Properties

Label 105.4.s.a.26.9
Level $105$
Weight $4$
Character 105.26
Analytic conductor $6.195$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.9
Character \(\chi\) \(=\) 105.26
Dual form 105.4.s.a.101.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.155491 + 0.0897728i) q^{2} +(5.17065 + 0.514148i) q^{3} +(-3.98388 - 6.90029i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(0.757834 + 0.544130i) q^{6} +(18.1774 + 3.54688i) q^{7} -2.86694i q^{8} +(26.4713 + 5.31696i) q^{9} +O(q^{10})\) \(q+(0.155491 + 0.0897728i) q^{2} +(5.17065 + 0.514148i) q^{3} +(-3.98388 - 6.90029i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(0.757834 + 0.544130i) q^{6} +(18.1774 + 3.54688i) q^{7} -2.86694i q^{8} +(26.4713 + 5.31696i) q^{9} +(-0.777456 + 0.448864i) q^{10} +(42.8268 - 24.7261i) q^{11} +(-17.0515 - 37.7273i) q^{12} -62.5979i q^{13} +(2.50802 + 2.18335i) q^{14} +(-15.1530 + 21.1042i) q^{15} +(-31.6137 + 54.7565i) q^{16} +(19.4432 + 33.6766i) q^{17} +(3.63873 + 3.20314i) q^{18} +(14.1784 + 8.18591i) q^{19} +39.8388 q^{20} +(92.1657 + 27.6856i) q^{21} +8.87892 q^{22} +(-125.793 - 72.6264i) q^{23} +(1.47403 - 14.8240i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(5.61959 - 9.73341i) q^{26} +(134.140 + 41.1023i) q^{27} +(-47.9423 - 139.560i) q^{28} +246.319i q^{29} +(-4.25074 + 1.92119i) q^{30} +(128.320 - 74.0854i) q^{31} +(-29.6941 + 17.1439i) q^{32} +(234.156 - 105.831i) q^{33} +6.98188i q^{34} +(-60.8021 + 69.8435i) q^{35} +(-68.7700 - 203.842i) q^{36} +(-174.170 + 301.671i) q^{37} +(1.46974 + 2.54567i) q^{38} +(32.1845 - 323.672i) q^{39} +(12.4142 + 7.16736i) q^{40} -429.026 q^{41} +(11.8455 + 12.5788i) q^{42} +73.5626 q^{43} +(-341.234 - 197.012i) q^{44} +(-89.2014 + 101.332i) q^{45} +(-13.0398 - 22.5855i) q^{46} +(-124.129 + 214.998i) q^{47} +(-191.616 + 266.873i) q^{48} +(317.839 + 128.946i) q^{49} -4.48864i q^{50} +(83.2192 + 184.127i) q^{51} +(-431.943 + 249.382i) q^{52} +(-263.502 + 152.133i) q^{53} +(17.1677 + 18.4332i) q^{54} +247.261i q^{55} +(10.1687 - 52.1137i) q^{56} +(69.1029 + 49.6163i) q^{57} +(-22.1128 + 38.3005i) q^{58} +(-336.226 - 582.361i) q^{59} +(205.993 + 20.4830i) q^{60} +(-279.413 - 161.319i) q^{61} +26.6034 q^{62} +(462.322 + 190.539i) q^{63} +499.663 q^{64} +(271.057 + 156.495i) q^{65} +(45.9098 + 4.56508i) q^{66} +(-103.542 - 179.340i) q^{67} +(154.919 - 268.327i) q^{68} +(-613.089 - 440.202i) q^{69} +(-15.7242 + 5.40166i) q^{70} +717.843i q^{71} +(15.2434 - 75.8917i) q^{72} +(84.3846 - 48.7195i) q^{73} +(-54.1638 + 31.2715i) q^{74} +(-53.5015 - 118.375i) q^{75} -130.447i q^{76} +(866.183 - 297.555i) q^{77} +(34.0614 - 47.4388i) q^{78} +(450.009 - 779.438i) q^{79} +(-158.068 - 273.782i) q^{80} +(672.460 + 281.494i) q^{81} +(-66.7098 - 38.5149i) q^{82} +90.9926 q^{83} +(-176.139 - 746.265i) q^{84} -194.432 q^{85} +(11.4383 + 6.60392i) q^{86} +(-126.645 + 1273.63i) q^{87} +(-70.8883 - 122.782i) q^{88} +(328.502 - 568.983i) q^{89} +(-22.9669 + 7.74832i) q^{90} +(222.027 - 1137.87i) q^{91} +1157.34i q^{92} +(701.588 - 317.095i) q^{93} +(-38.6020 + 22.2869i) q^{94} +(-70.8920 + 40.9295i) q^{95} +(-162.352 + 73.3779i) q^{96} +1465.01i q^{97} +(37.8453 + 48.5834i) q^{98} +(1265.15 - 426.823i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + O(q^{10}) \) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + 36q^{11} + 246q^{12} + 18q^{14} + 20q^{15} - 376q^{16} - 72q^{17} - 442q^{18} - 198q^{19} - 640q^{20} - 218q^{21} + 204q^{22} + 72q^{23} - 50q^{24} - 400q^{25} - 312q^{26} + 508q^{27} + 350q^{28} + 40q^{30} + 510q^{31} + 810q^{32} + 290q^{33} - 70q^{35} - 612q^{36} - 658q^{37} - 192q^{38} - 648q^{39} - 1404q^{41} + 1892q^{42} + 332q^{43} + 2034q^{44} - 490q^{45} - 468q^{46} + 408q^{47} + 2810q^{48} + 980q^{49} - 888q^{51} + 3378q^{52} + 1152q^{53} + 2714q^{54} - 3354q^{56} - 816q^{57} - 1080q^{58} - 48q^{59} - 420q^{60} - 1662q^{61} - 2076q^{62} + 874q^{63} - 1952q^{64} + 870q^{65} - 1892q^{66} - 1298q^{67} + 1182q^{68} + 2450q^{69} - 450q^{70} - 2708q^{72} + 378q^{73} + 2898q^{74} - 50q^{75} - 3528q^{77} - 1896q^{78} - 326q^{79} - 1880q^{80} - 3308q^{81} - 2916q^{82} - 1536q^{83} + 1380q^{84} + 720q^{85} + 5202q^{86} - 1090q^{87} + 1668q^{88} - 1590q^{89} + 910q^{90} + 2082q^{91} - 4950q^{93} - 1152q^{94} + 990q^{95} + 7416q^{96} - 7830q^{98} + 3128q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.155491 + 0.0897728i 0.0549744 + 0.0317395i 0.527235 0.849719i \(-0.323229\pi\)
−0.472261 + 0.881459i \(0.656562\pi\)
\(3\) 5.17065 + 0.514148i 0.995093 + 0.0989478i
\(4\) −3.98388 6.90029i −0.497985 0.862536i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0.757834 + 0.544130i 0.0515641 + 0.0370233i
\(7\) 18.1774 + 3.54688i 0.981490 + 0.191514i
\(8\) 2.86694i 0.126702i
\(9\) 26.4713 + 5.31696i 0.980419 + 0.196924i
\(10\) −0.777456 + 0.448864i −0.0245853 + 0.0141943i
\(11\) 42.8268 24.7261i 1.17389 0.677745i 0.219296 0.975658i \(-0.429624\pi\)
0.954593 + 0.297914i \(0.0962907\pi\)
\(12\) −17.0515 37.7273i −0.410195 0.907577i
\(13\) 62.5979i 1.33550i −0.744385 0.667751i \(-0.767257\pi\)
0.744385 0.667751i \(-0.232743\pi\)
\(14\) 2.50802 + 2.18335i 0.0478783 + 0.0416803i
\(15\) −15.1530 + 21.1042i −0.260832 + 0.363272i
\(16\) −31.6137 + 54.7565i −0.493964 + 0.855570i
\(17\) 19.4432 + 33.6766i 0.277392 + 0.480457i 0.970736 0.240150i \(-0.0771966\pi\)
−0.693344 + 0.720607i \(0.743863\pi\)
\(18\) 3.63873 + 3.20314i 0.0476477 + 0.0419438i
\(19\) 14.1784 + 8.18591i 0.171197 + 0.0988408i 0.583150 0.812364i \(-0.301820\pi\)
−0.411953 + 0.911205i \(0.635153\pi\)
\(20\) 39.8388 0.445412
\(21\) 92.1657 + 27.6856i 0.957724 + 0.287690i
\(22\) 8.87892 0.0860451
\(23\) −125.793 72.6264i −1.14042 0.658420i −0.193883 0.981025i \(-0.562108\pi\)
−0.946534 + 0.322605i \(0.895442\pi\)
\(24\) 1.47403 14.8240i 0.0125369 0.126080i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 5.61959 9.73341i 0.0423882 0.0734184i
\(27\) 134.140 + 41.1023i 0.956122 + 0.292968i
\(28\) −47.9423 139.560i −0.323580 0.941941i
\(29\) 246.319i 1.57725i 0.614872 + 0.788627i \(0.289208\pi\)
