# Properties

 Label 105.4.s.a.26.15 Level $105$ Weight $4$ Character 105.26 Analytic conductor $6.195$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 105.s (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$6.19520055060$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$16$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 26.15 Character $$\chi$$ $$=$$ 105.26 Dual form 105.4.s.a.101.15

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(3.95258 + 2.28202i) q^{2} +(3.88244 + 3.45350i) q^{3} +(6.41528 + 11.1116i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(7.46472 + 22.5101i) q^{6} +(-15.3726 - 10.3287i) q^{7} +22.0469i q^{8} +(3.14674 + 26.8160i) q^{9} +O(q^{10})$$ $$q+(3.95258 + 2.28202i) q^{2} +(3.88244 + 3.45350i) q^{3} +(6.41528 + 11.1116i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(7.46472 + 22.5101i) q^{6} +(-15.3726 - 10.3287i) q^{7} +22.0469i q^{8} +(3.14674 + 26.8160i) q^{9} +(-19.7629 + 11.4101i) q^{10} +(38.8392 - 22.4238i) q^{11} +(-13.4669 + 65.2952i) q^{12} -21.9561i q^{13} +(-37.1911 - 75.9059i) q^{14} +(-24.6602 + 8.17773i) q^{15} +(1.01069 - 1.75057i) q^{16} +(-18.3222 - 31.7351i) q^{17} +(-48.7571 + 113.173i) q^{18} +(91.7755 + 52.9866i) q^{19} -64.1528 q^{20} +(-24.0130 - 93.1900i) q^{21} +204.687 q^{22} +(-21.5307 - 12.4308i) q^{23} +(-76.1388 + 85.5957i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(50.1044 - 86.7834i) q^{26} +(-80.3919 + 114.979i) q^{27} +(16.1491 - 237.076i) q^{28} +31.6068i q^{29} +(-116.133 - 23.9520i) q^{30} +(-262.288 + 151.432i) q^{31} +(160.735 - 92.8003i) q^{32} +(228.232 + 47.0718i) q^{33} -167.247i q^{34} +(83.1563 - 40.7435i) q^{35} +(-277.781 + 206.997i) q^{36} +(130.913 - 226.748i) q^{37} +(241.834 + 418.868i) q^{38} +(75.8254 - 85.2434i) q^{39} +(-95.4658 - 55.1172i) q^{40} -294.707 q^{41} +(117.748 - 423.140i) q^{42} -302.029 q^{43} +(498.329 + 287.710i) q^{44} +(-123.984 - 53.4142i) q^{45} +(-56.7346 - 98.2673i) q^{46} +(59.6172 - 103.260i) q^{47} +(9.96952 - 3.30606i) q^{48} +(129.634 + 317.559i) q^{49} -114.101i q^{50} +(38.4618 - 186.485i) q^{51} +(243.967 - 140.855i) q^{52} +(560.586 - 323.654i) q^{53} +(-580.140 + 271.007i) q^{54} +224.238i q^{55} +(227.716 - 338.918i) q^{56} +(173.324 + 522.664i) q^{57} +(-72.1275 + 124.928i) q^{58} +(3.12046 + 5.40479i) q^{59} +(-249.069 - 221.551i) q^{60} +(-702.683 - 405.694i) q^{61} -1382.29 q^{62} +(228.602 - 444.734i) q^{63} +830.920 q^{64} +(95.0728 + 54.8903i) q^{65} +(794.686 + 706.886i) q^{66} +(13.4336 + 23.2677i) q^{67} +(235.085 - 407.178i) q^{68} +(-40.6622 - 122.618i) q^{69} +(421.660 + 28.7226i) q^{70} -639.735i q^{71} +(-591.209 + 69.3757i) q^{72} +(-619.765 + 357.821i) q^{73} +(1034.89 - 597.493i) q^{74} +(26.2398 - 127.226i) q^{75} +1359.69i q^{76} +(-828.671 - 56.4473i) q^{77} +(494.234 - 163.896i) q^{78} +(-312.723 + 541.652i) q^{79} +(5.05345 + 