Properties

Label 105.4.s.a.26.8
Level $105$
Weight $4$
Character 105.26
Analytic conductor $6.195$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.8
Character \(\chi\) \(=\) 105.26
Dual form 105.4.s.a.101.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.133140 - 0.0768685i) q^{2} +(2.47104 + 4.57099i) q^{3} +(-3.98818 - 6.90773i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(0.0223714 - 0.798528i) q^{6} +(-15.0457 + 10.7995i) q^{7} +2.45616i q^{8} +(-14.7880 + 22.5902i) q^{9} +O(q^{10})\) \(q+(-0.133140 - 0.0768685i) q^{2} +(2.47104 + 4.57099i) q^{3} +(-3.98818 - 6.90773i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(0.0223714 - 0.798528i) q^{6} +(-15.0457 + 10.7995i) q^{7} +2.45616i q^{8} +(-14.7880 + 22.5902i) q^{9} +(0.665701 - 0.384343i) q^{10} +(-14.9856 + 8.65197i) q^{11} +(21.7203 - 35.2992i) q^{12} +36.4846i q^{13} +(2.83332 - 0.281303i) q^{14} +(-25.9706 - 0.727588i) q^{15} +(-31.7167 + 54.9349i) q^{16} +(-14.8621 - 25.7418i) q^{17} +(3.70535 - 1.87093i) q^{18} +(-112.843 - 65.1498i) q^{19} +39.8818 q^{20} +(-86.5426 - 42.0878i) q^{21} +2.66026 q^{22} +(134.961 + 77.9197i) q^{23} +(-11.2271 + 6.06926i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(2.80452 - 4.85757i) q^{26} +(-139.801 - 11.7746i) q^{27} +(134.605 + 60.8612i) q^{28} +165.529i q^{29} +(3.40180 + 2.09319i) q^{30} +(12.9990 - 7.50496i) q^{31} +(25.4623 - 14.7007i) q^{32} +(-76.5782 - 47.1200i) q^{33} +4.56970i q^{34} +(-9.14885 - 92.1482i) q^{35} +(215.024 + 12.0576i) q^{36} +(-16.8835 + 29.2431i) q^{37} +(10.0159 + 17.3481i) q^{38} +(-166.771 + 90.1547i) q^{39} +(-10.6355 - 6.14040i) q^{40} +274.227 q^{41} +(8.28707 + 12.2560i) q^{42} +248.354 q^{43} +(119.531 + 69.0113i) q^{44} +(-60.8484 - 120.509i) q^{45} +(-11.9791 - 20.7485i) q^{46} +(229.515 - 397.532i) q^{47} +(-329.480 - 9.23066i) q^{48} +(109.744 - 324.970i) q^{49} +3.84343i q^{50} +(80.9411 - 131.543i) q^{51} +(252.026 - 145.507i) q^{52} +(-211.972 + 122.382i) q^{53} +(17.7081 + 12.3140i) q^{54} -86.5197i q^{55} +(-26.5252 - 36.9545i) q^{56} +(18.9609 - 676.791i) q^{57} +(12.7239 - 22.0385i) q^{58} +(292.478 + 506.587i) q^{59} +(98.5494 + 182.300i) q^{60} +(-221.862 - 128.092i) q^{61} -2.30758 q^{62} +(-21.4667 - 499.586i) q^{63} +502.946 q^{64} +(-157.983 - 91.2115i) q^{65} +(6.57359 + 12.1600i) q^{66} +(-137.355 - 237.906i) q^{67} +(-118.545 + 205.326i) q^{68} +(-22.6774 + 809.448i) q^{69} +(-5.86522 + 12.9719i) q^{70} +1069.38i q^{71} +(-55.4851 - 36.3216i) q^{72} +(-861.294 + 497.268i) q^{73} +(4.49574 - 2.59562i) q^{74} +(68.0770 - 110.637i) q^{75} +1039.32i q^{76} +(132.032 - 292.011i) q^{77} +(29.1340 + 0.816213i) q^{78} +(-5.81624 + 10.0740i) q^{79} +(-158.583 - 274.674i) q^{80} +(-291.632 - 668.126i) q^{81} +(-36.5107 - 21.0794i) q^{82} +584.631 q^{83} +(54.4163 + 765.667i) q^{84} +148.621 q^{85} +(-33.0660 - 19.0906i) q^{86} +(-756.630 + 409.027i) q^{87} +(-21.2506 - 36.8071i) q^{88} +(-548.569 + 950.149i) q^{89} +(-1.16200 + 20.7220i) q^{90} +(-394.014 - 548.935i) q^{91} -1243.03i q^{92} +(66.4260 + 40.8732i) q^{93} +(-61.1154 + 35.2850i) q^{94} +(564.214 - 325.749i) q^{95} +(130.115 + 80.0621i) q^{96} +1117.90i q^{97} +(-39.5912 + 34.8307i) q^{98} +(26.1578 - 466.473i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + O(q^{10}) \) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + 36q^{11} + 246q^{12} + 18q^{14} + 20q^{15} - 376q^{16} - 72q^{17} - 442q^{18} - 198q^{19} - 640q^{20} - 218q^{21} + 204q^{22} + 72q^{23} - 50q^{24} - 400q^{25} - 312q^{26} + 508q^{27} + 350q^{28} + 40q^{30} + 510q^{31} + 810q^{32} + 290q^{33} - 70q^{35} - 612q^{36} - 658q^{37} - 192q^{38} - 648q^{39} - 1404q^{41} + 1892q^{42} + 332q^{43} + 2034q^{44} - 490q^{45} - 468q^{46} + 408q^{47} + 2810q^{48} + 980q^{49} - 888q^{51} + 3378q^{52} + 1152q^{53} + 2714q^{54} - 3354q^{56} - 816q^{57} - 1080q^{58} - 48q^{59} - 420q^{60} - 1662q^{61} - 2076q^{62} + 874q^{63} - 1952q^{64} + 870q^{65} - 1892q^{66} - 1298q^{67} + 1182q^{68} + 2450q^{69} - 450q^{70} - 2708q^{72} + 378q^{73} + 2898q^{74} - 50q^{75} - 3528q^{77} - 1896q^{78} - 326q^{79} - 1880q^{80} - 3308q^{81} - 2916q^{82} - 1536q^{83} + 1380q^{84} + 720q^{85} + 5202q^{86} - 1090q^{87} + 1668q^{88} - 1590q^{89} + 910q^{90} + 2082q^{91} - 4950q^{93} - 1152q^{94} + 990q^{95} + 7416q^{96} - 7830q^{98} + 3128q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.133140 0.0768685i −0.0470722 0.0271771i 0.476279 0.879294i \(-0.341985\pi\)
−0.523351 + 0.852117i \(0.675318\pi\)
\(3\) 2.47104 + 4.57099i 0.475551 + 0.879688i
\(4\) −3.98818 6.90773i −0.498523 0.863467i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) 0.0223714 0.798528i 0.00152218 0.0543329i
\(7\) −15.0457 + 10.7995i −0.812389 + 0.583116i
\(8\) 2.45616i 0.108548i
\(9\) −14.7880 + 22.5902i −0.547703 + 0.836673i
\(10\) 0.665701 0.384343i 0.0210513 0.0121540i
\(11\) −14.9856 + 8.65197i −0.410758 + 0.237152i −0.691116 0.722744i \(-0.742880\pi\)
0.280357 + 0.959896i \(0.409547\pi\)
\(12\) 21.7203 35.2992i 0.522509 0.849167i
\(13\) 36.4846i 0.778385i 0.921156 + 0.389192i \(0.127246\pi\)
−0.921156 + 0.389192i \(0.872754\pi\)
\(14\) 2.83332 0.281303i 0.0540883 0.00537011i
\(15\) −25.9706 0.727588i −0.447038 0.0125242i
\(16\) −31.7167 + 54.9349i −0.495573 + 0.858357i
\(17\) −14.8621 25.7418i −0.212034 0.367254i 0.740317 0.672258i \(-0.234675\pi\)
−0.952351 + 0.305004i \(0.901342\pi\)
\(18\) 3.70535 1.87093i 0.0485199 0.0244990i
\(19\) −112.843 65.1498i −1.36252 0.786652i −0.372562 0.928007i \(-0.621521\pi\)
−0.989959 + 0.141355i \(0.954854\pi\)
\(20\) 39.8818 0.445892
\(21\) −86.5426 42.0878i −0.899292 0.437348i
\(22\) 2.66026 0.0257804
\(23\) 134.961 + 77.9197i 1.22353 + 0.706408i 0.965670 0.259773i \(-0.0836478\pi\)
0.257865 + 0.966181i \(0.416981\pi\)
\(24\) −11.2271 + 6.06926i −0.0954883 + 0.0516201i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) 2.80452 4.85757i 0.0211543 0.0366403i
\(27\) −139.801 11.7746i −0.996472 0.0839268i
\(28\) 134.605 + 60.8612i 0.908495 + 0.410775i
\(29\) 165.529i 1.05993i 0.848021 + 0.529963i \(0.177794\pi\)