−0.614872 + 0.788627i \(0.710792\pi\)
\(30\) −4.25074 + 1.92119i −0.0258692 + 0.0116920i
\(31\) 128.320 74.0854i 0.743449 0.429230i −0.0798733 0.996805i \(-0.525452\pi\)
0.823322 + 0.567575i \(0.192118\pi\)
\(32\) −29.6941 + 17.1439i −0.164038 + 0.0947074i
\(33\) 234.156 105.831i 1.23519 0.558265i
\(34\) 6.98188i 0.0352171i
\(35\) −60.8021 + 69.8435i −0.293641 + 0.337306i
\(36\) −68.7700 203.842i −0.318380 0.943712i
\(37\) −174.170 + 301.671i −0.773875 + 1.34039i 0.161549 + 0.986865i \(0.448351\pi\)
−0.935424 + 0.353527i \(0.884982\pi\)
\(38\) 1.46974 + 2.54567i 0.00627432 + 0.0108674i
\(39\) 32.1845 323.672i 0.132145 1.32895i
\(40\) 12.4142 + 7.16736i 0.0490715 + 0.0283315i
\(41\) −429.026 −1.63421 −0.817106 0.576488i \(-0.804423\pi\)
−0.817106 + 0.576488i \(0.804423\pi\)
\(42\) 11.8455 + 12.5788i 0.0435192 + 0.0462132i
\(43\) 73.5626 0.260888 0.130444 0.991456i \(-0.458360\pi\)
0.130444 + 0.991456i \(0.458360\pi\)
\(44\) −341.234 197.012i −1.16916 0.675014i
\(45\) −89.2014 + 101.332i −0.295497 + 0.335681i
\(46\) −13.0398 22.5855i −0.0417958 0.0723925i
\(47\) −124.129 + 214.998i −0.385236 + 0.667249i −0.991802 0.127785i \(-0.959213\pi\)
0.606566 + 0.795033i \(0.292547\pi\)
\(48\) −191.616 + 266.873i −0.576196 + 0.802495i
\(49\) 317.839 + 128.946i 0.926645 + 0.375937i
\(50\) 4.48864i 0.0126958i
\(51\) 83.2192 + 184.127i 0.228491 + 0.505547i
\(52\) −431.943 + 249.382i −1.15192 + 0.665060i
\(53\) −263.502 + 152.133i −0.682919 + 0.394284i −0.800954 0.598726i \(-0.795674\pi\)
0.118035 + 0.993009i \(0.462341\pi\)
\(54\) 17.1677 + 18.4332i 0.0432636 + 0.0464526i
\(55\) 247.261i 0.606193i
\(56\) 10.1687 52.1137i 0.0242652 0.124357i
\(57\) 69.1029 + 49.6163i 0.160577 + 0.115295i
\(58\) −22.1128 + 38.3005i −0.0500612 + 0.0867086i
\(59\) −336.226 582.361i −0.741914 1.28503i −0.951623 0.307269i \(-0.900585\pi\)
0.209708 0.977764i \(-0.432749\pi\)
\(60\) 205.993 + 20.4830i 0.443226 + 0.0440725i
\(61\) −279.413 161.319i −0.586478 0.338603i 0.177226 0.984170i \(-0.443288\pi\)
−0.763704 + 0.645567i \(0.776621\pi\)
\(62\) 26.6034 0.0544942
\(63\) 462.322 + 190.539i 0.924557 + 0.381043i
\(64\) 499.663 0.975904
\(65\) 271.057 + 156.495i 0.517238 + 0.298627i
\(66\) 45.9098 + 4.56508i 0.0856229 + 0.00851397i
\(67\) −103.542 179.340i −0.188801 0.327013i 0.756050 0.654514i \(-0.227127\pi\)
−0.944851 + 0.327501i \(0.893793\pi\)
\(68\) 154.919 268.327i 0.276274 0.478521i
\(69\) −613.089 440.202i −1.06967 0.768030i
\(70\) −15.7242 + 5.40166i −0.0268486 + 0.00922318i
\(71\) 717.843i 1.19989i 0.800041 + 0.599945i \(0.204811\pi\)
−0.800041 + 0.599945i \(0.795189\pi\)
\(72\) 15.2434 75.8917i 0.0249507 0.124221i
\(73\) 84.3846 48.7195i 0.135294 0.0781121i −0.430825 0.902435i \(-0.641777\pi\)
0.566119 + 0.824323i \(0.308444\pi\)
\(74\) −54.1638 + 31.2715i −0.0850867 + 0.0491248i
\(75\) −53.5015 118.375i −0.0823710 0.182250i
\(76\) 130.447i 0.196885i
\(77\) 866.183 297.555i 1.28196 0.440384i
\(78\) 34.0614 47.4388i 0.0494447 0.0688639i
\(79\) 450.009 779.438i 0.640885 1.11005i −0.344350 0.938841i \(-0.611901\pi\)
0.985236 0.171205i \(-0.0547659\pi\)
\(80\) −158.068 273.782i −0.220907 0.382623i
\(81\) 672.460 + 281.494i 0.922442 + 0.386137i
\(82\) −66.7098 38.5149i −0.0898398 0.0518691i
\(83\) 90.9926 0.120334 0.0601671 0.998188i \(-0.480837\pi\)
0.0601671 + 0.998188i \(0.480837\pi\)
\(84\) −176.139 746.265i −0.228789 0.969336i
\(85\) −194.432 −0.248107
\(86\) 11.4383 + 6.60392i 0.0143422 + 0.00828046i
\(87\) −126.645 + 1273.63i −0.156066 + 1.56951i
\(88\) −70.8883 122.782i −0.0858717 0.148734i
\(89\) 328.502 568.983i 0.391249 0.677663i −0.601366 0.798974i \(-0.705376\pi\)
0.992615 + 0.121311i \(0.0387098\pi\)
\(90\) −22.9669 + 7.74832i −0.0268991 + 0.00907494i
\(91\) 222.027 1137.87i 0.255767 1.31078i
\(92\) 1157.34i 1.31153i
\(93\) 701.588 317.095i 0.782272 0.353561i
\(94\) −38.6020 + 22.2869i −0.0423563 + 0.0244544i
\(95\) −70.8920 + 40.9295i −0.0765618 + 0.0442030i
\(96\) −162.352 + 73.3779i −0.172604 + 0.0780114i
\(97\) 1465.01i 1.53350i 0.641944 + 0.766751i \(0.278128\pi\)
−0.641944 + 0.766751i \(0.721872\pi\)
\(98\) 37.8453 + 48.5834i 0.0390097 + 0.0500782i
\(99\) 1265.15 426.823i 1.28437 0.433306i
\(100\) −99.5970 + 172.507i −0.0995970 + 0.172507i
\(101\) −104.142 180.380i −0.102600 0.177708i 0.810155 0.586215i \(-0.199383\pi\)
−0.912755 + 0.408508i \(0.866049\pi\)
\(102\) −3.58972 + 36.1009i −0.00348466 + 0.0350443i
\(103\) −523.755 302.390i −0.501040 0.289276i 0.228103 0.973637i \(-0.426748\pi\)
−0.729143 + 0.684361i \(0.760081\pi\)
\(104\) −179.465 −0.169211
\(105\) −350.296 + 329.875i −0.325575 + 0.306595i
\(106\) −54.6296 −0.0500575
\(107\) 261.396 + 150.917i 0.236169 + 0.136352i 0.613415 0.789761i \(-0.289795\pi\)
−0.377246 + 0.926113i \(0.623129\pi\)
\(108\) −250.781 1089.35i −0.223439 0.970583i
\(109\) 131.315 + 227.445i 0.115392 + 0.199865i 0.917936 0.396728i \(-0.129854\pi\)
−0.802544 + 0.596592i \(0.796521\pi\)
\(110\) −22.1973 + 38.4469i −0.0192403 + 0.0333251i
\(111\) −1055.68 + 1470.29i −0.902706 + 1.25724i
\(112\) −768.871 + 883.204i −0.648674 + 0.745133i
\(113\) 1023.70i 0.852224i 0.904670 + 0.426112i \(0.140117\pi\)
−0.904670 + 0.426112i \(0.859883\pi\)
\(114\) 6.29069 + 13.9185i 0.00516822 + 0.0114349i
\(115\) 628.963 363.132i 0.510010 0.294454i
\(116\) 1699.67 981.307i 1.36044 0.785449i
\(117\) 332.830 1657.05i 0.262993 1.30935i
\(118\) 120.736i 0.0941919i
\(119\) 233.981 + 681.117i 0.180243 + 0.524688i
\(120\) 60.5046 + 43.4427i 0.0460274 + 0.0330480i
\(121\) 557.258 965.199i 0.418676 0.725168i
\(122\) −28.9642 50.1674i −0.0214942 0.0372290i
\(123\) −2218.35 220.583i −1.62619 0.161702i
\(124\) −1022.42 590.295i −0.740453 0.427501i
\(125\) 125.000 0.0894427
\(126\) 54.7817 + 71.1311i 0.0387329 + 0.0502926i
\(127\) 910.225 0.635979 0.317990 0.948094i \(-0.396992\pi\)
0.317990 + 0.948094i \(0.396992\pi\)
\(128\) 315.246 + 182.007i 0.217688 + 0.125682i
\(129\) 380.367 + 37.8220i 0.259608 + 0.0258143i
\(130\) 28.0979 + 48.6671i 0.0189566 + 0.0328337i