8.75283i) q^{80} +(-709.196 + 168.766i) q^{81} +(-1164.85 - 672.529i) q^{82} +630.475 q^{83} +(881.438 - 864.662i) q^{84} +183.222 q^{85} +(-1193.80 - 689.239i) q^{86} +(-109.154 + 122.712i) q^{87} +(494.376 + 856.284i) q^{88} +(-350.854 + 607.698i) q^{89} +(-368.163 - 494.058i) q^{90} +(-226.779 + 337.523i) q^{91} -318.987i q^{92} +(-1541.29 - 317.884i) q^{93} +(471.284 - 272.096i) q^{94} +(-458.878 + 264.933i) q^{95} +(944.530 + 194.805i) q^{96} +528.346i q^{97} +(-212.288 + 1551.01i) q^{98} +(723.535 + 970.951i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + O(q^{10})$$ $$32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + 36q^{11} + 246q^{12} + 18q^{14} + 20q^{15} - 376q^{16} - 72q^{17} - 442q^{18} - 198q^{19} - 640q^{20} - 218q^{21} + 204q^{22} + 72q^{23} - 50q^{24} - 400q^{25} - 312q^{26} + 508q^{27} + 350q^{28} + 40q^{30} + 510q^{31} + 810q^{32} + 290q^{33} - 70q^{35} - 612q^{36} - 658q^{37} - 192q^{38} - 648q^{39} - 1404q^{41} + 1892q^{42} + 332q^{43} + 2034q^{44} - 490q^{45} - 468q^{46} + 408q^{47} + 2810q^{48} + 980q^{49} - 888q^{51} + 3378q^{52} + 1152q^{53} + 2714q^{54} - 3354q^{56} - 816q^{57} - 1080q^{58} - 48q^{59} - 420q^{60} - 1662q^{61} - 2076q^{62} + 874q^{63} - 1952q^{64} + 870q^{65} - 1892q^{66} - 1298q^{67} + 1182q^{68} + 2450q^{69} - 450q^{70} - 2708q^{72} + 378q^{73} + 2898q^{74} - 50q^{75} - 3528q^{77} - 1896q^{78} - 326q^{79} - 1880q^{80} - 3308q^{81} - 2916q^{82} - 1536q^{83} + 1380q^{84} + 720q^{85} + 5202q^{86} - 1090q^{87} + 1668q^{88} - 1590q^{89} + 910q^{90} + 2082q^{91} - 4950q^{93} - 1152q^{94} + 990q^{95} + 7416q^{96} - 7830q^{98} + 3128q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/105\mathbb{Z}\right)^\times$$.

 $$n$$ $$22$$ $$31$$ $$71$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 3.95258 + 2.28202i 1.39745 + 0.806818i 0.994125 0.108239i $$-0.0345213\pi$$
0.403324 + 0.915057i $$0.367855\pi$$
$$3$$ 3.88244 + 3.45350i 0.747177 + 0.664626i
$$4$$ 6.41528 + 11.1116i 0.801909 + 1.38895i
$$5$$ −2.50000 + 4.33013i −0.223607 + 0.387298i
$$6$$ 7.46472 + 22.5101i 0.507910 + 1.53162i
$$7$$ −15.3726 10.3287i −0.830043 0.557699i
$$8$$ 22.0469i 0.974343i
$$9$$ 3.14674 + 26.8160i 0.116546 + 0.993185i
$$10$$ −19.7629 + 11.4101i −0.624958 + 0.360820i
$$11$$ 38.8392 22.4238i 1.06459 0.614640i 0.137890 0.990447i $$-0.455968\pi$$
0.926698 + 0.375807i $$0.122634\pi$$
$$12$$ −13.4669 + 65.2952i −0.323962 + 1.57076i
$$13$$ 21.9561i 0.468426i −0.972185 0.234213i $$-0.924749\pi$$
0.972185 0.234213i $$-0.0752513\pi$$
$$14$$ −37.1911 75.9059i −0.709981 1.44905i
$$15$$ −24.6602 + 8.17773i −0.424482 + 0.140765i
$$16$$ 1.01069 1.75057i 0.0157920 0.0273526i
$$17$$ −18.3222 31.7351i −0.261400 0.452758i 0.705214 0.708994i $$-0.250851\pi$$
−0.966614 + 0.256236i $$0.917517\pi$$
$$18$$ −48.7571 + 113.173i −0.638453 + 1.48196i
$$19$$ 91.7755 + 52.9866i 1.10814 + 0.639788i 0.938348 0.345692i $$-0.112356\pi$$