−0.848021 + 0.529963i \(0.822206\pi\)
\(30\) 3.40180 + 2.09319i 0.0207027 + 0.0127388i
\(31\) 12.9990 7.50496i 0.0753123 0.0434816i −0.461871 0.886947i \(-0.652822\pi\)
0.537183 + 0.843466i \(0.319488\pi\)
\(32\) 25.4623 14.7007i 0.140661 0.0812105i
\(33\) −76.5782 47.1200i −0.403956 0.248562i
\(34\) 4.56970i 0.0230499i
\(35\) −9.14885 92.1482i −0.0441839 0.445026i
\(36\) 215.024 + 12.0576i 0.995482 + 0.0558224i
\(37\) −16.8835 + 29.2431i −0.0750170 + 0.129933i −0.901094 0.433625i \(-0.857234\pi\)
0.826077 + 0.563558i \(0.190568\pi\)
\(38\) 10.0159 + 17.3481i 0.0427579 + 0.0740588i
\(39\) −166.771 + 90.1547i −0.684736 + 0.370162i
\(40\) −10.6355 6.14040i −0.0420404 0.0242721i
\(41\) 274.227 1.04456 0.522282 0.852773i \(-0.325081\pi\)
0.522282 + 0.852773i \(0.325081\pi\)
\(42\) 8.28707 + 12.2560i 0.0304458 + 0.0450271i
\(43\) 248.354 0.880784 0.440392 0.897806i \(-0.354840\pi\)
0.440392 + 0.897806i \(0.354840\pi\)
\(44\) 119.531 + 69.0113i 0.409545 + 0.236451i
\(45\) −60.8484 120.509i −0.201572 0.399210i
\(46\) −11.9791 20.7485i −0.0383963 0.0665043i
\(47\) 229.515 397.532i 0.712302 1.23374i −0.251689 0.967808i \(-0.580986\pi\)
0.963991 0.265936i \(-0.0856808\pi\)
\(48\) −329.480 9.23066i −0.990757 0.0277569i
\(49\) 109.744 324.970i 0.319953 0.947434i
\(50\) 3.84343i 0.0108709i
\(51\) 80.9411 131.543i 0.222236 0.361172i
\(52\) 252.026 145.507i 0.672110 0.388043i
\(53\) −211.972 + 122.382i −0.549371 + 0.317179i −0.748868 0.662719i \(-0.769402\pi\)
0.199497 + 0.979898i \(0.436069\pi\)
\(54\) 17.7081 + 12.3140i 0.0446252 + 0.0310319i
\(55\) 86.5197i 0.212115i
\(56\) −26.5252 36.9545i −0.0632960 0.0881832i
\(57\) 18.9609 676.791i 0.0440602 1.57269i
\(58\) 12.7239 22.0385i 0.0288058 0.0498931i
\(59\) 292.478 + 506.587i 0.645379 + 1.11783i 0.984214 + 0.176984i \(0.0566340\pi\)
−0.338834 + 0.940846i \(0.610033\pi\)
\(60\) 98.5494 + 182.300i 0.212045 + 0.392246i
\(61\) −221.862 128.092i −0.465680 0.268861i 0.248749 0.968568i \(-0.419980\pi\)
−0.714430 + 0.699707i \(0.753314\pi\)
\(62\) −2.30758 −0.00472682
\(63\) −21.4667 499.586i −0.0429294 0.999078i
\(64\) 502.946 0.982317
\(65\) −157.983 91.2115i −0.301467 0.174052i
\(66\) 6.57359 + 12.1600i 0.0122599 + 0.0226787i
\(67\) −137.355 237.906i −0.250457 0.433804i 0.713195 0.700966i \(-0.247248\pi\)
−0.963652 + 0.267162i \(0.913914\pi\)
\(68\) −118.545 + 205.326i −0.211408 + 0.366169i
\(69\) −22.6774 + 809.448i −0.0395657 + 1.41226i
\(70\) −5.86522 + 12.9719i −0.0100147 + 0.0221491i
\(71\) 1069.38i 1.78750i 0.448569 + 0.893748i \(0.351934\pi\)
−0.448569 + 0.893748i \(0.648066\pi\)
\(72\) −55.4851 36.3216i −0.0908191 0.0594520i
\(73\) −861.294 + 497.268i −1.38092 + 0.797272i −0.992268 0.124114i \(-0.960391\pi\)
−0.388648 + 0.921386i \(0.627058\pi\)
\(74\) 4.49574 2.59562i 0.00706242 0.00407749i
\(75\) 68.0770 110.637i 0.104811 0.170337i
\(76\) 1039.32i 1.56866i
\(77\) 132.032 292.011i 0.195409 0.432179i
\(78\) 29.1340 + 0.816213i 0.0422919 + 0.00118485i
\(79\) −5.81624 + 10.0740i −0.00828327 + 0.0143470i −0.870137 0.492809i \(-0.835970\pi\)
0.861854 + 0.507156i \(0.169303\pi\)
\(80\) −158.583 274.674i −0.221627 0.383869i
\(81\) −291.632 668.126i −0.400044 0.916496i
\(82\) −36.5107 21.0794i −0.0491699 0.0283882i
\(83\) 584.631 0.773152 0.386576 0.922258i \(-0.373658\pi\)
0.386576 + 0.922258i \(0.373658\pi\)
\(84\) 54.4163 + 765.667i 0.0706822 + 0.994537i
\(85\) 148.621 0.189649
\(86\) −33.0660 19.0906i −0.0414604 0.0239372i
\(87\) −756.630 + 409.027i −0.932405 + 0.504049i
\(88\) −21.2506 36.8071i −0.0257423 0.0445870i
\(89\) −548.569 + 950.149i −0.653350 + 1.13164i 0.328955 + 0.944346i \(0.393304\pi\)
−0.982305 + 0.187290i \(0.940030\pi\)
\(90\) −1.16200 + 20.7220i −0.00136095 + 0.0242698i
\(91\) −394.014 548.935i −0.453888 0.632352i
\(92\) 1243.03i 1.40864i
\(93\) 66.4260 + 40.8732i 0.0740651 + 0.0455737i
\(94\) −61.1154 + 35.2850i −0.0670592 + 0.0387167i
\(95\) 564.214 325.749i 0.609338 0.351801i
\(96\) 130.115 + 80.0621i 0.138331 + 0.0851178i
\(97\) 1117.90i 1.17016i 0.810976 + 0.585079i \(0.198936\pi\)
−0.810976 + 0.585079i \(0.801064\pi\)
\(98\) −39.5912 + 34.8307i −0.0408094 + 0.0359024i
\(99\) 26.1578 466.473i 0.0265552 0.473559i
\(100\) −99.7046 + 172.693i −0.0997046 + 0.172693i
\(101\) −864.575 1497.49i −0.851767 1.47530i −0.879612 0.475691i \(-0.842198\pi\)
0.0278458 0.999612i \(-0.491135\pi\)
\(102\) −20.8881 + 11.2919i −0.0202767 + 0.0109614i
\(103\) −977.085 564.120i −0.934709 0.539655i −0.0464113 0.998922i \(-0.514778\pi\)
−0.888298 + 0.459268i \(0.848112\pi\)
\(104\) −89.6120 −0.0844921
\(105\) 398.602 269.521i 0.370472 0.250500i
\(106\) 37.6294 0.0344801
\(107\) −882.249 509.367i −0.797105 0.460209i 0.0453528 0.998971i \(-0.485559\pi\)
−0.842458 + 0.538762i \(0.818892\pi\)
\(108\) 476.217 + 1012.67i 0.424296 + 0.902260i
\(109\) 73.1821 + 126.755i 0.0643080 + 0.111385i 0.896387 0.443273i \(-0.146183\pi\)
−0.832079 + 0.554657i \(0.812849\pi\)
\(110\) −6.65064 + 11.5192i −0.00576467 + 0.00998470i
\(111\) −175.390 4.91369i −0.149975 0.00420168i
\(112\) −116.068 1169.05i −0.0979235 0.986296i
\(113\) 911.520i 0.758837i 0.925225 + 0.379419i \(0.123876\pi\)
−0.925225 + 0.379419i \(0.876124\pi\)
\(114\) −54.5484 + 88.6506i −0.0448151 + 0.0728324i
\(115\) −674.804 + 389.598i −0.547181 + 0.315915i
\(116\) 1143.43 660.158i 0.915212 0.528398i
\(117\) −824.193 539.533i −0.651254 0.426323i
\(118\) 89.9294i 0.0701582i
\(119\) 501.607 + 226.801i 0.386405 + 0.174713i
\(120\) 1.78707 63.7879i 0.00135947 0.0485251i
\(121\) −515.787 + 893.369i −0.387518 + 0.671201i
\(122\) 19.6925 + 34.1084i 0.0146137 + 0.0253117i
\(123\) 677.625 + 1253.49i 0.496743 + 0.918890i
\(124\) −103.684 59.8623i −0.0750898 0.0433531i
\(125\) 125.000 0.0894427
\(126\) −35.5444 + 68.1651i −0.0251313 + 0.0481955i
\(127\) 2237.94 1.56366 0.781830 0.623491i \(-0.214286\pi\)
0.781830 + 0.623491i \(0.214286\pi\)
\(128\) −270.661 156.266i −0.186900 0.107907i
\(129\) 613.693 + 1135.23i 0.418858 + 0.774815i
\(130\) 14.0226 + 24.2878i 0.00946048 + 0.0163860i