\(131\) 326.214 565.020i 0.217569 0.376840i −0.736496 0.676442i \(-0.763521\pi\)
0.954064 + 0.299603i \(0.0968541\pi\)
\(132\) −1663.11 1194.12i −1.09663 0.787387i
\(133\) 228.693 + 199.088i 0.149099 + 0.129798i
\(134\) 37.1810i 0.0239698i
\(135\) −513.329 + 478.088i −0.327262 + 0.304795i
\(136\) 96.5488 55.7425i 0.0608750 0.0351462i
\(137\) 941.719 543.702i 0.587273 0.339062i −0.176745 0.984257i \(-0.556557\pi\)
0.764019 + 0.645194i \(0.223224\pi\)
\(138\) −55.8118 123.486i −0.0344276 0.0761728i
\(139\) 1430.27i 0.872759i 0.899763 + 0.436380i \(0.143739\pi\)
−0.899763 + 0.436380i \(0.856261\pi\)
\(140\) 724.168 + 141.304i 0.437167 + 0.0853023i
\(141\) −752.370 + 1047.86i −0.449368 + 0.625856i
\(142\) −64.4428 + 111.618i −0.0380839 + 0.0659633i
\(143\) −1547.80 2680.87i −0.905129 1.56773i
\(144\) −1127.99 + 1281.39i −0.652774 + 0.741544i
\(145\) −1066.59 615.798i −0.610868 0.352685i
\(146\) 17.4947 0.00991695
\(147\) 1577.14 + 830.154i 0.884900 + 0.465782i
\(148\) 2775.49 1.54151
\(149\) −1296.14 748.329i −0.712646 0.411446i 0.0993939 0.995048i \(-0.468310\pi\)
−0.812040 + 0.583602i \(0.801643\pi\)
\(150\) 2.30782 23.2092i 0.00125622 0.0126335i
\(151\) 744.256 + 1289.09i 0.401104 + 0.694732i 0.993859 0.110650i \(-0.0352933\pi\)
−0.592756 + 0.805382i \(0.701960\pi\)
\(152\) 23.4685 40.6487i 0.0125234 0.0216911i
\(153\) 335.629 + 994.842i 0.177347 + 0.525674i
\(154\) 161.396 + 31.4925i 0.0844524 + 0.0164788i
\(155\) 740.854i 0.383915i
\(156\) −2361.65 + 1067.39i −1.21207 + 0.547817i
\(157\) −1688.96 + 975.119i −0.858557 + 0.495688i −0.863529 0.504300i \(-0.831751\pi\)
0.00497209 + 0.999988i \(0.498417\pi\)
\(158\) 139.945 80.7971i 0.0704646 0.0406827i
\(159\) −1440.69 + 651.147i −0.718582 + 0.324775i
\(160\) 171.439i 0.0847089i
\(161\) −2028.99 1766.33i −0.993211 0.864638i
\(162\) 79.2911 + 104.138i 0.0384549 + 0.0505055i
\(163\) −1766.74 + 3060.09i −0.848970 + 1.47046i 0.0331589 + 0.999450i \(0.489443\pi\)
−0.882129 + 0.471009i \(0.843890\pi\)
\(164\) 1709.19 + 2960.41i 0.813813 + 1.40957i
\(165\) −127.129 + 1278.50i −0.0599815 + 0.603219i
\(166\) 14.1485 + 8.16866i 0.00661530 + 0.00381934i
\(167\) −2477.73 −1.14810 −0.574050 0.818820i \(-0.694629\pi\)
−0.574050 + 0.818820i \(0.694629\pi\)
\(168\) 79.3730 264.234i 0.0364509 0.121346i
\(169\) −1721.49 −0.783565
\(170\) −30.2324 17.4547i −0.0136395 0.00787479i
\(171\) 331.797 + 292.078i 0.148381 + 0.130618i
\(172\) −293.065 507.603i −0.129918 0.225025i
\(173\) 1431.13 2478.79i 0.628941 1.08936i −0.358824 0.933405i \(-0.616822\pi\)
0.987765 0.155952i \(-0.0498446\pi\)
\(174\) −134.030 + 186.669i −0.0583952 + 0.0813296i
\(175\) −150.426 437.889i −0.0649779 0.189150i
\(176\) 3126.73i 1.33913i
\(177\) −1439.09 3184.06i −0.611122 1.35214i
\(178\) 102.158 58.9812i 0.0430174 0.0248361i
\(179\) 2215.36 1279.04i 0.925048 0.534076i 0.0398057 0.999207i \(-0.487326\pi\)
0.885242 + 0.465131i \(0.153993\pi\)
\(180\) 1054.59 + 211.821i 0.436690 + 0.0877124i
\(181\) 2642.97i 1.08536i −0.839938 0.542682i \(-0.817409\pi\)
0.839938 0.542682i \(-0.182591\pi\)
\(182\) 136.673 156.997i 0.0556642 0.0639415i
\(183\) −1361.81 977.785i −0.550096 0.394972i
\(184\) −208.216 + 360.640i −0.0834232 + 0.144493i
\(185\) −870.851 1508.36i −0.346088 0.599441i
\(186\) 137.557 + 13.6781i 0.0542268 + 0.00539208i
\(187\) 1665.38 + 961.507i 0.651255 + 0.376002i
\(188\) 1978.06 0.767368
\(189\) 2292.54 + 1222.91i 0.882317 + 0.470656i
\(190\) −14.6974 −0.00561192
\(191\) 567.248 + 327.501i 0.214893 + 0.124069i 0.603584 0.797300i \(-0.293739\pi\)
−0.388690 + 0.921369i \(0.627072\pi\)
\(192\) 2583.58 + 256.900i 0.971115 + 0.0965635i
\(193\) −1101.20 1907.34i −0.410706 0.711363i 0.584261 0.811566i \(-0.301384\pi\)
−0.994967 + 0.100202i \(0.968051\pi\)
\(194\) −131.519 + 227.797i −0.0486726 + 0.0843034i
\(195\) 1321.08 + 948.543i 0.485151 + 0.348341i
\(196\) −376.467 2706.89i −0.137196 0.986476i
\(197\) 3419.48i 1.23669i −0.785907 0.618344i \(-0.787804\pi\)
0.785907 0.618344i \(-0.212196\pi\)
\(198\) 235.037 + 47.2089i 0.0843602 + 0.0169444i
\(199\) −1630.44 + 941.333i −0.580797 + 0.335323i −0.761450 0.648223i \(-0.775512\pi\)
0.180653 + 0.983547i \(0.442179\pi\)
\(200\) −62.0711 + 35.8368i −0.0219455 + 0.0126702i
\(201\) −443.172 980.541i −0.155517 0.344090i
\(202\) 37.3966i 0.0130258i
\(203\) −873.665 + 4477.46i −0.302065 + 1.54806i
\(204\) 938.990 1307.77i 0.322267 0.448836i
\(205\) 1072.57 1857.74i 0.365421 0.632927i
\(206\) −54.2928 94.0380i −0.0183629 0.0318055i
\(207\) −2943.74 2591.35i −0.988427 0.870103i
\(208\) 3427.64 + 1978.95i 1.14262 + 0.659689i
\(209\) 809.622 0.267955
\(210\) −84.0818 + 19.8456i −0.0276295 + 0.00652130i
\(211\) 305.379 0.0996359 0.0498179 0.998758i \(-0.484136\pi\)
0.0498179 + 0.998758i \(0.484136\pi\)
\(212\) 2099.52 + 1212.16i 0.680168 + 0.392695i
\(213\) −369.077 + 3711.71i −0.118727 + 1.19400i
\(214\) 27.0965 + 46.9325i 0.00865551 + 0.0149918i
\(215\) −183.906 + 318.535i −0.0583364 + 0.101042i
\(216\) 117.838 384.572i 0.0371197 0.121143i
\(217\) 2595.30 891.549i 0.811891 0.278905i
\(218\) 47.1542i 0.0146499i
\(219\) 461.372 208.525i 0.142359 0.0643417i
\(220\) 1706.17 985.058i 0.522863 0.301875i
\(221\) 2108.08 1217.10i 0.641651 0.370458i
\(222\) −296.140 + 133.846i −0.0895299 + 0.0404646i
\(223\) 731.199i 0.219573i −0.993955 0.109786i \(-0.964983\pi\)
0.993955 0.109786i \(-0.0350167\pi\)
\(224\) −600.569 + 206.311i −0.179139 + 0.0615389i
\(225\) −215.776 639.583i −0.0639336 0.189506i
\(226\) −91.9002 + 159.176i −0.0270492 + 0.0468505i
\(227\) −1018.34 1763.81i −0.297751 0.515719i 0.677870 0.735182i \(-0.262903\pi\)
−0.975621 + 0.219462i \(0.929570\pi\)
\(228\) 67.0689 674.495i 0.0194813 0.195919i
\(229\) −534.250 308.450i −0.154167 0.0890084i 0.420932 0.907092i \(-0.361703\pi\)
−0.575099 + 0.818084i \(0.695036\pi\)
\(230\) 130.398 0.0373833
\(231\) 4631.72 1093.21i 1.31924 0.311376i
\(232\) 706.183 0.199841
\(233\) 3809.15 + 2199.21i 1.07101 + 0.618348i 0.928457 0.371439i \(-0.121136\pi\)
0.142553 + 0.989787i \(0.454469\pi\)