0.169796 + 0.985479i $$0.445689\pi$$
$$20$$ −64.1528 −0.717250
$$21$$ −24.0130 93.1900i −0.249527 0.968368i
$$22$$ 204.687 1.98361
$$23$$ −21.5307 12.4308i −0.195194 0.112695i 0.399218 0.916856i $$-0.369282\pi$$
−0.594412 + 0.804161i $$0.702615\pi$$
$$24$$ −76.1388 + 85.5957i −0.647573 + 0.728007i
$$25$$ −12.5000 21.6506i −0.100000 0.173205i
$$26$$ 50.1044 86.7834i 0.377934 0.654601i
$$27$$ −80.3919 + 114.979i −0.573016 + 0.819544i
$$28$$ 16.1491 237.076i 0.108996 1.60011i
$$29$$ 31.6068i 0.202387i 0.994867 + 0.101194i $$0.0322662\pi$$
−0.994867 + 0.101194i $$0.967734\pi$$
$$30$$ −116.133 23.9520i −0.706764 0.145767i
$$31$$ −262.288 + 151.432i −1.51962 + 0.877356i −0.519892 + 0.854232i $$0.674028\pi$$
−0.999733 + 0.0231240i $$0.992639\pi$$
$$32$$ 160.735 92.8003i 0.887943 0.512654i
$$33$$ 228.232 + 47.0718i 1.20394 + 0.248308i
$$34$$ 167.247i 0.843608i
$$35$$ 83.1563 40.7435i 0.401599 0.196769i
$$36$$ −277.781 + 206.997i −1.28602 + 0.958321i
$$37$$ 130.913 226.748i 0.581674 1.00749i −0.413607 0.910456i $$-0.635731\pi$$
0.995281 0.0970336i $$-0.0309354\pi$$
$$38$$ 241.834 + 418.868i 1.03238 + 1.78814i
$$39$$ 75.8254 85.2434i 0.311328 0.349997i
$$40$$ −95.4658 55.1172i −0.377362 0.217870i
$$41$$ −294.707 −1.12257 −0.561287 0.827621i $$-0.689693\pi$$
−0.561287 + 0.827621i $$0.689693\pi$$
$$42$$ 117.748 423.140i 0.432594 1.55457i
$$43$$ −302.029 −1.07114 −0.535570 0.844491i $$-0.679903\pi$$
−0.535570 + 0.844491i $$0.679903\pi$$
$$44$$ 498.329 + 287.710i 1.70741 + 0.985772i
$$45$$ −123.984 53.4142i −0.410719 0.176945i
$$46$$ −56.7346 98.2673i −0.181849 0.314972i
$$47$$ 59.6172 103.260i 0.185023 0.320468i −0.758562 0.651601i $$-0.774098\pi$$
0.943584 + 0.331133i $$0.107431\pi$$
$$48$$ 9.96952 3.30606i 0.0299787 0.00994143i
$$49$$ 129.634 + 317.559i 0.377943 + 0.925829i
$$50$$ 114.101i 0.322727i
$$51$$ 38.4618 186.485i 0.105603 0.512023i
$$52$$ 243.967 140.855i 0.650619 0.375635i
$$53$$ 560.586 323.654i 1.45287 0.838818i 0.454231 0.890884i $$-0.349914\pi$$
0.998644 + 0.0520662i $$0.0165807\pi$$
$$54$$ −580.140 + 271.007i −1.46198 + 0.682952i
$$55$$ 224.238i 0.549751i
$$56$$ 227.716 338.918i 0.543391 0.808747i
$$57$$ 173.324 + 522.664i 0.402761 + 1.21454i
$$58$$ −72.1275 + 124.928i −0.163290 + 0.282826i
$$59$$ 3.12046 + 5.40479i 0.00688557 + 0.0119262i 0.869448 0.494025i $$-0.164475\pi$$
−0.862562 + 0.505951i $$0.831142\pi$$
$$60$$ −249.069 221.551i −0.535912 0.476702i
$$61$$ −702.683 405.694i −1.47491 0.851538i −0.475308 0.879820i $$-0.657663\pi$$
−0.999600 + 0.0282811i $$0.990997\pi$$
$$62$$ −1382.29 −2.83146
$$63$$ 228.602 444.734i 0.457161 0.889384i
$$64$$ 830.920 1.62289
$$65$$ 95.0728 + 54.8903i 0.181420 + 0.104743i
$$66$$ 794.686 + 706.886i 1.48211 + 1.31836i
$$67$$ 13.4336 + 23.2677i 0.0244952 + 0.0424269i 0.878013 0.478637i $$-0.158869\pi$$
−0.853518 + 0.521063i $$0.825536\pi$$