\(131\) −700.695 + 1213.64i −0.467329 + 0.809437i −0.999303 0.0373234i \(-0.988117\pi\)
0.531975 + 0.846760i \(0.321450\pi\)
\(132\) −20.0847 + 716.905i −0.0132436 + 0.472716i
\(133\) 2401.38 238.418i 1.56561 0.155440i
\(134\) 42.2332i 0.0272268i
\(135\) 400.488 575.920i 0.255323 0.367165i
\(136\) 63.2261 36.5036i 0.0398646 0.0230159i
\(137\) −775.480 + 447.724i −0.483604 + 0.279209i −0.721917 0.691980i \(-0.756739\pi\)
0.238313 + 0.971188i \(0.423405\pi\)
\(138\) 65.2403 106.027i 0.0402437 0.0654029i
\(139\) 430.880i 0.262926i −0.991321 0.131463i \(-0.958032\pi\)
0.991321 0.131463i \(-0.0419675\pi\)
\(140\) −600.048 + 430.702i −0.362238 + 0.260007i
\(141\) 2384.25 + 66.7969i 1.42405 + 0.0398959i
\(142\) 82.2018 142.378i 0.0485790 0.0841414i
\(143\) −315.664 546.745i −0.184595 0.319728i
\(144\) −771.963 1528.86i −0.446738 0.884757i
\(145\) −716.760 413.821i −0.410508 0.237007i
\(146\) 152.897 0.0866703
\(147\) 1756.62 301.374i 0.985600 0.169094i
\(148\) 269.338 0.149591
\(149\) −1266.00 730.926i −0.696073 0.401878i 0.109810 0.993953i \(-0.464976\pi\)
−0.805883 + 0.592075i \(0.798309\pi\)
\(150\) −17.5683 + 9.49724i −0.00956296 + 0.00516964i
\(151\) −757.698 1312.37i −0.408348 0.707280i 0.586357 0.810053i \(-0.300562\pi\)
−0.994705 + 0.102773i \(0.967228\pi\)
\(152\) 160.018 277.160i 0.0853895 0.147899i
\(153\) 801.292 + 44.9331i 0.423403 + 0.0237426i
\(154\) −40.0253 + 28.7293i −0.0209437 + 0.0150329i
\(155\) 75.0496i 0.0388911i
\(156\) 1287.88 + 792.455i 0.660979 + 0.406713i
\(157\) 1490.94 860.793i 0.757897 0.437572i −0.0706433 0.997502i \(-0.522505\pi\)
0.828540 + 0.559930i \(0.189172\pi\)
\(158\) 1.54875 0.894172i 0.000779823 0.000450231i
\(159\) −1083.20 666.513i −0.540273 0.332440i
\(160\) 147.007i 0.0726368i
\(161\) −2872.07 + 285.150i −1.40590 + 0.139584i
\(162\) −12.5299 + 111.372i −0.00607680 + 0.0540135i
\(163\) 480.549 832.334i 0.230917 0.399960i −0.727161 0.686467i \(-0.759161\pi\)
0.958078 + 0.286507i \(0.0924941\pi\)
\(164\) −1093.67 1894.29i −0.520739 0.901946i
\(165\) 395.481 213.793i 0.186595 0.100871i
\(166\) −77.8379 44.9398i −0.0363940 0.0210121i
\(167\) 41.4822 0.0192215 0.00961075 0.999954i \(-0.496941\pi\)
0.00961075 + 0.999954i \(0.496941\pi\)
\(168\) 103.374 212.562i 0.0474732 0.0976163i
\(169\) 865.875 0.394117
\(170\) −19.7874 11.4242i −0.00892719 0.00515412i
\(171\) 3140.46 1585.70i 1.40443 0.709134i
\(172\) −990.483 1715.57i −0.439091 0.760528i
\(173\) 1109.55 1921.80i 0.487616 0.844575i −0.512283 0.858817i \(-0.671200\pi\)
0.999899 + 0.0142416i \(0.00453340\pi\)
\(174\) 132.179 + 3.70311i 0.0575889 + 0.00161340i
\(175\) 421.886 + 190.755i 0.182237 + 0.0823984i
\(176\) 1097.65i 0.470103i
\(177\) −1592.88 + 2588.71i −0.676431 + 1.09932i
\(178\) 146.073 84.3353i 0.0615092 0.0355124i
\(179\) 454.441 262.372i 0.189757 0.109556i −0.402112 0.915591i \(-0.631724\pi\)
0.591869 + 0.806034i \(0.298390\pi\)
\(180\) −589.771 + 900.937i −0.244216 + 0.373066i
\(181\) 3053.58i 1.25398i 0.779026 + 0.626992i \(0.215714\pi\)
−0.779026 + 0.626992i \(0.784286\pi\)
\(182\) 10.2632 + 103.373i 0.00418001 + 0.0421015i
\(183\) 37.2793 1330.65i 0.0150588 0.537510i
\(184\) −191.383 + 331.485i −0.0766791 + 0.132812i
\(185\) −84.4174 146.215i −0.0335486 0.0581079i
\(186\) −5.70211 10.5479i −0.00224784 0.00415813i
\(187\) 445.435 + 257.172i 0.174190 + 0.100568i
\(188\) −3661.39 −1.42040
\(189\) 2230.56 1332.62i 0.858462 0.512877i
\(190\) −100.159 −0.0382438
\(191\) 3214.37 + 1855.82i 1.21772 + 0.703049i 0.964429 0.264343i \(-0.0851550\pi\)
0.253287 + 0.967391i \(0.418488\pi\)
\(192\) 1242.80 + 2298.97i 0.467142 + 0.864133i
\(193\) 1684.11 + 2916.97i 0.628109 + 1.08792i 0.987931 + 0.154895i \(0.0495041\pi\)
−0.359822 + 0.933021i \(0.617163\pi\)
\(194\) 85.9311 148.837i 0.0318015 0.0550819i
\(195\) 26.5457 947.526i 0.00974862 0.347968i
\(196\) −2682.48 + 537.958i −0.977581 + 0.196049i
\(197\) 4539.50i 1.64176i 0.571103 + 0.820879i \(0.306516\pi\)
−0.571103 + 0.820879i \(0.693484\pi\)
\(198\) −39.3398 + 60.0957i −0.0141200 + 0.0215698i
\(199\) −618.443 + 357.058i −0.220303 + 0.127192i −0.606090 0.795396i \(-0.707263\pi\)
0.385788 + 0.922588i \(0.373930\pi\)
\(200\) 53.1774 30.7020i 0.0188011 0.0108548i
\(201\) 748.059 1215.73i 0.262508 0.426620i
\(202\) 265.834i 0.0925943i
\(203\) −1787.62 2490.49i −0.618060 0.861073i
\(204\) −1231.47 34.5008i −0.422649 0.0118409i
\(205\) −685.568 + 1187.44i −0.233571 + 0.404558i
\(206\) 86.7262 + 150.214i 0.0293325 + 0.0508054i
\(207\) −3756.02 + 1896.52i −1.26117 + 0.636797i
\(208\) −2004.28 1157.17i −0.668132 0.385746i
\(209\) 2254.70 0.746223
\(210\) −73.7876 + 5.24412i −0.0242468 + 0.00172323i
\(211\) −3219.39 −1.05039 −0.525194 0.850983i \(-0.676007\pi\)
−0.525194 + 0.850983i \(0.676007\pi\)
\(212\) 1690.77 + 976.166i 0.547748 + 0.316242i
\(213\) −4888.14 + 2642.48i −1.57244 + 0.850046i
\(214\) 78.3086 + 135.634i 0.0250143 + 0.0433261i
\(215\) −620.886 + 1075.41i −0.196949 + 0.341126i
\(216\) 28.9203 343.374i 0.00911008 0.108165i
\(217\) −114.529 + 253.299i −0.0358281 + 0.0792398i
\(218\) 22.5016i 0.00699083i
\(219\) −4401.30 2708.20i −1.35805 0.835632i
\(220\) −597.655 + 345.056i −0.183154 + 0.105744i
\(221\) 939.180 542.236i 0.285865 0.165044i
\(222\) 22.9737 + 14.1361i 0.00694547 + 0.00427368i
\(223\) 4724.84i 1.41883i −0.704792 0.709414i \(-0.748960\pi\)
0.704792 0.709414i \(-0.251040\pi\)
\(224\) −224.338 + 496.160i −0.0669161 + 0.147996i
\(225\) 673.941 + 37.7918i 0.199686 + 0.0111976i
\(226\) 70.0672 121.360i 0.0206230 0.0357201i
\(227\) 1390.18 + 2407.86i 0.406474 + 0.704033i 0.994492 0.104814i \(-0.0334249\pi\)
−0.588018 + 0.808848i \(0.700092\pi\)
\(228\) −4750.71 + 2568.19i −1.37993 + 0.745976i
\(229\) 2545.85 + 1469.85i 0.734649 + 0.424150i 0.820120 0.572191i \(-0.193906\pi\)
−0.0854716 + 0.996341i \(0.527240\pi\)
\(230\) 119.791 0.0343427
\(231\) 1661.04 118.051i 0.473110 0.0336241i
\(232\) −406.564 −0.115053
\(233\) 5228.24 + 3018.53i 1.47002 + 0.848714i 0.999434 0.0336426i \(-0.0107108\pi\)
