e10 −1.58136 −0.790680 0.612230i \(-0.790273\pi\)
−0.790680 + 0.612230i \(0.790273\pi\)
\(942\) 5.53588e8 0.0215779
\(943\) 6.78449e10 2.63467
\(944\) −4.93294e9 −0.190855
\(945\) −8.43909e8 −0.0325300
\(946\) −8.94557e9 −0.343549
\(947\) 2.68103e10 1.02583 0.512917 0.858438i \(-0.328565\pi\)
0.512917 + 0.858438i \(0.328565\pi\)
\(948\) 5.12983e9 0.195557
\(949\) −6.28533e10 −2.38724
\(950\) 2.03256e9 0.0769148
\(951\) −2.28770e10 −0.862514
\(952\) −5.59094e9 −0.210018
\(953\) −6.72263e9 −0.251602 −0.125801 0.992056i \(-0.540150\pi\)
−0.125801 + 0.992056i \(0.540150\pi\)
\(954\) −5.57810e8 −0.0208002
\(955\) −6.68625e9 −0.248411
\(956\) 3.43297e10 1.27077
\(957\) 5.45626e9 0.201235
\(958\) 7.12902e9 0.261970
\(959\) 1.24415e10 0.455520
\(960\) 3.49826e9 0.127615
\(961\) −2.28409e10 −0.830198
\(962\) 1.28843e10 0.466602
\(963\) 1.27442e10 0.459856
\(964\) −1.17373e10 −0.421988
\(965\) −1.03117e10 −0.369391
\(966\) 3.27307e9 0.116825
\(967\) 2.39023e10 0.850055 0.425027 0.905180i \(-0.360264\pi\)
0.425027 + 0.905180i \(0.360264\pi\)
\(968\) −6.72864e9 −0.238431
\(969\) −2.00981e10 −0.709614
\(970\) −5.42242e9 −0.190762
\(971\) 1.65771e10 0.581088 0.290544 0.956862i \(-0.406164\pi\)
0.290544 + 0.956862i \(0.406164\pi\)
\(972\) 1.66938e9 0.0583074
\(973\) −7.84862e9 −0.273148
\(974\) 7.48681e9 0.259621
\(975\) 5.97331e9 0.206395
\(976\) 1.71344e10 0.589921
\(977\) −2.03177e10 −0.697018 −0.348509 0.937305i \(-0.613312\pi\)
−0.348509 + 0.937305i \(0.613312\pi\)
\(978\) 9.06236e9 0.309781
\(979\) −6.88038e9 −0.234354
\(980\) −1.71094e9 −0.0580689
\(981\) 3.40939e8 0.0115302
\(982\) −7.47841e9 −0.252011
\(983\) 4.78793e10 1.60772 0.803861 0.594818i \(-0.202776\pi\)
0.803861 + 0.594818i \(0.202776\pi\)
\(984\) −1.47640e10 −0.493994
\(985\) 9.44160e9 0.314788
\(986\) 3.98891e9 0.132521
\(987\) 1.10881e9 0.0367067
\(988\) −6.27594e10 −2.07028
\(989\) −8.02440e10 −2.63770
\(990\) 1.05152e9 0.0344426
\(991\) −1.99787e10 −0.652092 −0.326046 0.945354i \(-0.605716\pi\)
−0.326046 + 0.945354i \(0.605716\pi\)
\(992\) −1.01095e10 −0.328804
\(993\) −2.00448e10 −0.649650
\(994\) −2.54861e9 −0.0823098
\(995\) −1.31932e8 −0.00424590
\(996\) −1.09913e10 −0.352484
\(997\) 4.49634e10 1.43690 0.718450 0.695579i \(-0.244852\pi\)
0.718450 + 0.695579i \(0.244852\pi\)
\(998\) −2.24235e9 −0.0714080
\(999\) −5.24575e9 −0.166467
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.8.a.h.1.2 4
3.2 odd 2 315.8.a.g.1.3 4
5.4 even 2 525.8.a.i.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.8.a.h.1.2 4 1.1 even 1 trivial
315.8.a.g.1.3 4 3.2 odd 2
525.8.a.i.1.3 4 5.4 even 2