\(234\) 200.510 227.777i 0.0560160 0.0636335i
\(235\) −620.646 1074.99i −0.172283 0.298403i
\(236\) −2678.97 + 4640.12i −0.738925 + 1.27986i
\(237\) 2727.59 3798.83i 0.747577 1.04118i
\(238\) −24.7639 + 126.913i −0.00674456 + 0.0345653i
\(239\) 2146.34i 0.580902i 0.956890 + 0.290451i \(0.0938053\pi\)
−0.956890 + 0.290451i \(0.906195\pi\)
\(240\) −676.552 1496.90i −0.181964 0.402603i
\(241\) 1153.42 665.929i 0.308293 0.177993i −0.337870 0.941193i \(-0.609706\pi\)
0.646162 + 0.763200i \(0.276373\pi\)
\(242\) 173.297 100.053i 0.0460330 0.0265771i
\(243\) 3332.33 + 1801.25i 0.879707 + 0.475515i
\(244\) 2570.71i 0.674478i
\(245\) −1352.95 + 1053.92i −0.352804 + 0.274826i
\(246\) −325.131 233.446i −0.0842666 0.0605040i
\(247\) 512.420 887.538i 0.132002 0.228634i
\(248\) −212.399 367.885i −0.0543844 0.0941965i
\(249\) 470.491 + 46.7836i 0.119744 + 0.0119068i
\(250\) 19.4364 + 11.2216i 0.00491706 + 0.00283887i
\(251\) −465.089 −0.116957 −0.0584784 0.998289i \(-0.518625\pi\)
−0.0584784 + 0.998289i \(0.518625\pi\)
\(252\) −527.061 3949.24i −0.131753 0.987217i
\(253\) −7183.07 −1.78496
\(254\) 141.532 + 81.7135i 0.0349626 + 0.0201857i
\(255\) −1005.34 99.9667i −0.246889 0.0245496i
\(256\) −1965.97 3405.16i −0.479974 0.831339i
\(257\) −1599.45 + 2770.33i −0.388213 + 0.672405i −0.992209 0.124582i \(-0.960241\pi\)
0.603996 + 0.796987i \(0.293574\pi\)
\(258\) 55.7482 + 40.0276i 0.0134525 + 0.00965895i
\(259\) −4235.96 + 4865.86i −1.01625 + 1.16737i
\(260\) 2493.82i 0.594848i
\(261\) −1309.67 + 6520.39i −0.310600 + 1.54637i
\(262\) 101.447 58.5704i 0.0239214 0.0138110i
\(263\) −6522.47 + 3765.75i −1.52925 + 0.882913i −0.529857 + 0.848087i \(0.677754\pi\)
−0.999393 + 0.0348262i \(0.988912\pi\)
\(264\) −303.410 671.311i −0.0707334 0.156501i
\(265\) 1521.33i 0.352658i
\(266\) 17.6870 + 51.4868i 0.00407692 + 0.0118679i
\(267\) 1991.11 2773.11i 0.456382 0.635624i
\(268\) −824.998 + 1428.94i −0.188040 + 0.325695i
\(269\) −3549.36 6147.67i −0.804491 1.39342i −0.916634 0.399728i \(-0.869105\pi\)
0.112143 0.993692i \(-0.464229\pi\)
\(270\) −122.737 + 28.2555i −0.0276650 + 0.00636880i
\(271\) 3503.02 + 2022.47i 0.785215 + 0.453344i 0.838275 0.545247i \(-0.183564\pi\)
−0.0530600 + 0.998591i \(0.516897\pi\)
\(272\) −2458.68 −0.548086
\(273\) 1733.06 5769.37i 0.384210 1.27904i
\(274\) 195.239 0.0430467
\(275\) −1070.67 618.152i −0.234778 0.135549i
\(276\) −595.044 + 5984.21i −0.129773 + 1.30510i
\(277\) 2703.45 + 4682.52i 0.586407 + 1.01569i 0.994698 + 0.102835i \(0.0327915\pi\)
−0.408291 + 0.912852i \(0.633875\pi\)
\(278\) −128.399 + 222.394i −0.0277009 + 0.0479794i
\(279\) 3790.70 1278.87i 0.813417 0.274422i
\(280\) 200.237 + 174.316i 0.0427374 + 0.0372049i
\(281\) 4135.32i 0.877909i −0.898509 0.438954i \(-0.855349\pi\)
0.898509 0.438954i \(-0.144651\pi\)
\(282\) −211.056 + 95.3905i −0.0445681 + 0.0201433i
\(283\) 898.666 518.845i 0.188764 0.108983i −0.402640 0.915358i \(-0.631907\pi\)
0.591404 + 0.806376i \(0.298574\pi\)
\(284\) 4953.32 2859.80i 1.03495 0.597528i
\(285\) −387.602 + 175.183i −0.0805599 + 0.0364104i
\(286\) 555.802i 0.114913i
\(287\) −7798.61 1521.71i −1.60396 0.312974i
\(288\) −877.194 + 295.939i −0.179476 + 0.0605498i
\(289\) 1700.43 2945.22i 0.346107 0.599475i
\(290\) −110.564 191.502i −0.0223881 0.0387773i
\(291\) −753.234 + 7575.08i −0.151737 + 1.52598i
\(292\) −672.356 388.185i −0.134749 0.0777973i
\(293\) 2168.45 0.432363 0.216182 0.976353i \(-0.430640\pi\)
0.216182 + 0.976353i \(0.430640\pi\)
\(294\) 170.706 + 270.666i 0.0338632 + 0.0536923i
\(295\) 3362.26 0.663588
\(296\) 864.875 + 499.336i 0.169831 + 0.0980517i
\(297\) 6761.10 1556.48i 1.32094 0.304095i
\(298\) −134.359 232.717i −0.0261182 0.0452381i
\(299\) −4546.26 + 7874.35i −0.879321 + 1.52303i
\(300\) −603.676 + 840.767i −0.116177 + 0.161806i
\(301\) 1337.18 + 260.918i 0.256059 + 0.0499636i
\(302\) 267.256i 0.0509233i
\(303\) −445.742 986.226i −0.0845123 0.186988i
\(304\) −896.463 + 517.573i −0.169131 + 0.0976476i
\(305\) 1397.06 806.596i 0.262281 0.151428i
\(306\) −37.1224 + 184.819i −0.00693511 + 0.0345275i
\(307\) 73.6193i 0.0136862i 0.999977 + 0.00684312i \(0.00217825\pi\)
−0.999977 + 0.00684312i \(0.997822\pi\)
\(308\) −5503.99 4791.48i −1.01824 0.886429i
\(309\) −2552.68 1832.84i −0.469958 0.337433i
\(310\) −66.5086 + 115.196i −0.0121853 + 0.0211055i
\(311\) 575.335 + 996.510i 0.104901 + 0.181694i 0.913698 0.406394i \(-0.133214\pi\)
−0.808797 + 0.588088i \(0.799881\pi\)
\(312\) −927.949 92.2713i −0.168381 0.0167430i
\(313\) −2757.46 1592.02i −0.497957 0.287496i 0.229912 0.973211i \(-0.426156\pi\)
−0.727870 + 0.685716i \(0.759489\pi\)
\(314\) −350.157 −0.0629315
\(315\) −1980.86 + 1525.57i −0.354315 + 0.272876i
\(316\) −7171.13 −1.27661
\(317\) −1348.14 778.351i −0.238862 0.137907i 0.375792 0.926704i \(-0.377371\pi\)
−0.614654 + 0.788797i \(0.710704\pi\)
\(318\) −282.470 28.0877i −0.0498118 0.00495307i
\(319\) 6090.51 + 10549.1i 1.06898 + 1.85152i
\(320\) −1249.16 + 2163.60i −0.218219 + 0.377966i
\(321\) 1273.99 + 914.736i 0.221518 + 0.159052i
\(322\) −156.921 456.798i −0.0271580 0.0790570i
\(323\) 636.640i 0.109671i
\(324\) −736.614 5761.60i −0.126306 0.987929i
\(325\) −1355.28 + 782.473i −0.231316 + 0.133550i
\(326\) −549.426 + 317.211i −0.0933432 + 0.0538917i
\(327\) 562.045 + 1243.55i 0.0950495 + 0.210302i
\(328\) 1229.99i 0.207058i
\(329\) −3018.92 + 3467.84i −0.505893 + 0.581120i
\(330\) −134.542 + 187.383i −0.0224433 + 0.0312578i
\(331\) 4938.06 8552.97i 0.820001 1.42028i −0.0856792 0.996323i \(-0.527306\pi\)
0.905680 0.423961i \(-0.139361\pi\)
\(332\) −362.504 627.875i −0.0599246 0.103792i
\(333\) −6214.48 + 7059.58i −1.02268 + 1.16175i
\(334\) −385.266 222.433i −0.0631162 0.0364401i
\(335\) 1035.42 0.168869
\(336\) −4429.66 + 4171.43i −0.719220 + 0.677291i
\(337\) −6476.95 −1.04695 −0.523475 0.852041i \(-0.675365\pi\)
−0.523475 + 0.852041i \(0.675365\pi\)
\(338\) −267.677 154.543i −0.0430760 0.0248700i
\(339\) −526.332 + 5293.18i −0.0843257 + 0.848042i
\(340\) 774.593 + 1341.64i 0.123554 + 0.214001i
