Defining parameters
Level: | \( N \) | = | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(6144\) | ||
Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(105))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2784 | 1796 | 988 |
Cusp forms | 2592 | 1740 | 852 |
Eisenstein series | 192 | 56 | 136 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(105))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
105.8.a | \(\chi_{105}(1, \cdot)\) | 105.8.a.a | 1 | 1 |
105.8.a.b | 1 | |||
105.8.a.c | 2 | |||
105.8.a.d | 4 | |||
105.8.a.e | 4 | |||
105.8.a.f | 4 | |||
105.8.a.g | 4 | |||
105.8.a.h | 4 | |||
105.8.a.i | 4 | |||
105.8.b | \(\chi_{105}(41, \cdot)\) | 105.8.b.a | 38 | 1 |
105.8.b.b | 38 | |||
105.8.d | \(\chi_{105}(64, \cdot)\) | 105.8.d.a | 18 | 1 |
105.8.d.b | 22 | |||
105.8.g | \(\chi_{105}(104, \cdot)\) | n/a | 108 | 1 |
105.8.i | \(\chi_{105}(16, \cdot)\) | 105.8.i.a | 18 | 2 |
105.8.i.b | 18 | |||
105.8.i.c | 20 | |||
105.8.i.d | 20 | |||
105.8.j | \(\chi_{105}(8, \cdot)\) | n/a | 168 | 2 |
105.8.m | \(\chi_{105}(13, \cdot)\) | n/a | 112 | 2 |
105.8.p | \(\chi_{105}(59, \cdot)\) | n/a | 216 | 2 |
105.8.q | \(\chi_{105}(4, \cdot)\) | n/a | 112 | 2 |
105.8.s | \(\chi_{105}(26, \cdot)\) | n/a | 148 | 2 |
105.8.u | \(\chi_{105}(52, \cdot)\) | n/a | 224 | 4 |
105.8.x | \(\chi_{105}(2, \cdot)\) | n/a | 432 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(105))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(105)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)