$$68$$ 235.085 407.178i 0.419238 0.726142i
$$69$$ −40.6622 122.618i −0.0709443 0.213934i
$$70$$ 421.660 + 28.7226i 0.719971 + 0.0490430i
$$71$$ 639.735i 1.06933i −0.845064 0.534666i $$-0.820437\pi$$
0.845064 0.534666i $$-0.179563\pi$$
$$72$$ −591.209 + 69.3757i −0.967703 + 0.113556i
$$73$$ −619.765 + 357.821i −0.993671 + 0.573696i −0.906370 0.422486i $$-0.861158\pi$$
−0.0873014 + 0.996182i $$0.527824\pi$$
$$74$$ 1034.89 597.493i 1.62572 0.938610i
$$75$$ 26.2398 127.226i 0.0403989 0.195877i
$$76$$ 1359.69i 2.05221i
$$77$$ −828.671 56.4473i −1.22644 0.0835425i
$$78$$ 494.234 163.896i 0.717448 0.237918i
$$79$$ −312.723 + 541.652i −0.445368 + 0.771401i −0.998078 0.0619733i $$-0.980261\pi$$
0.552709 + 0.833374i $$0.313594\pi$$
$$80$$ 5.05345 + 8.75283i 0.00706241 + 0.0122324i
$$81$$ −709.196 + 168.766i −0.972834 + 0.231503i
$$82$$ −1164.85 672.529i −1.56874 0.905712i
$$83$$ 630.475 0.833778 0.416889 0.908957i $$-0.363120\pi$$
0.416889 + 0.908957i $$0.363120\pi$$
$$84$$ 881.438 864.662i 1.14491 1.12312i
$$85$$ 183.222 0.233803
$$86$$ −1193.80 689.239i −1.49686 0.864215i
$$87$$ −109.154 + 122.712i −0.134512 + 0.151219i
$$88$$ 494.376 + 856.284i 0.598871 + 1.03727i
$$89$$ −350.854 + 607.698i −0.417871 + 0.723773i −0.995725 0.0923667i $$-0.970557\pi$$
0.577854 + 0.816140i $$0.303890\pi$$
$$90$$ −368.163 494.058i −0.431197 0.578647i
$$91$$ −226.779 + 337.523i −0.261241 + 0.388813i
$$92$$ 318.987i 0.361486i
$$93$$ −1541.29 317.884i −1.71854 0.354442i
$$94$$ 471.284 272.096i 0.517119 0.298559i
$$95$$ −458.878 + 264.933i −0.495577 + 0.286122i
$$96$$ 944.530 + 194.805i 1.00417 + 0.207106i
$$97$$ 528.346i 0.553046i 0.961007 + 0.276523i $$0.0891822\pi$$
−0.961007 + 0.276523i $$0.910818\pi$$
$$98$$ −212.288 + 1551.01i −0.218820 + 1.59873i
$$99$$ 723.535 + 970.951i 0.734525 + 0.985700i
$$100$$ 160.382 277.790i 0.160382 0.277790i
$$101$$ 862.493 + 1493.88i 0.849716 + 1.47175i 0.881462 + 0.472255i $$0.156560\pi$$
−0.0317464 + 0.999496i $$0.510107\pi$$
$$102$$ 577.588 649.328i 0.560684 0.630324i
$$103$$ −337.686 194.963i −0.323041 0.186508i 0.329706 0.944083i $$-0.393050\pi$$
−0.652747 + 0.757576i $$0.726384\pi$$
$$104$$ 484.064 0.456407
$$105$$ 463.557 + 128.995i 0.430843 + 0.119892i
$$106$$ 2954.35 2.70709
$$107$$ 271.579 + 156.796i 0.245369 + 0.141664i 0.617642 0.786459i $$-0.288088\pi$$
−0.372273 + 0.928123i $$0.621421\pi$$
$$108$$ −1793.33 155.661i −1.59781 0.138689i
$$109$$ 395.429 + 684.903i 0.347479 + 0.601852i 0.985801 0.167918i $$-0.0537044\pi$$
−0.638322 + 0.769770i $$0.720371\pi$$
$$110$$ −511.718 + 886.321i −0.443549 + 0.768249i
$$111$$ 1291.33 428.228i 1.10422 0.366177i
$$112$$ −33.6181 + 16.4716i −0.0283626 + 0.0138966i
$$113$$ 2390.56i 1.99014i 0.0991983 + 0.995068i $$0.468372\pi$$
−0.0991983 + 0.995068i $$0.531628\pi$$
$$114$$ −507.654 + 2461.40i −0.417071 + 2.02221i
$$115$$ 107.654 62.1538i 0.0872935 0.0503989i