\(341\) 3663.68 6345.69i 0.581817 1.00774i
\(342\) 25.3708 + 75.2018i 0.00401139 + 0.0118902i
\(343\) 5320.15 + 3471.26i 0.837496 + 0.546444i
\(344\) 210.900i 0.0330551i
\(345\) 3438.85 1554.25i 0.536643 0.242545i
\(346\) 445.056 256.953i 0.0691513 0.0399245i
\(347\) 1378.53 795.894i 0.213266 0.123129i −0.389562 0.921000i \(-0.627374\pi\)
0.602828 + 0.797871i \(0.294040\pi\)
\(348\) 9292.96 4200.11i 1.43148 0.646982i
\(349\) 5228.59i 0.801948i −0.916089 0.400974i \(-0.868672\pi\)
0.916089 0.400974i \(-0.131328\pi\)
\(350\) 15.9207 81.5921i 0.00243142 0.0124608i
\(351\) 2572.92 8396.89i 0.391260 1.27690i
\(352\) −847.801 + 1468.44i −0.128375 + 0.222352i
\(353\) 686.515 + 1189.08i 0.103511 + 0.179287i 0.913129 0.407671i \(-0.133659\pi\)
−0.809618 + 0.586958i \(0.800326\pi\)
\(354\) 62.0761 624.284i 0.00932008 0.0937297i
\(355\) −3108.35 1794.61i −0.464716 0.268304i
\(356\) −5234.86 −0.779345
\(357\) 859.638 + 3642.12i 0.127442 + 0.539948i
\(358\) 459.291 0.0678053
\(359\) 3353.54 + 1936.16i 0.493016 + 0.284643i 0.725825 0.687880i \(-0.241458\pi\)
−0.232809 + 0.972523i \(0.574792\pi\)
\(360\) 290.512 + 255.735i 0.0425315 + 0.0374401i
\(361\) −3295.48 5707.94i −0.480461 0.832183i
\(362\) 237.267 410.959i 0.0344489 0.0596672i
\(363\) 3377.64 4704.20i 0.488375 0.680183i
\(364\) −8736.15 + 3001.09i −1.25796 + 0.432142i
\(365\) 487.195i 0.0698656i
\(366\) −123.970 274.290i −0.0177050 0.0391731i
\(367\) −2141.83 + 1236.58i −0.304639 + 0.175883i −0.644525 0.764583i \(-0.722945\pi\)
0.339886 + 0.940467i \(0.389611\pi\)
\(368\) 7953.54 4591.98i 1.12665 0.650471i
\(369\) −11356.9 2281.12i −1.60221 0.321816i
\(370\) 312.715i 0.0439386i
\(371\) −5329.38 + 1830.78i −0.745789 + 0.256197i
\(372\) −4983.09 3577.89i −0.694519 0.498669i
\(373\) −5831.90 + 10101.1i −0.809556 + 1.40219i 0.103616 + 0.994617i \(0.466959\pi\)
−0.913172 + 0.407574i \(0.866375\pi\)
\(374\) 172.634 + 299.012i 0.0238682 + 0.0413410i
\(375\) 646.332 + 64.2685i 0.0890038 + 0.00885016i
\(376\) 616.387 + 355.871i 0.0845419 + 0.0488103i
\(377\) 15419.1 2.10642
\(378\) 246.685 + 395.960i 0.0335665 + 0.0538783i
\(379\) 10583.0 1.43433 0.717164 0.696905i \(-0.245440\pi\)
0.717164 + 0.696905i \(0.245440\pi\)
\(380\) 564.851 + 326.117i 0.0762533 + 0.0440249i
\(381\) 4706.46 + 467.990i 0.632858 + 0.0629287i
\(382\) 58.8014 + 101.847i 0.00787576 + 0.0136412i
\(383\) −1827.96 + 3166.13i −0.243876 + 0.422406i −0.961815 0.273700i \(-0.911752\pi\)
0.717939 + 0.696106i \(0.245086\pi\)
\(384\) 1536.45 + 1103.18i 0.204184 + 0.146605i
\(385\) −877.005 + 4494.57i −0.116094 + 0.594973i
\(386\) 395.432i 0.0521424i
\(387\) 1947.30 + 391.129i 0.255780 + 0.0513752i
\(388\) 10109.0 5836.45i 1.32270 0.763661i
\(389\) 485.428 280.262i 0.0632704 0.0365292i −0.468031 0.883712i \(-0.655036\pi\)
0.531301 + 0.847183i \(0.321703\pi\)
\(390\) 120.263 + 266.087i 0.0156147 + 0.0345483i
\(391\) 5648.36i 0.730562i
\(392\) 369.682 911.227i 0.0476321 0.117408i
\(393\) 1977.24 2753.80i 0.253788 0.353462i
\(394\) 306.976 531.698i 0.0392519 0.0679862i
\(395\) 2250.04 + 3897.19i 0.286613 + 0.496428i
\(396\) −7985.41 7029.48i −1.01334 0.892032i
\(397\) 2445.51 + 1411.91i 0.309160 + 0.178494i 0.646550 0.762871i \(-0.276211\pi\)
−0.337391 + 0.941365i \(0.609544\pi\)
\(398\) −338.025 −0.0425720
\(399\) 1080.13 + 1147.00i 0.135524 + 0.143914i
\(400\) 1580.68 0.197585
\(401\) 3702.86 + 2137.85i 0.461128 + 0.266232i 0.712518 0.701653i \(-0.247555\pi\)
−0.251391 + 0.967886i \(0.580888\pi\)
\(402\) 19.1165 192.250i 0.00237176 0.0238522i
\(403\) −4637.59 8032.54i −0.573238 0.992877i
\(404\) −829.782 + 1437.22i −0.102186 + 0.176992i
\(405\) −2900.05 + 2208.10i −0.355814 + 0.270917i
\(406\) −537.801 + 617.773i −0.0657405 + 0.0755162i
\(407\) 17226.2i 2.09796i
\(408\) 527.880 238.585i 0.0640539 0.0289503i
\(409\) 12795.2 7387.30i 1.54690 0.893102i 0.548522 0.836136i \(-0.315191\pi\)
0.998376 0.0569655i \(-0.0181425\pi\)
\(410\) 333.549 192.575i 0.0401776 0.0231965i
\(411\) 5148.84 2327.11i 0.617941 0.279289i
\(412\) 4818.75i 0.576220i
\(413\) −4046.17 11778.4i −0.482080 1.40333i
\(414\) −225.093 667.200i −0.0267216 0.0792056i
\(415\) −227.481 + 394.009i −0.0269075 + 0.0466052i
\(416\) 1073.17 + 1858.78i 0.126482 + 0.219073i
\(417\) −735.367 + 7395.40i −0.0863576 + 0.868476i
\(418\) 125.889 + 72.6820i 0.0147307 + 0.00850477i
\(419\) 13761.3 1.60450 0.802250 0.596988i \(-0.203636\pi\)
0.802250 + 0.596988i \(0.203636\pi\)
\(420\) 3671.77 + 1102.96i 0.426581 + 0.128140i
\(421\) 6720.49 0.777997 0.388999 0.921238i \(-0.372821\pi\)
0.388999 + 0.921238i \(0.372821\pi\)
\(422\) 47.4837 + 27.4148i 0.00547742 + 0.00316239i
\(423\) −4429.00 + 5031.29i −0.509090 + 0.578321i
\(424\) 436.156 + 755.444i 0.0499566 + 0.0865274i
\(425\) 486.080 841.914i 0.0554784 0.0960914i
\(426\) −390.599 + 544.006i −0.0444240 + 0.0618713i
\(427\) −4506.83 3923.41i −0.510775 0.444654i
\(428\) 2404.94i 0.271606i
\(429\) −6624.77 14657.6i −0.745564 1.64960i
\(430\) −57.1916 + 33.0196i −0.00641401 + 0.00370313i
\(431\) −4889.70 + 2823.07i −0.546470 + 0.315505i −0.747697 0.664040i \(-0.768840\pi\)
0.201227 + 0.979545i \(0.435507\pi\)
\(432\) −6491.28 + 6045.65i −0.722945 + 0.673314i
\(433\) 14852.2i 1.64839i −0.566309 0.824193i \(-0.691629\pi\)
0.566309 0.824193i \(-0.308371\pi\)
\(434\) 483.583 + 94.3592i 0.0534855 + 0.0104364i
\(435\) −5198.38 3732.47i −0.572973 0.411398i
\(436\) 1046.29 1812.22i 0.114927 0.199059i
\(437\) −1189.03 2059.45i −0.130158 0.225439i
\(438\) 90.4592 + 8.99488i 0.00986829 + 0.000981260i
\(439\) −6727.84 3884.32i −0.731441 0.422298i 0.0875082 0.996164i \(-0.472110\pi\)
−0.818949 + 0.573866i \(0.805443\pi\)
\(440\) 708.883 0.0768060
\(441\) 7728.02 + 5103.32i 0.834469 + 0.551055i
\(442\) 437.051 0.0470325
\(443\) 13215.4 + 7629.90i 1.41734 + 0.818301i 0.996064 0.0886318i \(-0.0282495\pi\)
0.421275 + 0.906933i \(0.361583\pi\)
\(444\) 14351.1 + 1427.01i 1.53395 + 0.152529i
\(445\) 1642.51 + 2844.91i 0.174972 + 0.303060i
\(446\) 65.6418 113.695i 0.00696913 0.0120709i
