Properties

Label 105.8
Level 105
Weight 8
Dimension 1740
Nonzero newspaces 12
Sturm bound 6144
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(6144\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(105))\).

Total New Old
Modular forms 2784 1796 988
Cusp forms 2592 1740 852
Eisenstein series 192 56 136

Trace form

\( 1740 q + 56 q^{2} - 108 q^{3} - 636 q^{4} + 882 q^{5} - 144 q^{6} - 2292 q^{7} - 2436 q^{8} + 8892 q^{9} - 8960 q^{10} - 10900 q^{11} + 25596 q^{12} + 5692 q^{13} + 113064 q^{14} - 69564 q^{15} - 268468 q^{16}+ \cdots - 33422016 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(105))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
105.8.a \(\chi_{105}(1, \cdot)\) 105.8.a.a 1 1
105.8.a.b 1
105.8.a.c 2
105.8.a.d 4
105.8.a.e 4
105.8.a.f 4
105.8.a.g 4
105.8.a.h 4
105.8.a.i 4
105.8.b \(\chi_{105}(41, \cdot)\) 105.8.b.a 38 1
105.8.b.b 38
105.8.d \(\chi_{105}(64, \cdot)\) 105.8.d.a 18 1
105.8.d.b 22
105.8.g \(\chi_{105}(104, \cdot)\) n/a 108 1
105.8.i \(\chi_{105}(16, \cdot)\) 105.8.i.a 18 2
105.8.i.b 18
105.8.i.c 20
105.8.i.d 20
105.8.j \(\chi_{105}(8, \cdot)\) n/a 168 2
105.8.m \(\chi_{105}(13, \cdot)\) n/a 112 2
105.8.p \(\chi_{105}(59, \cdot)\) n/a 216 2
105.8.q \(\chi_{105}(4, \cdot)\) n/a 112 2
105.8.s \(\chi_{105}(26, \cdot)\) n/a 148 2
105.8.u \(\chi_{105}(52, \cdot)\) n/a 224 4
105.8.x \(\chi_{105}(2, \cdot)\) n/a 432 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(105))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(105)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)