$$116$$ −351.201 + 202.766i −0.281105 + 0.162296i
$$117$$ 588.776 69.0901i 0.465234 0.0545930i
$$118$$ 28.4838i 0.0222216i
$$119$$ −46.1224 + 677.097i −0.0355297 + 0.521591i
$$120$$ −180.293 543.680i −0.137154 0.413591i
$$121$$ 340.158 589.170i 0.255566 0.442652i
$$122$$ −1851.61 3207.08i −1.37407 2.37996i
$$123$$ −1144.18 1017.77i −0.838760 0.746091i
$$124$$ −3365.30 1942.96i −2.43720 1.40712i
$$125$$ 125.000 0.0894427
$$126$$ 1918.46 1236.17i 1.35643 0.874023i
$$127$$ −2416.95 −1.68874 −0.844369 0.535762i $$-0.820024\pi$$
−0.844369 + 0.535762i $$0.820024\pi$$
$$128$$ 1998.40 + 1153.78i 1.37996 + 0.796722i
$$129$$ −1172.61 1043.06i −0.800331 0.711907i
$$130$$ 250.522 + 433.917i 0.169017 + 0.292747i
$$131$$ 718.896 1245.16i 0.479467 0.830462i −0.520255 0.854011i $$-0.674163\pi$$
0.999723 + 0.0235490i $$0.00749658\pi$$
$$132$$ 941.127 + 2838.00i 0.620565 + 1.87133i
$$133$$ −863.544 1762.47i −0.562998 1.14906i
$$134$$ 122.623i 0.0790525i
$$135$$ −296.893 635.554i −0.189278 0.405184i
$$136$$ 699.659 403.948i 0.441142 0.254693i
$$137$$ 1162.71 671.288i 0.725085 0.418628i −0.0915363 0.995802i $$-0.529178\pi$$
0.816621 + 0.577174i $$0.195844\pi$$
$$138$$ 119.097 577.450i 0.0734650 0.356201i
$$139$$ 644.525i 0.393294i 0.980474 + 0.196647i $$0.0630053\pi$$
−0.980474 + 0.196647i $$0.936995\pi$$
$$140$$ 986.195 + 662.617i 0.595348 + 0.400010i
$$141$$ 588.068 195.013i 0.351236 0.116476i
$$142$$ 1459.89 2528.61i 0.862756 1.49434i
$$143$$ −492.341 852.759i −0.287913 0.498681i
$$144$$ 50.1235 + 21.5941i 0.0290067 + 0.0124966i
$$145$$ −136.861 79.0170i −0.0783843 0.0452552i
$$146$$ −3266.23 −1.85147
$$147$$ −593.392 + 1680.60i −0.332940 + 0.942948i
$$148$$ 3359.37 1.86580
$$149$$ −1048.47 605.332i −0.576467 0.332823i 0.183261 0.983064i $$-0.441335\pi$$
−0.759728 + 0.650241i $$0.774668\pi$$
$$150$$ 394.048 442.992i 0.214493 0.241134i
$$151$$ −276.105 478.227i −0.148802 0.257732i 0.781983 0.623300i $$-0.214208\pi$$
−0.930785 + 0.365567i $$0.880875\pi$$
$$152$$ −1168.19 + 2023.36i −0.623373 + 1.07971i
$$153$$ 793.352 591.191i 0.419207 0.312386i
$$154$$ −3146.57 2114.16i −1.64648 1.10626i
$$155$$ 1514.32i 0.784731i
$$156$$ 1433.63 + 295.680i 0.735784 + 0.151752i
$$157$$ 1891.12 1091.84i 0.961326 0.555022i 0.0647452 0.997902i $$-0.479377\pi$$
0.896581 + 0.442880i $$0.146043\pi$$
$$158$$ −2472.13 + 1427.28i −1.24476 + 0.718662i
$$159$$ 3294.18 + 679.411i 1.64305 + 0.338873i
$$160$$ 928.003i 0.458532i
$$161$$ 202.589 + 413.479i 0.0991694 + 0.202402i
$$162$$ −3188.28 951.343i −1.54627 0.461386i
$$163$$ 1805.11 3126.55i 0.867407 1.50239i 0.00277017 0.999996i $$-0.499118\pi$$
0.864637 0.502397i $$-0.167548\pi$$
$$164$$ −1890.63 3274.66i −0.900202 1.55920i
$$165$$ −774.407 + 870.593i −0.365379 + 0.410761i
$$166$$ 2492.00 + 1438.76i 1.16516 + 0.672707i
$$167$$ 1747.33 0.809657 0.404829 0.914393i $$-0.367331\pi$$
0.404829 + 0.914393i $$0.367331\pi$$