\(447\) −6317.16 4535.76i −0.668437 0.479942i
\(448\) 9082.59 + 1772.24i 0.957840 + 0.186899i
\(449\) 11513.9i 1.21019i −0.796155 0.605093i \(-0.793136\pi\)
0.796155 0.605093i \(-0.206864\pi\)
\(450\) 23.8659 118.820i 0.00250011 0.0124472i
\(451\) −18373.8 + 10608.1i −1.91838 + 1.10758i
\(452\) 7063.81 4078.29i 0.735074 0.424395i
\(453\) 3185.51 + 7048.09i 0.330393 + 0.731011i
\(454\) 365.676i 0.0378018i
\(455\) 4372.05 + 3806.08i 0.450472 + 0.392158i
\(456\) 142.247 198.114i 0.0146082 0.0203455i
\(457\) −5087.08 + 8811.08i −0.520708 + 0.901892i 0.479002 + 0.877814i \(0.340999\pi\)
−0.999710 + 0.0240786i \(0.992335\pi\)
\(458\) −55.3808 95.9223i −0.00565016 0.00978637i
\(459\) 1223.93 + 5316.54i 0.124462 + 0.540643i
\(460\) −5011.43 2893.35i −0.507955 0.293268i
\(461\) 15814.8 1.59776 0.798882 0.601488i \(-0.205425\pi\)
0.798882 + 0.601488i \(0.205425\pi\)
\(462\) 818.332 + 245.818i 0.0824074 + 0.0247543i
\(463\) −5625.29 −0.564643 −0.282321 0.959320i \(-0.591104\pi\)
−0.282321 + 0.959320i \(0.591104\pi\)
\(464\) −13487.6 7787.06i −1.34945 0.779106i
\(465\) −380.909 + 3830.70i −0.0379875 + 0.382031i
\(466\) 394.859 + 683.916i 0.0392521 + 0.0679867i
\(467\) 8506.32 14733.4i 0.842881 1.45991i −0.0445680 0.999006i \(-0.514191\pi\)
0.887449 0.460906i \(-0.152476\pi\)
\(468\) −12760.1 + 4304.86i −1.26033 + 0.425197i
\(469\) −1246.03 3627.19i −0.122679 0.357118i
\(470\) 222.869i 0.0218727i
\(471\) −9234.36 + 4173.63i −0.903391 + 0.408303i
\(472\) −1669.60 + 963.942i −0.162817 + 0.0940022i
\(473\) 3150.45 1818.91i 0.306254 0.176816i
\(474\) 765.147 345.822i 0.0741443 0.0335108i
\(475\) 409.295i 0.0395363i
\(476\) 3767.75 4328.02i 0.362804 0.416753i
\(477\) −7784.12 + 2626.12i −0.747191 + 0.252080i
\(478\) −192.683 + 333.738i −0.0184375 + 0.0319347i
\(479\) −9278.92 16071.6i −0.885104 1.53305i −0.845594 0.533826i \(-0.820754\pi\)
−0.0395099 0.999219i \(-0.512580\pi\)
\(480\) 88.1448 886.450i 0.00838175 0.0842932i
\(481\) 18884.0 + 10902.7i 1.79010 + 1.03351i
\(482\) 239.129 0.0225976
\(483\) −9583.06 10176.3i −0.902783 0.958671i
\(484\) −8880.20 −0.833978
\(485\) −6343.70 3662.54i −0.593923 0.342902i
\(486\) 356.444 + 579.231i 0.0332688 + 0.0540626i
\(487\) 1996.72 + 3458.43i 0.185791 + 0.321799i 0.943843 0.330395i \(-0.107182\pi\)
−0.758052 + 0.652194i \(0.773849\pi\)
\(488\) −462.493 + 801.061i −0.0429018 + 0.0743080i
\(489\) −10708.6 + 14914.3i −0.990302 + 1.37924i
\(490\) −304.985 + 42.4165i −0.0281180 + 0.00391058i
\(491\) 2371.47i 0.217970i 0.994043 + 0.108985i \(0.0347600\pi\)
−0.994043 + 0.108985i \(0.965240\pi\)
\(492\) 7315.55 + 16186.0i 0.670346 + 1.48317i
\(493\) −8295.19 + 4789.23i −0.757803 + 0.437518i
\(494\) 159.354 92.0029i 0.0145135 0.00837936i
\(495\) −1314.68 + 6545.32i −0.119374 + 0.594323i
\(496\) 9368.45i 0.848097i
\(497\) −2546.10 + 13048.5i −0.229795 + 1.17768i
\(498\) 68.9573 + 49.5117i 0.00620492 + 0.00445517i
\(499\) 8969.97 15536.4i 0.804711 1.39380i −0.111774 0.993734i \(-0.535653\pi\)
0.916486 0.400068i \(-0.131013\pi\)
\(500\) −497.985 862.536i −0.0445412 0.0771475i
\(501\) −12811.5 1273.92i −1.14247 0.113602i
\(502\) −72.3172 41.7524i −0.00642963 0.00371215i
\(503\) −16933.2 −1.50102 −0.750509 0.660860i \(-0.770192\pi\)
−0.750509 + 0.660860i \(0.770192\pi\)
\(504\) 546.265 1325.45i 0.0482790 0.117143i
\(505\) 1041.42 0.0917678
\(506\) −1116.90 644.844i −0.0981273 0.0566538i
\(507\) −8901.24 885.101i −0.779720 0.0775320i
\(508\) −3626.23 6280.81i −0.316708 0.548555i
\(509\) −7744.16 + 13413.3i −0.674369 + 1.16804i 0.302284 + 0.953218i \(0.402251\pi\)
−0.976653 + 0.214823i \(0.931083\pi\)
\(510\) −147.347 105.796i −0.0127934 0.00918575i
\(511\) 1706.70 586.294i 0.147749 0.0507556i
\(512\) 3618.08i 0.312301i
\(513\) 1565.44 + 1680.82i 0.134728 + 0.144659i
\(514\) −497.400 + 287.174i −0.0426836 + 0.0246434i
\(515\) 2618.78 1511.95i 0.224072 0.129368i
\(516\) −1254.35 2775.32i −0.107015 0.236776i
\(517\) 12276.9i 1.04437i
\(518\) −1095.48 + 376.323i −0.0929198 + 0.0319203i
\(519\) 8674.34 12081.1i 0.733644 1.02178i
\(520\) 448.661 777.104i 0.0378367 0.0655351i
\(521\) −8598.07 14892.3i −0.723010 1.25229i −0.959788 0.280726i \(-0.909425\pi\)
0.236778 0.971564i \(-0.423909\pi\)
\(522\) −788.996 + 896.291i −0.0661560 + 0.0751524i
\(523\) 10434.4 + 6024.30i 0.872398 + 0.503679i 0.868144 0.496312i \(-0.165313\pi\)
0.00425361 + 0.999991i \(0.498646\pi\)
\(524\) −5198.40 −0.433384
\(525\) −552.660 2341.51i −0.0459430 0.194652i
\(526\) −1352.25 −0.112093
\(527\) 4989.89 + 2880.91i 0.412453 + 0.238130i
\(528\) −1607.60 + 16167.2i −0.132503 + 1.33255i
\(529\) 4465.70 + 7734.81i 0.367033 + 0.635721i
\(530\) 136.574 236.553i 0.0111932 0.0193872i
\(531\) −5803.96 17203.6i −0.474332 1.40597i
\(532\) 462.679 2371.19i 0.0377062 0.193241i
\(533\) 26856.1i 2.18249i
\(534\) 558.550 252.447i 0.0452637 0.0204577i
\(535\) −1306.98 + 754.585i −0.105618 + 0.0609786i
\(536\) −514.158 + 296.849i −0.0414333 + 0.0239215i
\(537\) 12112.5 5474.43i 0.973354 0.439924i
\(538\) 1274.54i 0.102137i
\(539\) 16800.4 2336.55i 1.34257 0.186721i
\(540\) 5343.99 + 1637.47i 0.425868 + 0.130491i
\(541\) −9360.33 + 16212.6i −0.743867 + 1.28841i 0.206856 + 0.978371i \(0.433677\pi\)
−0.950722 + 0.310043i \(0.899656\pi\)
\(542\) 363.126 + 628.952i 0.0287778 + 0.0498447i
\(543\) 1358.88 13665.9i 0.107394 1.08004i
\(544\) −1154.69 666.663i −0.0910057 0.0525422i
\(545\) −1313.15 −0.103210
\(546\) 787.408 741.505i 0.0617179 0.0581199i
\(547\) −3583.85 −0.280136 −0.140068 0.990142i \(-0.544732\pi\)
−0.140068 + 0.990142i \(0.544732\pi\)
\(548\) −7503.39 4332.09i −0.584907 0.337696i
\(549\) −6538.70 5755.96i −0.508315 0.447465i
\(550\) −110.987 192.234i −0.00860451 0.0149035i
\(551\) −2016.35 + 3492.42i −0.155897 + 0.270022i
\(552\) −1262.03 + 1757.69i −0.0973111 + 0.135530i
\(553\) 10944.6 12572.1i 0.841611 0.966761i
\(554\) 970.787i 0.0744491i
\(555\) −3727.35 8246.94i −0.285076 0.630744i
\(556\) 9869.24 5698.01i 0.752786 0.434621i
\(557\) −4699.85 + 2713.46i −0.357521 + 0.206415i −0.667993 0.744168i \(-0.732846\pi\)