0.470582 + 0.882356i \(0.344044\pi\)
\(234\) 68.2601 + 135.188i 0.0190697 + 0.0377672i
\(235\) 1147.58 + 1987.66i 0.318551 + 0.551747i
\(236\) 2332.91 4040.72i 0.643473 1.11453i
\(237\) −60.4205 1.69273i −0.0165600 0.000463944i
\(238\) −49.3502 68.7541i −0.0134408 0.0187255i
\(239\) 4322.85i 1.16996i −0.811046 0.584982i \(-0.801101\pi\)
0.811046 0.584982i \(-0.198899\pi\)
\(240\) 863.670 1403.61i 0.232290 0.377512i
\(241\) −3915.54 + 2260.64i −1.04657 + 0.604235i −0.921686 0.387937i \(-0.873188\pi\)
−0.124880 + 0.992172i \(0.539854\pi\)
\(242\) 137.344 79.2956i 0.0364827 0.0210633i
\(243\) 2333.37 2984.01i 0.615989 0.787754i
\(244\) 2043.42i 0.536133i
\(245\) 1132.80 + 1287.63i 0.295396 + 0.335770i
\(246\) 6.13486 218.978i 0.00159002 0.0567542i
\(247\) 2376.96 4117.02i 0.612318 1.06057i
\(248\) 18.4334 + 31.9275i 0.00471984 + 0.00817500i
\(249\) 1444.64 + 2672.35i 0.367673 + 0.680133i
\(250\) −16.6425 9.60857i −0.00421026 0.00243080i
\(251\) −3711.55 −0.933352 −0.466676 0.884428i \(-0.654549\pi\)
−0.466676 + 0.884428i \(0.654549\pi\)
\(252\) −3365.39 + 2140.73i −0.841270 + 0.535131i
\(253\) −2696.64 −0.670103
\(254\) −297.960 172.027i −0.0736049 0.0424958i
\(255\) 367.247 + 679.344i 0.0901878 + 0.166832i
\(256\) −1987.76 3442.90i −0.485293 0.840553i
\(257\) −1628.67 + 2820.94i −0.395307 + 0.684691i −0.993140 0.116929i \(-0.962695\pi\)
0.597834 + 0.801620i \(0.296028\pi\)
\(258\) 5.55605 198.318i 0.00134072 0.0478556i
\(259\) −61.7858 622.314i −0.0148231 0.149300i
\(260\) 1455.07i 0.347076i
\(261\) −3739.32 2447.83i −0.886812 0.580525i
\(262\) 186.581 107.723i 0.0439963 0.0254013i
\(263\) 3190.09 1841.80i 0.747945 0.431826i −0.0770059 0.997031i \(-0.524536\pi\)
0.824951 + 0.565204i \(0.191203\pi\)
\(264\) 115.734 188.088i 0.0269809 0.0438486i
\(265\) 1223.82i 0.283694i
\(266\) −338.047 152.847i −0.0779209 0.0352318i
\(267\) −5698.66 159.653i −1.30619 0.0365940i
\(268\) −1095.60 + 1897.63i −0.249717 + 0.432523i
\(269\) −2305.20 3992.72i −0.522492 0.904984i −0.999658 0.0261698i \(-0.991669\pi\)
0.477165 0.878814i \(-0.341664\pi\)
\(270\) −97.5912 + 45.8932i −0.0219971 + 0.0103443i
\(271\) 4246.10 + 2451.49i 0.951780 + 0.549510i 0.893633 0.448798i \(-0.148148\pi\)
0.0581466 + 0.998308i \(0.481481\pi\)
\(272\) 1885.50 0.420313
\(273\) 1535.56 3157.47i 0.340425 0.699996i
\(274\) 137.663 0.0303524
\(275\) 374.641 + 216.299i 0.0821517 + 0.0474303i
\(276\) 5681.89 3071.58i 1.23917 0.669881i
\(277\) 1735.84 + 3006.55i 0.376521 + 0.652153i 0.990553 0.137128i \(-0.0437870\pi\)
−0.614033 + 0.789281i \(0.710454\pi\)
\(278\) −33.1211 + 57.3674i −0.00714558 + 0.0123765i
\(279\) −22.6900 + 404.632i −0.00486888 + 0.0868268i
\(280\) 226.331 22.4710i 0.0483066 0.00479607i
\(281\) 5764.29i 1.22373i 0.790962 + 0.611866i \(0.209581\pi\)
−0.790962 + 0.611866i \(0.790419\pi\)
\(282\) −312.306 192.168i −0.0659487 0.0405795i
\(283\) 1522.02 878.739i 0.319699 0.184578i −0.331559 0.943434i \(-0.607575\pi\)
0.651258 + 0.758856i \(0.274241\pi\)
\(284\) 7387.01 4264.89i 1.54344 0.891108i
\(285\) 2883.19 + 1774.08i 0.599247 + 0.368728i
\(286\) 97.0584i 0.0200671i
\(287\) −4125.93 + 2961.50i −0.848592 + 0.609101i
\(288\) −44.4451 + 792.591i −0.00909359 + 0.162166i
\(289\) 2014.74 3489.63i 0.410083 0.710285i
\(290\) 63.6197 + 110.193i 0.0128823 + 0.0223129i
\(291\) −5109.90 + 2762.36i −1.02937 + 0.556470i
\(292\) 6870.00 + 3966.39i 1.37684 + 0.794917i
\(293\) 3080.27 0.614168 0.307084 0.951682i \(-0.400647\pi\)
0.307084 + 0.951682i \(0.400647\pi\)
\(294\) −257.042 94.9035i −0.0509898 0.0188261i
\(295\) −2924.78 −0.577245
\(296\) −71.8256 41.4685i −0.0141040 0.00814294i
\(297\) 2196.88 1033.11i 0.429213 0.201841i
\(298\) 112.370 + 194.631i 0.0218438 + 0.0378345i
\(299\) −2842.87 + 4923.99i −0.549857 + 0.952381i
\(300\) −1035.75 29.0175i −0.199331 0.00558443i
\(301\) −3736.66 + 2682.09i −0.715539 + 0.513599i
\(302\) 232.973i 0.0443909i
\(303\) 4708.61 7652.31i 0.892748 1.45087i
\(304\) 7157.99 4132.67i 1.35046 0.779687i
\(305\) 1109.31 640.460i 0.208259 0.120238i
\(306\) −103.230 67.5766i −0.0192852 0.0126245i
\(307\) 8885.73i 1.65191i −0.563738 0.825953i \(-0.690637\pi\)
0.563738 0.825953i \(-0.309363\pi\)
\(308\) −2543.71 + 252.549i −0.470588 + 0.0467219i
\(309\) 164.179 5860.21i 0.0302259 1.07889i
\(310\) 5.76895 9.99211i 0.00105695 0.00183069i
\(311\) −920.877 1595.01i −0.167904 0.290818i 0.769779 0.638311i \(-0.220367\pi\)
−0.937683 + 0.347493i \(0.887033\pi\)
\(312\) −221.434 409.616i −0.0401803 0.0743267i
\(313\) 374.901 + 216.449i 0.0677017 + 0.0390876i 0.533469 0.845820i \(-0.320888\pi\)
−0.465767 + 0.884907i \(0.654222\pi\)
\(314\) −264.672 −0.0475678
\(315\) 2216.94 + 1156.01i 0.396541 + 0.206774i
\(316\) 92.7850 0.0165176
\(317\) 3607.61 + 2082.86i 0.639192 + 0.369037i 0.784303 0.620378i \(-0.213021\pi\)
−0.145112 + 0.989415i \(0.546354\pi\)
\(318\) 92.9836 + 172.004i 0.0163970 + 0.0303317i
\(319\) −1432.15 2480.55i −0.251363 0.435374i
\(320\) −1257.37 + 2177.82i −0.219653 + 0.380450i
\(321\) 148.244 5291.42i 0.0257762 0.920057i
\(322\) 404.306 + 182.807i 0.0699724 + 0.0316379i
\(323\) 3873.04i 0.667188i
\(324\) −3452.15 + 4679.12i −0.591933 + 0.802319i
\(325\) 789.914 456.057i 0.134820 0.0778385i
\(326\) −127.961 + 73.8781i −0.0217395 + 0.0125513i
\(327\) −398.561 + 647.731i −0.0674021 + 0.109540i
\(328\) 673.546i 0.113385i
\(329\) 839.919 + 8459.76i 0.140748 + 1.41763i
\(330\) −69.0884 1.93557i −0.0115248 0.000322878i
\(331\) 90.4559 156.674i 0.0150209 0.0260169i −0.858417 0.512952i \(-0.828552\pi\)
0.873438 + 0.486935i \(0.161885\pi\)
\(332\) −2331.62 4038.48i −0.385434 0.667591i
\(333\) −410.933 813.846i −0.0676246 0.133929i
\(334\) −5.52295 3.18868i −0.000904797 0.000522385i
\(335\) 1373.55 0.224016
\(336\) 5056.93 3419.32i 0.821066 0.555176i
\(337\) 1270.88 0.205428 0.102714 0.994711i \(-0.467247\pi\)
0.102714 + 0.994711i \(0.467247\pi\)
\(338\) −115.283 66.5585i −0.0185519 0.0107110i
\(339\) −4166.55 + 2252.40i −0.667540 + 0.360866i
\(340\) −592.726 1026.63i −0.0945443 0.163756i