$$168$$ 2054.55 529.412i 0.943523 0.243125i
$$169$$ 1714.93 0.780577
$$170$$ 724.202 + 418.118i 0.326728 + 0.188637i
$$171$$ −1132.10 + 2627.79i −0.506278 + 1.17516i
$$172$$ −1937.60 3356.02i −0.858958 1.48776i
$$173$$ 1752.80 3035.94i 0.770306 1.33421i −0.167089 0.985942i $$-0.553437\pi$$
0.937395 0.348268i $$-0.113230\pi$$
$$174$$ −711.471 + 235.936i −0.309980 + 0.102794i
$$175$$ −31.4661 + 461.936i −0.0135921 + 0.199538i
$$176$$ 90.6542i 0.0388257i
$$177$$ −6.55042 + 31.7603i −0.00278169 + 0.0134873i
$$178$$ −2773.56 + 1601.32i −1.16791 + 0.674291i
$$179$$ −1735.08 + 1001.75i −0.724502 + 0.418291i −0.816407 0.577477i $$-0.804037\pi$$
0.0919057 + 0.995768i $$0.470704\pi$$
$$180$$ −201.872 1720.32i −0.0835924 0.712362i
$$181$$ 1090.28i 0.447734i 0.974620 + 0.223867i $$0.0718682\pi$$
−0.974620 + 0.223867i $$0.928132\pi$$
$$182$$ −1666.60 + 816.572i −0.678772 + 0.332573i
$$183$$ −1327.06 4001.80i −0.536062 1.61651i
$$184$$ 274.060 474.685i 0.109804 0.190186i
$$185$$ 654.564 + 1133.74i 0.260133 + 0.450563i
$$186$$ −5366.66 4773.73i −2.11560 1.88186i
$$187$$ −1423.24 821.711i −0.556567 0.321334i
$$188$$ 1529.84 0.593485
$$189$$ 2423.42 937.178i 0.932687 0.360686i
$$190$$ −2418.34 −0.923392
$$191$$ −943.845 544.929i −0.357561 0.206438i 0.310449 0.950590i $$-0.399521\pi$$
−0.668011 + 0.744152i $$0.732854\pi$$
$$192$$ 3226.00 + 2869.58i 1.21259 + 1.07861i
$$193$$ 2473.45 + 4284.14i 0.922502 + 1.59782i 0.795530 + 0.605915i $$0.207193\pi$$
0.126973 + 0.991906i $$0.459474\pi$$
$$194$$ −1205.70 + 2088.33i −0.446207 + 0.772854i
$$195$$ 179.551 + 541.442i 0.0659382 + 0.198838i
$$196$$ −2696.95 + 3477.67i −0.982853 + 1.26737i
$$197$$ 3296.31i 1.19215i 0.802930 + 0.596073i $$0.203273\pi$$
−0.802930 + 0.596073i $$0.796727\pi$$
$$198$$ 644.096 + 5488.89i 0.231181 + 1.97009i
$$199$$ −680.689 + 392.996i −0.242476 + 0.139994i −0.616314 0.787500i $$-0.711375\pi$$
0.373838 + 0.927494i $$0.378042\pi$$
$$200$$ 477.329 275.586i 0.168761 0.0974343i
$$201$$ −28.1996 + 136.728i −0.00989577 + 0.0479805i
$$202$$ 7872.92i 2.74226i
$$203$$ 326.458 485.879i 0.112871 0.167990i
$$204$$ 2318.89 768.984i 0.795857 0.263920i
$$205$$ 736.768 1276.12i 0.251015 0.434771i
$$206$$ −889.821 1541.22i −0.300955 0.521270i
$$207$$ 265.592 616.484i 0.0891784 0.206998i
$$208$$ −38.4356 22.1908i −0.0128127 0.00739739i
$$209$$ 4752.65 1.57296
$$210$$ 1537.88 + 1567.71i 0.505350 + 0.515155i
$$211$$ −117.042 −0.0381872 −0.0190936 0.999818i $$-0.506078\pi$$
−0.0190936 + 0.999818i $$0.506078\pi$$
$$212$$ 7192.62 + 4152.66i 2.33015 + 1.34531i
$$213$$ 2209.32 2483.73i 0.710705 0.798980i
$$214$$ 715.625 + 1239.50i 0.228594 + 0.395936i
$$215$$ 755.073 1307.83i 0.239514 0.414851i
$$216$$ −2534.92 1772.39i −0.798517 0.558314i
$$217$$ 5596.16 + 381.199i 1.75065 + 0.119251i
$$218$$ 3609.52i 1.12141i
$$219$$ −3641.94 751.134i −1.12374 0.231767i
$$220$$ −2491.64 + 1438.55i −0.763576 + 0.440851i