0.310472 + 0.950583i \(0.399513\pi\)
\(558\) 704.228 + 141.449i 0.0534271 + 0.0107312i
\(559\) 4604.86i 0.348417i
\(560\) −1902.21 5537.32i −0.143541 0.417847i
\(561\) 8116.74 + 5827.87i 0.610854 + 0.438597i
\(562\) 371.239 643.005i 0.0278644 0.0482625i
\(563\) −2139.26 3705.31i −0.160140 0.277371i 0.774778 0.632233i \(-0.217861\pi\)
−0.934919 + 0.354861i \(0.884528\pi\)
\(564\) 10227.9 + 1017.02i 0.763602 + 0.0759293i
\(565\) −4432.74 2559.24i −0.330065 0.190563i
\(566\) 186.313 0.0138362
\(567\) 11225.2 + 7501.97i 0.831417 + 0.555649i
\(568\) 2058.01 0.152029
\(569\) −1280.49 739.294i −0.0943429 0.0544689i 0.452086 0.891974i \(-0.350680\pi\)
−0.546429 + 0.837505i \(0.684013\pi\)
\(570\) −75.9954 7.55666i −0.00558438 0.000555287i
\(571\) −6225.67 10783.2i −0.456281 0.790302i 0.542480 0.840069i \(-0.317485\pi\)
−0.998761 + 0.0497671i \(0.984152\pi\)
\(572\) −12332.5 + 21360.5i −0.901482 + 1.56141i
\(573\) 2764.66 + 1985.04i 0.201563 + 0.144723i
\(574\) −1076.01 936.715i −0.0782433 0.0681145i
\(575\) 3631.32i 0.263368i
\(576\) 13226.7 + 2656.69i 0.956794 + 0.192179i
\(577\) 4436.35 2561.33i 0.320083 0.184800i −0.331347 0.943509i \(-0.607503\pi\)
0.651429 + 0.758709i \(0.274170\pi\)
\(578\) 528.802 305.304i 0.0380541 0.0219705i
\(579\) −4713.28 10428.4i −0.338302 0.748511i
\(580\) 9813.07i 0.702527i
\(581\) 1654.01 + 322.740i 0.118107 + 0.0230456i
\(582\) −797.158 + 1110.24i −0.0567754 + 0.0790736i
\(583\) −7523.29 + 13030.7i −0.534448 + 0.925690i
\(584\) −139.676 241.926i −0.00989697 0.0171421i
\(585\) 6343.15 + 5583.82i 0.448302 + 0.394636i
\(586\) 337.175 + 194.668i 0.0237689 + 0.0137230i
\(587\) −2528.30 −0.177775 −0.0888875 0.996042i \(-0.528331\pi\)
−0.0888875 + 0.996042i \(0.528331\pi\)
\(588\) −554.837 14189.9i −0.0389134 0.995210i
\(589\) 2425.83 0.169702
\(590\) 522.802 + 301.840i 0.0364804 + 0.0210620i
\(591\) 1758.12 17680.9i 0.122368 1.23062i
\(592\) −11012.3 19073.9i −0.764533 1.32421i
\(593\) 11741.2 20336.4i 0.813078 1.40829i −0.0976220 0.995224i \(-0.531124\pi\)
0.910700 0.413069i \(-0.135543\pi\)
\(594\) 1191.02 + 364.944i 0.0822696 + 0.0252085i
\(595\) −3534.27 689.626i −0.243514 0.0475158i
\(596\) 11925.0i 0.819577i
\(597\) −8914.41 + 4029.02i −0.611127 + 0.276209i
\(598\) −1413.81 + 816.261i −0.0966803 + 0.0558184i
\(599\) 7652.66 4418.26i 0.522002 0.301378i −0.215752 0.976448i \(-0.569220\pi\)
0.737753 + 0.675070i \(0.235887\pi\)
\(600\) −339.374 + 153.386i −0.0230915 + 0.0104366i
\(601\) 13214.2i 0.896872i 0.893815 + 0.448436i \(0.148019\pi\)
−0.893815 + 0.448436i \(0.851981\pi\)
\(602\) 184.496 + 160.613i 0.0124909 + 0.0108739i
\(603\) −1787.35 5297.89i −0.120707 0.357789i
\(604\) 5930.05 10271.2i 0.399488 0.691933i
\(605\) 2786.29 + 4826.00i 0.187238 + 0.324305i
\(606\) 19.2274 193.365i 0.00128888 0.0129619i
\(607\) −11205.2 6469.35i −0.749270 0.432591i 0.0761601 0.997096i \(-0.475734\pi\)
−0.825430 + 0.564504i \(0.809067\pi\)
\(608\) −561.353 −0.0374438
\(609\) −6819.49 + 22702.2i −0.453760 + 1.51057i
\(610\) 289.642 0.0192250
\(611\) 13458.4 + 7770.22i 0.891112 + 0.514484i
\(612\) 5527.58 6279.27i 0.365097 0.414746i
\(613\) 6232.55 + 10795.1i 0.410653 + 0.711271i 0.994961 0.100260i \(-0.0319675\pi\)
−0.584308 + 0.811532i \(0.698634\pi\)
\(614\) −6.60901 + 11.4471i −0.000434394 + 0.000752393i
\(615\) 6501.02 9054.27i 0.426254 0.593664i
\(616\) −853.074 2483.30i −0.0557976 0.162427i
\(617\) 11614.3i 0.757817i −0.925434 0.378908i \(-0.876300\pi\)
0.925434 0.378908i \(-0.123700\pi\)
\(618\) −232.380 514.152i −0.0151257 0.0334664i
\(619\) −557.917 + 322.114i −0.0362271 + 0.0209157i −0.518004 0.855378i \(-0.673325\pi\)
0.481777 + 0.876294i \(0.339992\pi\)
\(620\) 5112.11 2951.48i 0.331141 0.191184i
\(621\) −13888.7 14912.5i −0.897482 0.963636i
\(622\) 206.598i 0.0133180i
\(623\) 7989.45 9177.49i 0.513789 0.590190i
\(624\) 16705.7 + 11994.8i 1.07173 + 0.769511i
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −285.840 495.089i −0.0182499 0.0316098i
\(627\) 4186.27 + 416.265i 0.266641 + 0.0265136i
\(628\) 13457.2 + 7769.52i 0.855097 + 0.493690i
\(629\) −13545.7 −0.858667
\(630\) −444.961 + 59.3840i −0.0281392 + 0.00375542i
\(631\) −5187.93 −0.327303 −0.163651 0.986518i \(-0.552327\pi\)
−0.163651 + 0.986518i \(0.552327\pi\)
\(632\) −2234.60 1290.15i −0.140645 0.0812016i
\(633\) 1579.01 + 157.010i 0.0991469 + 0.00985875i
\(634\) −139.749 242.053i −0.00875420 0.0151627i
\(635\) −2275.56 + 3941.39i −0.142209 + 0.246314i
\(636\) 10232.7 + 7347.11i 0.637973 + 0.458069i
\(637\) 8071.77 19896.1i 0.502065 1.23754i
\(638\) 2187.05i 0.135715i
\(639\) −3816.74 + 19002.2i −0.236288 + 1.17640i
\(640\) −1576.23 + 910.036i −0.0973529 + 0.0562067i
\(641\) −23594.4 + 13622.2i −1.45386 + 0.839386i −0.998697 0.0510236i \(-0.983752\pi\)
−0.455161 + 0.890409i \(0.650418\pi\)
\(642\) 115.976 + 256.603i 0.00712963 + 0.0157747i
\(643\) 4565.15i 0.279988i 0.990152 + 0.139994i \(0.0447082\pi\)
−0.990152 + 0.139994i \(0.955292\pi\)
\(644\) −4104.95 + 21037.5i −0.251176 + 1.28726i
\(645\) −1114.69 + 1552.48i −0.0680479 + 0.0947734i
\(646\) −57.1530 + 98.9919i −0.00348089 + 0.00602908i
\(647\) −562.956 975.068i −0.0342072 0.0592487i 0.848415 0.529332i \(-0.177557\pi\)
−0.882622 + 0.470083i \(0.844224\pi\)
\(648\) 807.026 1927.90i 0.0489244 0.116875i
\(649\) −28799.0 16627.1i −1.74185 1.00566i
\(650\) −280.979 −0.0169553
\(651\) 13877.8 3275.53i 0.835503 0.197201i
\(652\) 28154.0 1.69110
\(653\) −3387.69 1955.88i −0.203017 0.117212i 0.395045 0.918662i \(-0.370729\pi\)
−0.598062 + 0.801450i \(0.704062\pi\)
\(654\) −24.2442 + 243.818i −0.00144958 + 0.0145780i
\(655\) 1631.07 + 2825.10i 0.0972996 + 0.168528i
\(656\) 13563.1 23492.0i 0.807241 1.39818i
\(657\) 2492.81 840.998i 0.148027 0.0499398i
\(658\) −780.734 + 268.202i −0.0462556 + 0.0158900i
\(659\) 18666.6i 1.10341i 0.834039 + 0.551706i \(0.186023\pi\)
−0.834039 + 0.551706i \(0.813977\pi\)
\(660\) 9328.48 4216.17i 0.550167 0.248658i
\(661\) −3327.09 + 1920.90i −0.195777 + 0.113032i −0.594684 0.803959i \(-0.702723\pi\)