\(341\) −129.865 + 224.933i −0.0206235 + 0.0357209i
\(342\) −540.012 30.2816i −0.0853816 0.00478784i
\(343\) 1858.33 + 6074.56i 0.292537 + 0.956254i
\(344\) 609.998i 0.0956073i
\(345\) −3448.32 2121.82i −0.538119 0.331115i
\(346\) −295.451 + 170.579i −0.0459063 + 0.0265040i
\(347\) 7237.61 4178.64i 1.11970 0.646458i 0.178374 0.983963i \(-0.442916\pi\)
0.941324 + 0.337505i \(0.109583\pi\)
\(348\) 5843.03 + 3595.32i 0.900055 + 0.553821i
\(349\) 8009.35i 1.22845i −0.789129 0.614227i \(-0.789468\pi\)
0.789129 0.614227i \(-0.210532\pi\)
\(350\) −41.5069 57.8269i −0.00633896 0.00883136i
\(351\) 429.591 5100.59i 0.0653273 0.775639i
\(352\) −254.379 + 440.598i −0.0385184 + 0.0667158i
\(353\) −1606.90 2783.23i −0.242285 0.419649i 0.719080 0.694927i \(-0.244563\pi\)
−0.961365 + 0.275278i \(0.911230\pi\)
\(354\) 411.067 222.219i 0.0617174 0.0333638i
\(355\) −4630.56 2673.45i −0.692295 0.399696i
\(356\) 8751.17 1.30284
\(357\) 202.784 + 2853.28i 0.0300629 + 0.423001i
\(358\) −80.6725 −0.0119097
\(359\) −6481.42 3742.05i −0.952859 0.550134i −0.0588913 0.998264i \(-0.518757\pi\)
−0.893968 + 0.448131i \(0.852090\pi\)
\(360\) 295.990 149.453i 0.0433334 0.0218802i
\(361\) 5059.49 + 8763.30i 0.737643 + 1.27763i
\(362\) 234.725 406.555i 0.0340797 0.0590278i
\(363\) −5358.11 150.112i −0.774733 0.0217048i
\(364\) −2220.50 + 4910.99i −0.319741 + 0.707159i
\(365\) 4972.68i 0.713102i
\(366\) −107.248 + 174.297i −0.0153168 + 0.0248925i
\(367\) −1091.71 + 630.297i −0.155277 + 0.0896491i −0.575625 0.817714i \(-0.695241\pi\)
0.420348 + 0.907363i \(0.361908\pi\)
\(368\) −8561.02 + 4942.70i −1.21270 + 0.700153i
\(369\) −4055.26 + 6194.84i −0.572110 + 0.873958i
\(370\) 25.9562i 0.00364702i
\(371\) 1867.60 4130.51i 0.261351 0.578020i
\(372\) 17.4220 621.863i 0.00242820 0.0866723i
\(373\) −4319.97 + 7482.40i −0.599676 + 1.03867i 0.393192 + 0.919456i \(0.371371\pi\)
−0.992869 + 0.119214i \(0.961963\pi\)
\(374\) −39.5369 68.4799i −0.00546632 0.00946794i
\(375\) 308.879 + 571.374i 0.0425346 + 0.0786817i
\(376\) 976.401 + 563.726i 0.133920 + 0.0773190i
\(377\) −6039.24 −0.825031
\(378\) −399.414 + 5.96532i −0.0543482 + 0.000811701i
\(379\) −14223.5 −1.92773 −0.963867 0.266384i \(-0.914171\pi\)
−0.963867 + 0.266384i \(0.914171\pi\)
\(380\) −4500.37 2598.29i −0.607538 0.350762i
\(381\) 5530.02 + 10229.6i 0.743600 + 1.37553i
\(382\) −285.308 494.168i −0.0382137 0.0661880i
\(383\) 5208.11 9020.72i 0.694836 1.20349i −0.275400 0.961330i \(-0.588810\pi\)
0.970236 0.242162i \(-0.0778564\pi\)
\(384\) 45.4789 1623.33i 0.00604385 0.215729i
\(385\) 934.365 + 1301.75i 0.123687 + 0.172320i
\(386\) 517.821i 0.0682808i
\(387\) −3672.66 + 5610.37i −0.482408 + 0.736928i
\(388\) 7722.14 4458.38i 1.01039 0.583350i
\(389\) 10797.5 6233.94i 1.40734 0.812528i 0.412209 0.911089i \(-0.364757\pi\)
0.995131 + 0.0985609i \(0.0314239\pi\)
\(390\) −76.3692 + 124.113i −0.00991565 + 0.0161147i
\(391\) 4632.19i 0.599130i
\(392\) 798.177 + 269.548i 0.102842 + 0.0347302i
\(393\) −7278.98 203.927i −0.934291 0.0261750i
\(394\) 348.945 604.390i 0.0446183 0.0772811i
\(395\) −29.0812 50.3701i −0.00370439 0.00641620i
\(396\) −3326.60 + 1679.69i −0.422141 + 0.213150i
\(397\) −8261.81 4769.96i −1.04445 0.603016i −0.123363 0.992362i \(-0.539368\pi\)
−0.921092 + 0.389346i \(0.872701\pi\)
\(398\) 109.786 0.0138268
\(399\) 7023.69 + 10387.5i 0.881264 + 1.30333i
\(400\) 1585.83 0.198229
\(401\) 774.728 + 447.290i 0.0964790 + 0.0557022i 0.547463 0.836830i \(-0.315594\pi\)
−0.450984 + 0.892532i \(0.648927\pi\)
\(402\) −193.048 + 104.360i −0.0239511 + 0.0129477i
\(403\) 273.815 + 474.262i 0.0338454 + 0.0586220i
\(404\) −6896.17 + 11944.5i −0.849250 + 1.47094i
\(405\) 3622.15 + 407.511i 0.444410 + 0.0499984i
\(406\) 46.5637 + 468.995i 0.00569192 + 0.0573297i
\(407\) 584.302i 0.0711616i
\(408\) 323.091 + 198.804i 0.0392044 + 0.0241232i
\(409\) −2148.44 + 1240.40i −0.259739 + 0.149961i −0.624216 0.781252i \(-0.714581\pi\)
0.364476 + 0.931213i \(0.381248\pi\)
\(410\) 182.553 105.397i 0.0219894 0.0126956i
\(411\) −3962.78 2438.37i −0.475595 0.292643i
\(412\) 8999.26i 1.07612i
\(413\) −9871.38 4463.33i −1.17612 0.531782i
\(414\) 645.859 + 36.2170i 0.0766721 + 0.00429944i
\(415\) −1461.58 + 2531.53i −0.172882 + 0.299441i
\(416\) 536.348 + 928.981i 0.0632130 + 0.109488i
\(417\) 1969.55 1064.72i 0.231293 0.125035i
\(418\) −300.191 173.315i −0.0351263 0.0202802i
\(419\) 2031.63 0.236878 0.118439 0.992961i \(-0.462211\pi\)
0.118439 + 0.992961i \(0.462211\pi\)
\(420\) −3451.48 1678.54i −0.400988 0.195010i
\(421\) −8997.00 −1.04154 −0.520768 0.853698i \(-0.674354\pi\)
−0.520768 + 0.853698i \(0.674354\pi\)
\(422\) 428.630 + 247.470i 0.0494440 + 0.0285465i
\(423\) 5586.25 + 11063.5i 0.642110 + 1.27169i
\(424\) −300.590 520.638i −0.0344292 0.0596331i
\(425\) −371.551 + 643.546i −0.0424068 + 0.0734507i
\(426\) 853.931 + 23.9236i 0.0971200 + 0.00272090i
\(427\) 4721.38 468.758i 0.535090 0.0531259i
\(428\) 8125.79i 0.917698i
\(429\) 1719.15 2793.92i 0.193477 0.314433i
\(430\) 165.330 95.4532i 0.0185417 0.0107050i
\(431\) −13741.2 + 7933.48i −1.53571 + 0.886642i −0.536625 + 0.843821i \(0.680301\pi\)
−0.999083 + 0.0428210i \(0.986365\pi\)
\(432\) 5080.86 7306.51i 0.565864 0.813737i
\(433\) 6147.48i 0.682284i −0.940012 0.341142i \(-0.889186\pi\)
0.940012 0.341142i \(-0.110814\pi\)
\(434\) 34.7191 24.9206i 0.00384002 0.00275628i
\(435\) 120.437 4298.87i 0.0132747 0.473828i
\(436\) 583.727 1011.05i 0.0641180 0.111056i
\(437\) −10152.9 17585.3i −1.11139 1.92499i
\(438\) 377.814 + 698.892i 0.0412161 + 0.0762428i
\(439\) 5458.01 + 3151.19i 0.593387 + 0.342592i 0.766436 0.642321i \(-0.222028\pi\)
−0.173049 + 0.984913i \(0.555362\pi\)
\(440\) 212.506 0.0230246
\(441\) 5718.24 + 7284.77i 0.617453 + 0.786607i
\(442\) −166.724 −0.0179417
\(443\) 12071.4 + 6969.45i 1.29465 + 0.747468i 0.979475 0.201565i \(-0.0646026\pi\)
0.315178 + 0.949033i \(0.397936\pi\)
\(444\) 665.543 + 1231.14i 0.0711380 + 0.131593i
\(445\) −2742.84 4750.74i −0.292187 0.506083i
\(446\) −363.191 + 629.066i −0.0385597 + 0.0667873i