$$221$$ −696.779 + 402.286i −0.212083 + 0.122446i
$$222$$ 6081.33 + 1254.25i 1.83852 + 0.379188i
$$223$$ 3582.58i 1.07582i −0.843003 0.537908i $$-0.819215\pi$$
0.843003 0.537908i $$-0.180785\pi$$
$$224$$ −3429.43 233.605i −1.02294 0.0696804i
$$225$$ 541.249 403.329i 0.160370 0.119505i
$$226$$ −5455.33 + 9448.90i −1.60568 + 2.78111i
$$227$$ −635.352 1100.46i −0.185770 0.321763i 0.758066 0.652178i $$-0.226145\pi$$
−0.943836 + 0.330415i $$0.892811\pi$$
$$228$$ −4695.70 + 5278.94i −1.36395 + 1.53336i
$$229$$ 2500.75 + 1443.81i 0.721633 + 0.416635i 0.815353 0.578964i $$-0.196543\pi$$
−0.0937206 + 0.995599i $$0.529876\pi$$
$$230$$ 567.346 0.162651
$$231$$ −3022.33 3080.96i −0.860842 0.877543i
$$232$$ −696.831 −0.197195
$$233$$ −1421.01 820.421i −0.399543 0.230676i 0.286744 0.958007i $$-0.407427\pi$$
−0.686287 + 0.727331i $$0.740760\pi$$
$$234$$ 2484.85 + 1070.52i 0.694187 + 0.299068i
$$235$$ 298.086 + 516.300i 0.0827446 + 0.143318i
$$236$$ −40.0372 + 69.3464i −0.0110432 + 0.0191274i
$$237$$ −3084.72 + 1022.95i −0.845462 + 0.280369i
$$238$$ −1727.45 + 2571.03i −0.470480 + 0.700231i
$$239$$ 3084.64i 0.834849i 0.908712 + 0.417424i $$0.137067\pi$$
−0.908712 + 0.417424i $$0.862933\pi$$
$$240$$ −10.6081 + 51.4344i −0.00285313 + 0.0138337i
$$241$$ 493.799 285.095i 0.131985 0.0762015i −0.432554 0.901608i $$-0.642387\pi$$
0.564539 + 0.825407i $$0.309054\pi$$
$$242$$ 2689.00 1552.50i 0.714280 0.412390i
$$243$$ −3336.25 1793.98i −0.880742 0.473597i
$$244$$ 10410.6i 2.73143i
$$245$$ −1699.16 232.565i −0.443083 0.0606452i
$$246$$ −2199.90 6633.87i −0.570166 1.71935i
$$247$$ 1163.38 2015.03i 0.299693 0.519083i
$$248$$ −3338.61 5782.64i −0.854846 1.48064i
$$249$$ 2447.78 + 2177.34i 0.622980 + 0.554150i
$$250$$ 494.073 + 285.253i 0.124992 + 0.0721640i
$$251$$ 3678.99 0.925162 0.462581 0.886577i $$-0.346923\pi$$
0.462581 + 0.886577i $$0.346923\pi$$
$$252$$ 6408.24 312.960i 1.60191 0.0782326i
$$253$$ −1114.98 −0.277069
$$254$$ −9553.20 5515.54i −2.35993 1.36250i
$$255$$ 711.351 + 632.758i 0.174692 + 0.155392i
$$256$$ 1942.22 + 3364.02i 0.474174 + 0.821293i
$$257$$ 2372.26 4108.88i 0.575789 0.997295i −0.420167 0.907447i $$-0.638028\pi$$
0.995955 0.0898484i $$-0.0286382\pi$$
$$258$$ −2254.56 6798.70i −0.544043 1.64058i
$$259$$ −4354.49 + 2133.54i −1.04469 + 0.511860i
$$260$$ 1408.55i 0.335978i
$$261$$ −847.568 + 99.4582i −0.201008 + 0.0235874i
$$262$$ 5682.99 3281.08i 1.34006 0.773685i
$$263$$ −714.976 + 412.792i −0.167632 + 0.0967826i −0.581469 0.813569i $$-0.697522\pi$$
0.413837 + 0.910351i $$0.364188\pi$$
$$264$$ −1037.79 + 5031.80i −0.241937 + 1.17305i
$$265$$ 3236.54i 0.750261i
$$266$$ 608.765 8936.93i 0.140323 2.05999i
$$267$$ −3460.85 + 1147.68i −0.793261 + 0.263059i
$$268$$ −172.361 + 298.537i −0.0392858 + 0.0680450i
$$269$$ 2053.16 + 3556.17i 0.465365 + 0.806036i 0.999218 0.0395417i $$-0.0125898\pi$$