0.398907 + 0.916991i \(0.369390\pi\)
\(662\) 1535.65 886.608i 0.0901582 0.0520528i
\(663\) 11525.9 5209.34i 0.675158 0.305150i
\(664\) 260.870i 0.0152466i
\(665\) −1433.81 + 492.549i −0.0836101 + 0.0287222i
\(666\) −1600.06 + 539.810i −0.0930945 + 0.0314073i
\(667\) 17889.3 30985.2i 1.03849 1.79873i
\(668\) 9871.00 + 17097.1i 0.571737 + 0.990278i
\(669\) 375.944 3780.78i 0.0217262 0.218495i
\(670\) 160.999 + 92.9526i 0.00928346 + 0.00535981i
\(671\) −15955.2 −0.917946
\(672\) −3211.41 + 757.979i −0.184349 + 0.0435114i
\(673\) −4342.23 −0.248708 −0.124354 0.992238i \(-0.539686\pi\)
−0.124354 + 0.992238i \(0.539686\pi\)
\(674\) −1007.11 581.454i −0.0575554 0.0332296i
\(675\) −786.862 3418.00i −0.0448686 0.194902i
\(676\) 6858.22 + 11878.8i 0.390204 + 0.675853i
\(677\) 14682.9 25431.5i 0.833545 1.44374i −0.0616645 0.998097i \(-0.519641\pi\)
0.895210 0.445645i \(-0.147026\pi\)
\(678\) −557.024 + 775.793i −0.0315522 + 0.0439442i
\(679\) −5196.23 + 26630.2i −0.293686 + 1.50512i
\(680\) 557.425i 0.0314357i
\(681\) −4358.61 9643.64i −0.245260 0.542650i
\(682\) 1139.34 657.799i 0.0639701 0.0369332i
\(683\) −882.634 + 509.589i −0.0494481 + 0.0285489i −0.524520 0.851398i \(-0.675755\pi\)
0.475072 + 0.879947i \(0.342422\pi\)
\(684\) 693.580 3453.10i 0.0387715 0.193030i
\(685\) 5437.02i 0.303267i
\(686\) 515.611 + 1017.35i 0.0286970 + 0.0566221i
\(687\) −2603.83 1869.57i −0.144603 0.103826i
\(688\) −2325.58 + 4028.03i −0.128869 + 0.223208i
\(689\) 9523.18 + 16494.6i 0.526567 + 0.912040i
\(690\) 674.241 + 67.0436i 0.0371999 + 0.00369900i
\(691\) −5810.40 3354.64i −0.319881 0.184684i 0.331458 0.943470i \(-0.392459\pi\)
−0.651340 + 0.758786i \(0.725793\pi\)
\(692\) −22805.8 −1.25281
\(693\) 24511.1 3271.22i 1.34358 0.179312i
\(694\) 285.799 0.0156322
\(695\) −6193.23 3575.66i −0.338018 0.195155i
\(696\) 3651.43 + 363.083i 0.198861 + 0.0197739i
\(697\) −8341.64 14448.1i −0.453317 0.785169i
\(698\) 469.385 812.999i 0.0254534 0.0440866i
\(699\) 18565.1 + 13329.8i 1.00457 + 0.721288i
\(700\) −2422.28 + 2782.48i −0.130791 + 0.150240i
\(701\) 5594.42i 0.301424i 0.988578 + 0.150712i \(0.0481567\pi\)
−0.988578 + 0.150712i \(0.951843\pi\)
\(702\) 1153.88 1074.66i 0.0620375 0.0577786i
\(703\) −4938.91 + 2851.48i −0.264971 + 0.152981i
\(704\) 21399.0 12354.7i 1.14560 0.661414i
\(705\) −2656.44 5877.50i −0.141911 0.313985i
\(706\) 246.522i 0.0131416i
\(707\) −1253.26 3648.23i −0.0666670 0.194067i
\(708\) −16237.7 + 22615.0i −0.861937 + 1.20046i
\(709\) 11154.0 19319.3i 0.590829 1.02335i −0.403292 0.915071i \(-0.632134\pi\)
0.994121 0.108275i \(-0.0345326\pi\)
\(710\) −322.214 558.091i −0.0170316 0.0294997i
\(711\) 16056.6 18240.1i 0.846931 0.962104i
\(712\) −1631.24 941.797i −0.0858614 0.0495721i
\(713\) −21522.2 −1.13045
\(714\) −193.297 + 643.489i −0.0101316 + 0.0337283i
\(715\) 15478.0 0.809572
\(716\) −17651.4 10191.1i −0.921320 0.531924i
\(717\) −1103.54 + 11098.0i −0.0574789 + 0.578051i
\(718\) 347.630 + 602.113i 0.0180689 + 0.0312962i
\(719\) 834.477 1445.36i 0.0432834 0.0749690i −0.843572 0.537016i \(-0.819551\pi\)
0.886855 + 0.462047i \(0.152885\pi\)
\(720\) −2728.59 8087.82i −0.141234 0.418632i
\(721\) −8447.99 7354.38i −0.436366 0.379877i
\(722\) 1183.38i 0.0609984i
\(723\) 6306.34 2850.26i 0.324392 0.146614i
\(724\) −18237.3 + 10529.3i −0.936165 + 0.540495i
\(725\) 5332.97 3078.99i 0.273188 0.157725i
\(726\) 947.503 428.240i 0.0484368 0.0218919i
\(727\) 3454.28i 0.176220i −0.996111 0.0881101i \(-0.971917\pi\)
0.996111 0.0881101i \(-0.0280827\pi\)
\(728\) −3262.21 636.539i −0.166079 0.0324062i
\(729\) 16304.2 + 11026.9i 0.828339 + 0.560227i
\(730\) −43.7368 + 75.7544i −0.00221750 + 0.00384082i
\(731\) 1430.29 + 2477.34i 0.0723683 + 0.125346i
\(732\) −1321.72 + 13292.2i −0.0667381 + 0.671168i
\(733\) −18503.8 10683.2i −0.932407 0.538325i −0.0448350 0.998994i \(-0.514276\pi\)
−0.887572 + 0.460669i \(0.847610\pi\)
\(734\) −444.046 −0.0223298
\(735\) −7537.52 + 4753.83i −0.378266 + 0.238568i
\(736\) 4980.39 0.249429
\(737\) −8868.75 5120.37i −0.443263 0.255918i
\(738\) −1561.11 1374.23i −0.0778664 0.0685450i
\(739\) 7060.64 + 12229.4i 0.351461 + 0.608749i 0.986506 0.163727i \(-0.0523516\pi\)
−0.635044 + 0.772476i \(0.719018\pi\)
\(740\) −6938.73 + 12018.2i −0.344693 + 0.597026i
\(741\) 3105.87 4325.69i 0.153977 0.214451i
\(742\) −993.026 193.765i −0.0491309 0.00958668i
\(743\) 17755.4i 0.876690i −0.898807 0.438345i \(-0.855565\pi\)
0.898807 0.438345i \(-0.144435\pi\)
\(744\) −909.093 2011.41i −0.0447970 0.0991155i
\(745\) 6480.72 3741.65i 0.318705 0.184004i
\(746\) −1813.62 + 1047.09i −0.0890097 + 0.0513898i
\(747\) 2408.69 + 483.804i 0.117978 + 0.0236967i
\(748\) 15322.1i 0.748974i
\(749\) 4216.23 + 3670.43i 0.205684 + 0.179058i
\(750\) 94.7293 + 68.0162i 0.00461203 + 0.00331147i
\(751\) −14989.4 + 25962.4i −0.728322 + 1.26149i 0.229269 + 0.973363i \(0.426366\pi\)
−0.957592 + 0.288128i \(0.906967\pi\)
\(752\) −7848.36 13593.8i −0.380585 0.659193i
\(753\) −2404.81 239.124i −0.116383 0.0115726i
\(754\) 2397.53 + 1384.21i 0.115799 + 0.0668569i
\(755\) −7442.56 −0.358758
\(756\) −694.758 20691.1i −0.0334234 0.995409i
\(757\) 36382.4 1.74682 0.873409 0.486987i \(-0.161904\pi\)
0.873409 + 0.486987i \(0.161904\pi\)
\(758\) 1645.56 + 950.062i 0.0788513 + 0.0455248i
\(759\) −37141.1 3693.16i −1.77620 0.176618i
\(760\) 117.343 + 203.243i 0.00560061 + 0.00970055i
\(761\) 495.120 857.573i 0.0235849 0.0408502i −0.853992 0.520286i \(-0.825825\pi\)
0.877577 + 0.479436i \(0.159159\pi\)
\(762\) 689.799 + 495.280i 0.0327937 + 0.0235461i
\(763\) 1580.26 + 4600.12i 0.0749792 + 0.218264i
\(764\) 5218.90i 0.247138i
\(765\) −5146.86 1033.79i −0.243249 0.0488583i
\(766\) −568.464 + 328.203i −0.0268139 + 0.0154810i
\(767\) −36454.6 + 21047.1i −1.71616 + 0.990828i
\(768\) −8414.60 18617.7i −0.395359 0.874751i
\(769\) 19740.5i 0.925699i 0.886437 + 0.462849i \(0.153173\pi\)
−0.886437 + 0.462849i \(0.846827\pi\)
\(770\) −539.857 + 620.135i −0.0252663 + 0.0290235i
\(771\) −9694.55 + 13502.0i −0.452841 + 0.630693i
\(772\) </