\(447\) 212.725 7593.03i 0.0225091 0.803441i
\(448\) −7567.16 + 5431.55i −0.798024 + 0.572804i
\(449\) 11463.6i 1.20490i 0.798157 + 0.602449i \(0.205808\pi\)
−0.798157 + 0.602449i \(0.794192\pi\)
\(450\) −86.8237 56.8365i −0.00909535 0.00595399i
\(451\) −4109.47 + 2372.60i −0.429063 + 0.247720i
\(452\) 6296.54 3635.31i 0.655231 0.378298i
\(453\) 4126.54 6706.35i 0.427995 0.695567i
\(454\) 427.445i 0.0441872i
\(455\) 3361.99 333.792i 0.346401 0.0343921i
\(456\) 1662.31 + 46.5710i 0.170712 + 0.00478264i
\(457\) 489.645 848.089i 0.0501195 0.0868095i −0.839877 0.542776i \(-0.817373\pi\)
0.889997 + 0.455967i \(0.150706\pi\)
\(458\) −225.970 391.392i −0.0230543 0.0399313i
\(459\) 1774.63 + 3773.73i 0.180464 + 0.383753i
\(460\) 5382.49 + 3107.58i 0.545565 + 0.314982i
\(461\) −9965.28 −1.00679 −0.503394 0.864057i \(-0.667916\pi\)
−0.503394 + 0.864057i \(0.667916\pi\)
\(462\) −230.225 111.964i −0.0231841 0.0112750i
\(463\) 8423.87 0.845552 0.422776 0.906234i \(-0.361056\pi\)
0.422776 + 0.906234i \(0.361056\pi\)
\(464\) −9093.29 5250.01i −0.909796 0.525271i
\(465\) −343.051 + 185.450i −0.0342121 + 0.0184947i
\(466\) −464.060 803.775i −0.0461312 0.0799016i
\(467\) 3656.16 6332.66i 0.362285 0.627495i −0.626052 0.779781i \(-0.715330\pi\)
0.988336 + 0.152286i \(0.0486635\pi\)
\(468\) −439.918 + 7845.06i −0.0434513 + 0.774868i
\(469\) 4635.86 + 2096.10i 0.456427 + 0.206373i
\(470\) 352.850i 0.0346292i
\(471\) 7618.84 + 4688.02i 0.745345 + 0.458625i
\(472\) −1244.26 + 718.373i −0.121338 + 0.0700546i
\(473\) −3721.75 + 2148.76i −0.361789 + 0.208879i
\(474\) 7.91428 + 4.86980i 0.000766909 + 0.000471893i
\(475\) 3257.49i 0.314661i
\(476\) −433.821 4369.49i −0.0417734 0.420747i
\(477\) 370.003 6598.28i 0.0355163 0.633364i
\(478\) −332.291 + 575.544i −0.0317963 + 0.0550728i
\(479\) −251.793 436.117i −0.0240182 0.0416007i 0.853767 0.520656i \(-0.174313\pi\)
−0.877785 + 0.479055i \(0.840979\pi\)
\(480\) −671.966 + 363.259i −0.0638978 + 0.0345425i
\(481\) −1066.92 615.987i −0.101138 0.0583921i
\(482\) 695.088 0.0656855
\(483\) −8400.39 12423.6i −0.791369 1.17038i
\(484\) 8228.21 0.772747
\(485\) −4840.64 2794.74i −0.453200 0.261655i
\(486\) −540.041 + 217.929i −0.0504049 + 0.0203405i
\(487\) 1580.86 + 2738.13i 0.147096 + 0.254778i 0.930153 0.367172i \(-0.119674\pi\)
−0.783057 + 0.621950i \(0.786341\pi\)
\(488\) 314.614 544.928i 0.0291843 0.0505486i
\(489\) 4992.05 + 139.857i 0.461653 + 0.0129336i
\(490\) −51.8432 258.512i −0.00477967 0.0238334i
\(491\) 6402.37i 0.588462i −0.955734 0.294231i \(-0.904936\pi\)
0.955734 0.294231i \(-0.0950636\pi\)
\(492\) 5956.29 9680.00i 0.545793 0.887009i
\(493\) 4261.01 2460.09i 0.389262 0.224741i
\(494\) −632.939 + 365.427i −0.0576463 + 0.0332821i
\(495\) 1954.49 + 1279.45i 0.177471 + 0.116176i
\(496\) 952.128i 0.0861932i
\(497\) −11548.7 16089.6i −1.04232 1.45214i
\(498\) 13.0791 466.844i 0.00117688 0.0420076i
\(499\) 1960.50 3395.69i 0.175880 0.304633i −0.764585 0.644522i \(-0.777056\pi\)
0.940465 + 0.339889i \(0.110390\pi\)
\(500\) −498.523 863.467i −0.0445892 0.0772308i
\(501\) 102.504 + 189.615i 0.00914080 + 0.0169089i
\(502\) 494.157 + 285.302i 0.0439349 + 0.0253658i
\(503\) −5461.33 −0.484113 −0.242056 0.970262i \(-0.577822\pi\)
−0.242056 + 0.970262i \(0.577822\pi\)
\(504\) 1227.06 52.7257i 0.108448 0.00465990i
\(505\) 8645.75 0.761843
\(506\) 359.031 + 207.286i 0.0315432 + 0.0182115i
\(507\) 2139.61 + 3957.91i 0.187423 + 0.346700i
\(508\) −8925.31 15459.1i −0.779521 1.35017i
\(509\) −7459.40 + 12920.1i −0.649572 + 1.12509i 0.333654 + 0.942696i \(0.391718\pi\)
−0.983225 + 0.182395i \(0.941615\pi\)
\(510\) 3.32486 118.678i 0.000288681 0.0103042i
\(511\) 7588.51 16783.2i 0.656939 1.45293i
\(512\) 3111.44i 0.268570i
\(513\) 15008.4 + 10436.7i 1.29169 + 0.898229i
\(514\) 433.683 250.387i 0.0372159 0.0214866i
\(515\) 4885.42 2820.60i 0.418015 0.241341i
\(516\) 5394.33 8766.72i 0.460217 0.747933i
\(517\) 7943.03i 0.675694i
\(518\) −39.6102 + 87.6043i −0.00335979 + 0.00743072i
\(519\) 11526.3 + 322.918i 0.974849 + 0.0273112i
\(520\) 224.030 388.031i 0.0188930 0.0327236i
\(521\) 4021.29 + 6965.07i 0.338149 + 0.585692i 0.984085 0.177700i \(-0.0568658\pi\)
−0.645935 + 0.763392i \(0.723532\pi\)
\(522\) 309.692 + 613.341i 0.0259672 + 0.0514276i
\(523\) 2018.19 + 1165.20i 0.168737 + 0.0974203i 0.581990 0.813196i \(-0.302274\pi\)
−0.413253 + 0.910616i \(0.635608\pi\)
\(524\) 11178.0 0.931896
\(525\) 170.555 + 2399.80i 0.0141783 + 0.199497i
\(526\) −566.306 −0.0469432
\(527\) −386.383 223.078i −0.0319376 0.0184392i
\(528\) 5017.33 2712.32i 0.413544 0.223558i
\(529\) 6059.46 + 10495.3i 0.498024 + 0.862603i
\(530\) −94.0735 + 162.940i −0.00770998 + 0.0133541i
\(531\) −15769.0 884.260i −1.28873 0.0722667i
\(532\) −11224.1 15637.2i −0.914708 1.27436i
\(533\) 10005.1i 0.813072i
\(534\) 746.448 + 459.303i 0.0604906 + 0.0372210i
\(535\) 4411.25 2546.83i 0.356476 0.205812i
\(536\) 584.336 337.367i 0.0470886 0.0271866i
\(537\) 2322.24 + 1428.92i 0.186615 + 0.114827i
\(538\) 708.789i 0.0567994i
\(539\) 1167.05 + 5819.38i 0.0932621 + 0.465044i
\(540\) −5575.52 469.592i −0.444319 0.0374223i
\(541\) 9042.88 15662.7i 0.718639 1.24472i −0.242900 0.970051i \(-0.578099\pi\)
0.961539 0.274668i \(-0.0885680\pi\)
\(542\) −376.885 652.783i −0.0298682 0.0517333i
\(543\) −13957.9 + 7545.52i −1.10312 + 0.596333i
\(544\) −756.844 436.964i −0.0596497 0.0344388i
\(545\) −731.821 −0.0575189
\(546\) −447.154 + 302.350i −0.0350484 + 0.0236985i
\(547\) 6873.98 0.537313 0.268657 0.963236i \(-0.413420\pi\)
0.268657 + 0.963236i \(0.413420\pi\)
\(548\) 6185.51 + 3571.21i 0.482175 + 0.278384i
\(549\) 6174.51 3117.68i 0.480003 0.242366i
\(550\) −33.2532 57.5962i −0.00257804 0.00446530i
\(551\) 10784.1 18678.7i 0.833793 1.44417i
\(552\) −1988.13 55.6992i −0.153298 0.00429478i
\(553\) −21.2848 214.383i −0.00163675 0.0164855i
\(554\) 533.724i 0.0409310i
\(555\) 459.751 747.175i 0.0351628 0.0571456i
\(556\) −2976.40 + 1718.43i −0.227028 + 0.131075i
\(557\) −10589.9 + 6114.09i −0.805582 + 0.465103i −0.845419 0.534103i \(-0.820649\pi\)
0.0398376 + 0.999206i \(0.487316\pi\)
\(558\) 34.1244 52.1286i 0.00258889 0.00395480i
\(559\) 9061.11i 0.685589i
\(560\) 5352.32 + 2420.04i 0.403887 + 0.182617i
\(561\) −74.8461 + 2671.56i −0.00563281 + 0.201058i
\(562\) 443.092 767.458i 0.0332575 0.0576037i
\(563\) 1734.41 + 3004.09i 0.129835 + 0.224880i 0.923612 0.383328i \(-0.125222\pi\)
−0.793778 + 0.608208i \(0.791889\pi\)
\(564\) −9047.43 16736.2i −0.675471 1.24951i
\(565\) −3947.00 2278.80i −0.293896 0.169681i
\(566\) −270.190 −0.0200652
\(567\) 11603.2 + 6902.93i 0.859414 + 0.511280i
\(568\) −2626.57 −0.194029
\(569\) −9690.69 5594.92i −0.713980 0.412217i 0.0985529 0.995132i \(-0.468579\pi\)
−0.812533 + 0.582915i \(0.801912\pi\)
\(570\) −247.497 457.828i −0.0181869 0.0336426i
\(571\) 9458.91 + 16383.3i 0.693245 + 1.20074i 0.970769 + 0.240017i \(0.0771530\pi\)
−0.277523 + 0.960719i \(0.589514\pi\)
\(572\) −2517.85 + 4361.04i −0.184050 + 0.318784i
\(573\) −540.108 + 19278.7i −0.0393776 + 1.40555i
\(574\) 776.973 77.1410i 0.0564987 0.00560941i
\(575\) 3895.98i 0.282563i
\(576\) −7437.56 + 11361.6i −0.538018 + 0.821878i
\(577\) −16834.9 + 9719.64i −1.21464 + 0.701272i −0.963766 0.266749i \(-0.914051\pi\)
−0.250872 + 0.968020i \(0.580717\pi\)
\(578\) −536.485 + 309.740i −0.0386070 + 0.0222898i
\(579\) −9171.94 + 14906.0i −0.658329 + 1.06990i
\(580\) 6601.58i 0.472613i
\(581\) −8796.16 + 6313.70i −0.628100 + 0.450837i
\(582\) 892.672 + 25.0090i 0.0635781 + 0.00178120i
\(583\) 2117.70 3667.96i 0.150439 0.260568i
\(584\) −1221.37 2115.48i −0.0865422 0.149896i
\(585\) 4396.73 2220.03i 0.310739 0.156901i
\(586\) −410.107 236.776i −0.0289102 0.0166913i
\(587\) 22159.7 1.55814 0.779070 0.626937i \(-0.215692\pi\)
0.779070 + 0.626937i \(0.215692\pi\)
\(588\) −9087.51 10932.3i −0.637351 0.766735i
\(589\) −1955.79 −0.136820
\(590\) 389.406 + 224.824i 0.0271722 + 0.0156879i
\(591\) −20750.0 + 11217.3i −1.44423 + 0.780739i
\(592\) −1070.98 1854.98i −0.0743528 0.128783i
\(593\) 9285.64 16083.2i 0.643028 1.11376i −0.341726 0.939800i \(-0.611011\pi\)
0.984753 0.173957i \(-0.0556553\pi\)
\(594\) −371.907 31.3235i −0.0256894 0.00216367i
\(595\) −2236.09 + 1605.02i −0.154069 + 0.110587i
\(596\) 11660.3i 0.801381i
\(597\) −3160.31 1944.60i −0.216654 0.133312i
\(598\) 757.000 437.054i 0.0517659 0.0298871i
\(599\) 16435.0 9488.76i 1.12106 0.647246i 0.179391 0.983778i \(-0.442587\pi\)
0.941672 + 0.336532i \(0.109254\pi\)
\(600\) 271.742 + 167.208i 0.0184897 + 0.0113771i
\(601\) 6978.97i 0.473674i −0.971549 0.236837i \(-0.923889\pi\)
0.971549 0.236837i \(-0.0761107\pi\)
\(602\) 703.668 69.8630i 0.0476401 0.00472990i
\(603\) 7405.56 + 415.272i 0.500129 + 0.0280451i
\(604\) −6043.68 + 10468.0i −0.407142 + 0.705190i
\(605\) −2578.93 4466.85i −0.173303 0.300170i
\(606\) −1215.13 + 656.886i −0.0814541 + 0.0440333i
\(607\) −8863.71 5117.47i −0.592697 0.342194i 0.173466 0.984840i \(-0.444503\pi\)
−0.766163 + 0.642646i \(0.777837\pi\)
\(608\) −3830.98 −0.255538
\(609\) 6966.73 14325.3i 0.463557 0.953184i
\(610\) −196.925 −0.0130709
\(611\) 14503.8 + 8373.76i 0.960328 + 0.554445i
\(612\) −2885.31 5714.32i −0.190575 0.377431i
\(613\) −5480.10 9491.81i −0.361075 0.625401i 0.627063 0.778969i \(-0.284257\pi\)
−0.988138 + 0.153568i \(0.950924\pi\)
\(614\) −683.033 + 1183.05i −0.0448941 + 0.0777588i
\(615\) −7121.84 199.524i −0.466960 0.0130823i
\(616\) 717.227 + 324.293i 0.0469121 + 0.0212112i
\(617\) 7305.62i 0.476682i 0.971181 + 0.238341i \(0.0766037\pi\)
−0.971181 + 0.238341i \(0.923396\pi\)
\(618\) −472.325 + 767.609i −0.0307438 + 0.0499640i
\(619\) −26035.4 + 15031.5i −1.69055 + 0.976040i −0.736481 + 0.676459i \(0.763514\pi\)
−0.954071 + 0.299582i \(0.903153\pi\)
\(620\) 518.422 299.311i 0.0335812 0.0193881i
\(621\) −17950.2 12482.4i −1.15993 0.806603i
\(622\) 283.146i 0.0182526i
\(623\) −2007.51 20219.9i −0.129100 1.30031i
\(624\) 336.777 12020.9i 0.0216056 0.771190i
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −33.2762 57.6361i −0.00212458 0.00367988i
\(627\) 5571.43 + 10306.2i 0.354867 + 0.656443i
\(628\) −11892.3 6866.00i −0.755658 0.436279i
\(629\) 1003.69 0.0636246
\(630\) −206.303 324.324i −0.0130465 0.0205101i
\(631\) 25464.3 1.60653 0.803263 0.595624i \(-0.203095\pi\)
0.803263 + 0.595624i \(0.203095\pi\)
\(632\) −24.7434 14.2856i −0.00155734 0.000899132i
\(633\) −7955.22 14715.8i −0.499513 0.924014i
\(634\) −320.212 554.624i −0.0200588 0.0347428i
\(635\) −5594.85 + 9690.56i −0.349645 + 0.605603i
\(636\) −284.099 + 10140.6i −0.0177126 + 0.632236i
\(637\) 11856.4 + 4003.95i 0.737468 + 0.249046i
\(638\) 440.348i 0.0273253i
\(639\) −24157.5 15814.0i −1.49555 0.979017i
\(640\) 1353.30 781.330i 0.0835844 0.0482575i
\(641\) 11576.8 6683.87i 0.713348 0.411852i −0.0989513 0.995092i \(-0.531549\pi\)
0.812300 + 0.583240i \(0.198215\pi\)
\(642\) −426.481 + 693.105i −0.0262178 + 0.0426085i
\(643\) 27659.7i 1.69641i 0.529666 + 0.848207i \(0.322317\pi\)
−0.529666 + 0.848207i \(0.677683\pi\)
\(644\) 13424.1 + 18702.2i 0.821401 + 1.14437i
\(645\) −6449.91 180.700i −0.393744 0.0110311i
\(646\) 297.715 515.657i 0.0181323 0.0314060i
\(647\) 11868.7 + 20557.2i 0.721186 + 1.24913i 0.960525 + 0.278194i \(0.0897360\pi\)
−0.239339 + 0.970936i \(0.576931\pi\)
\(648\) 1641.02 716.295i 0.0994838 0.0434239i
\(649\) −8765.94 5061.02i −0.530190 0.306105i
\(650\) −140.226 −0.00846171
\(651\) −1440.83 + 102.401i −0.0867444 + 0.00616496i
\(652\) −7666.06 −0.460469
\(653\) 7869.60 + 4543.51i 0.471610 + 0.272284i 0.716913 0.697162i \(-0.245554\pi\)
−0.245304 + 0.969446i \(0.578888\pi\)
\(654\) 102.855 55.6023i 0.00614975 0.00332450i
\(655\) −3503.48 6068.20i −0.208996 0.361991i
\(656\) −8697.57 + 15064.6i −0.517657 + 0.896608i
\(657\) 1503.41 26810.4i 0.0892750 1.59204i
\(658\) 538.463 1190.90i 0.0319019 0.0705563i
\(659\) 25926.8i 1.53257i −0.642499 0.766287i \(-0.722102\pi\)
0.642499 0.766287i \(-0.277898\pi\)
\(660\) −3054.08 1879.23i −0.180121 0.110832i
\(661\) 5148.52 2972.50i 0.302957 0.174912i −0.340814 0.940131i \(-0.610703\pi\)
0.643770 + 0.765219i \(0.277369\pi\)
\(662\) −24.0866 + 13.9064i −0.00141413 + 0.000816448i
\(663\) 4799.31 + 2953.10i 0.281131 + 0.172985i
\(664\) 1435.95i 0.0839241i
\(665\) −4971.06 + 10994.3i −0.289879 + 0.641114i
\(666\) −7.84744 + 139.944i −0.000456580 + 0.00814219i
\(667\) −12897.9 + 22339.9i −0.748741 + 1.29686i
\(668\) −165.439 286.548i −0.00958235 0.0165971i
\(669\) 21597.2 11675.2i 1.24813 0.674725i
\(670\) −182.875 105.583i −0.0105449 0.00608810i
\(671\) 4432.99 0.255043
\(672\) −2822.29 + 200.582i −0.162012 + 0.0115143i
\(673\) 10966.0 0.628095 0.314047 0.949407i \(-0.398315\pi\)
0.314047 + 0.949407i \(0.398315\pi\)
\(674\) −169.205 97.6905i −0.00966992 0.00558293i
\(675\) 1492.59 + 3173.97i 0.0851107 + 0.180987i
\(676\) −3453.27 5981.23i −0.196476 0.340307i
\(677\) −796.434 + 1379.46i −0.0452134 + 0.0783118i −0.887746 0.460333i \(-0.847730\pi\)
0.842533 + 0.538645i \(0.181063\pi\)
\(678\) 727.874 + 20.3920i 0.0412299 + 0.00115509i
\(679\) −12072.7 16819.5i −0.682337 0.950623i
\(680\) 365.036i 0.0205860i
\(681\) −7571.15 + 12304.4i −0.426031 + 0.692374i
\(682\) 34.5806 19.9651i 0.00194158 0.00112097i
\(683\) −22933.5 + 13240.7i −1.28481 + 0.741788i −0.977724 0.209893i \(-0.932688\pi\)
−0.307089 + 0.951681i \(0.599355\pi\)
\(684\) −23478.4 15369.4i −1.31245 0.859157i
\(685\) 4477.24i 0.249732i
\(686\) 219.524 951.615i 0.0122179 0.0529633i
\(687\) −427.777 + 15269.1i −0.0237565 + 0.847967i
\(688\) −7876.97 + 13643.3i −0.436492 + 0.756027i
\(689\) −4465.07 7733.72i −0.246888 0.427622i
\(690\) 296.009 + 547.566i 0.0163317 + 0.0302108i
\(691\) 1461.64 + 843.876i 0.0804678 + 0.0464581i 0.539694 0.841861i \(-0.318540\pi\)
−0.459226 + 0.888319i \(0.651873\pi\)
\(692\) −17700.3 −0.972350
\(693\) 4644.10 + 7300.89i 0.254567 + 0.400199i
\(694\) −1284.82 −0.0702755
\(695\) 1865.76 + 1077.20i 0.101831 + 0.0587921i
\(696\) −1004.64 1858.40i −0.0547135 0.101211i
\(697\) −4075.58 7059.11i −0.221483 0.383620i
\(698\) −615.667 + 1066.37i −0.0333859 + 0.0578260i
\(699\) −878.498 + 31357.2i −0.0475362 + 1.69676i
\(700\) −364.873 3675.04i −0.0197013 0.198434i
\(701\) 4560.98i 0.245743i −0.992423 0.122871i \(-0.960790\pi\)
0.992423 0.122871i \(-0.0392103\pi\)
\(702\) −449.271 + 646.071i −0.0241547 + 0.0347356i
\(703\) 3810.36 2199.91i 0.204424 0.118025i
\(704\) −7536.98 + 4351.48i −0.403495 + 0.232958i
\(705\) −6249.88 + 10157.1i −0.333878 + 0.542610i
\(706\) 494.079i 0.0263384i
\(707\) 29180.1 + 13193.8i 1.55224 + 0.701842i
\(708\) 24234.8 + 678.959i 1.28644 + 0.0360407i
\(709\) −2799.16 + 4848.29i −0.148272 + 0.256815i −0.930589 0.366066i \(-0.880704\pi\)
0.782317 + 0.622881i \(0.214038\pi\)
\(710\) 411.009 + 711.889i 0.0217252 + 0.0376292i
\(711\) −141.564 280.364i −0.00746702 0.0147883i
\(712\) −2333.72 1347.37i −0.122837 0.0709198i
\(713\) 2339.14 0.122863
\(714\) 192.329 395.473i 0.0100808 0.0207286i
\(715\) 3156.64 0.165107
\(716\) −3624.79 2092.77i −0.189196 0.109233i
\(717\) 19759.7 10681.9i 1.02920 0.556378i
\(718\) 575.292 + 996.435i 0.0299021 + 0.0517920i
\(719\) −2130.26 + 3689.72i −0.110494 + 0.191382i −0.915970 0.401248i \(-0.868577\pi\)
0.805475 + 0.592629i \(0.201910\pi\)
\(720\) 8550.07 + 479.451i 0.442559 + 0.0248168i
\(721\) 20793.1 2064.42i 1.07403 0.106634i
\(722\) 1555.66i 0.0801881i
\(723\) −20008.8 12311.8i −1.02923 0.633307i
\(724\) 21093.4 12178.3i 1.08277 0.625140i
\(725\) 3583.80 2069.11i 0.183585 0.105993i
\(726\) 701.841 + 431.856i 0.0358785 + 0.0220767i
\(727\) 32435.0i 1.65467i 0.561707 + 0.827336i \(0.310145\pi\)
−0.561707 + 0.827336i \(0.689855\pi\)
\(728\) 1348.27 967.760i 0.0686405 0.0492686i
\(729\) 19405.7 + 3292.20i 0.985913 + 0.167261i
\(730\) −382.243 + 662.064i −0.0193801 + 0.0335672i
\(731\) −3691.06 6393.10i −0.186756 0.323471i
\(732\) −9340.45 + 5049.35i −0.471629 + 0.254958i
\(733\) 1426.04 + 823.323i 0.0718579 + 0.0414872i 0.535498 0.844536i \(-0.320124\pi\)
−0.463641 + 0.886023i \(0.653457\pi\)
\(734\) 193.800 0.00974563
\(735\) −3086.55 + 8359.80i −0.154897 + 0.419532i
\(736\) 4581.89 0.229471
\(737\) 4116.72 + 2376.79i 0.205755 + 0.118793i
\(738\) 1016.11 513.060i 0.0506821 0.0255908i
\(739\) −3446.71 5969.88i −0.171569 0.297166i 0.767400 0.641169i \(-0.221550\pi\)
−0.938969 + 0.344003i \(0.888217\pi\)
\(740\) −673.344 + 1166.27i −0.0334495 + 0.0579362i
\(741\) 24692.4 + 691.780i 1.22416 + 0.0342958i
\(742\) −566.159 + 406.377i −0.0280113 + 0.0201059i
\(743\) 15079.0i 0.744545i −0.928124 0.372272i \(-0.878579\pi\)
0.928124 0.372272i \(-0.121421\pi\)
\(744\) −100.391 + 163.153i −0.00494693 + 0.00803962i
\(745\) 6330.01 3654.63i 0.311293 0.179725i
\(746\) 1150.32 664.139i 0.0564562 0.0325950i
\(747\) −8645.51 + 13206.9i −0.423457 + 0.646876i
\(748\) 4102.60i 0.200543i
\(749\) 18774.9 1864.05i 0.915915 0.0909357i
\(750\) 2.79643 99.8160i 0.000136148 0.00485969i
\(751\) 7920.87 13719.4i 0.384869 0.666613i −0.606882 0.794792i \(-0.707580\pi\)
0.991751 + 0.128179i \(0.0409132\pi\)
\(752\) 14558.9 + 25216.8i 0.705995 + 1.22282i
\(753\) −9171.38 16965.5i −0.443856 0.821058i
\(754\) 804.066 + 464.228i 0.0388360 + 0.0224220i
\(755\) 7576.98 0.365238
\(756\) −18101.3 10093.4i −0.870815 0.485573i
\(757\) 21422.4 1.02855 0.514273 0.857627i \(-0.328062\pi\)
0.514273 + 0.857627i \(0.328062\pi\)
\(758\) 1893.72 + 1093.34i 0.0907426 + 0.0523903i
\(759\) −6663.48 12326.3i −0.318668 0.589482i
\(760\) 800.091 + 1385.80i 0.0381873 + 0.0661424i
\(761\) 1309.82 2268.67i 0.0623927 0.108067i −0.833142 0.553060i \(-0.813460\pi\)
0.895534 + 0.444992i \(0.146794\pi\)
\(762\) 50.0659 1787.06i 0.00238018 0.0849583i
\(763\) −2469.96 1116.79i −0.117193 0.0529888i
\(764\) 29605.4i 1.40194i
\(765\) −2197.80 + 3357.36i −0.103871 + 0.158674i
\(766\) −1386.82 + 800.680i −0.0654149 + 0.0377673i
\(767\) −18482.6 + 10670.9i −0.870102 + 0.502354i
\(768\) 10825.7 17593.6i 0.508643 0.826633i
\(769\) 35239.7i 1.65250i −0.563301 0.826252i \(-0.690469\pi\)
0.563301 0.826252i \(-0.309531\pi\)
\(770\) −24.3383 245.138i −0.00113908 0.0114729i
\(771\) −16919.0 474.001i −0.790303 0.0221410i