−0.533853 + 0.845577i $$0.679256\pi$$
$$270$$ 276.856 3189.60i 0.0624034 0.718936i
$$271$$ −4293.33 2478.76i −0.962367 0.555623i −0.0654661 0.997855i $$-0.520853\pi$$
−0.896901 + 0.442232i $$0.854187\pi$$
$$272$$ −74.0724 −0.0165121
$$273$$ −2046.09 + 527.233i −0.453608 + 0.116885i
$$274$$ 6127.59 1.35103
$$275$$ −970.981 560.596i −0.212918 0.122928i
$$276$$ 1101.62 1238.45i 0.240253 0.270094i
$$277$$ −1146.40 1985.63i −0.248667 0.430704i 0.714489 0.699646i $$-0.246659\pi$$
−0.963156 + 0.268943i $$0.913326\pi$$
$$278$$ −1470.82 + 2547.54i −0.317316 + 0.549608i
$$279$$ −4886.16 6557.01i −1.04848 1.40702i
$$280$$ 898.267 + 1833.34i 0.191720 + 0.391296i
$$281$$ 4298.26i 0.912501i 0.889851 + 0.456250i $$0.150808\pi$$
−0.889851 + 0.456250i $$0.849192\pi$$
$$282$$ 2769.41 + 571.180i 0.584809 + 0.120614i
$$283$$ −1454.18 + 839.571i −0.305449 + 0.176351i −0.644888 0.764277i $$-0.723096\pi$$
0.339439 + 0.940628i $$0.389763\pi$$
$$284$$ 7108.47 4104.07i 1.48525 0.857507i
$$285$$ −2696.51 556.144i −0.560448 0.115590i
$$286$$ 4494.14i 0.929174i
$$287$$ 4530.42 + 3043.95i 0.931784 + 0.626059i
$$288$$ 2994.32 + 4018.25i 0.612647 + 0.822144i
$$289$$ 1785.09 3091.87i 0.363340 0.629324i
$$290$$ −360.637 624.642i −0.0730254 0.126484i
$$291$$ −1824.64 + 2051.28i −0.367568 + 0.413223i
$$292$$ −7951.92 4591.04i −1.59367 0.920105i
$$293$$ −3429.39 −0.683779 −0.341889 0.939740i $$-0.611067\pi$$
−0.341889 + 0.939740i $$0.611067\pi$$
$$294$$ −6180.60 + 5288.57i −1.22605 + 1.04910i
$$295$$ −31.2046 −0.00615864
$$296$$ 4999.08 + 2886.22i 0.981640 + 0.566750i
$$297$$ −544.093 + 6268.39i −0.106301 + 1.22468i
$$298$$ −2762.76 4785.25i −0.537056 0.930208i
$$299$$ −272.932 + 472.731i −0.0527894 + 0.0914340i
$$300$$ 1582.02 524.624i 0.304460 0.100964i
$$301$$ 4642.98 + 3119.58i 0.889093 + 0.597375i
$$302$$ 2520.31i 0.480224i
$$303$$ −1810.53 + 8778.53i −0.343275 + 1.66440i
$$304$$ 185.513 107.106i 0.0349997 0.0202071i
$$305$$ 3513.42 2028.47i 0.659599 0.380820i
$$306$$ 4484.90 526.283i 0.837859 0.0983189i
$$307$$ 726.092i 0.134985i −0.997720 0.0674923i $$-0.978500\pi$$
0.997720 0.0674923i $$-0.0214998\pi$$
$$308$$ −4688.93 9569.97i −0.867456 1.77045i
$$309$$ −637.742 1923.13i −0.117411 0.354055i
$$310$$ 3455.72 5985.48i 0.633135 1.09662i
$$311$$ 3360.18 + 5820.01i 0.612664 + 1.06116i 0.990790 + 0.135411i $$0.0432353\pi$$
−0.378126 + 0.925754i $$0.623431\pi$$
$$312$$ 1879.35 + 1671.71i 0.341017 + 0.303340i
$$313$$ 5210.38 + 3008.21i 0.940920 + 0.543241i 0.890249 0.455475i $$-0.150531\pi$$
0.0506716 + 0.998715i $$0.483864\pi$$
$$314$$ 9966.44 1.79121
$$315$$ 1354.25 + 2101.71i 0.242233 + 0.375930i
$$316$$ −8024.82 −1.42858
$$317$$ −4471.73 2581.75i −0.792295 0.457431i 0.0484752 0.998824i $$-0.484564\pi$$
−0.840770 + 0.541393i $$0.817897\pi$$
$$318$$ 11470.1 + 10202.8i 2.02268 + 1.79920i
$$319$$ 708.746 + 1227.58i 0.124395 + 0.215459i
$$320$$ −2077.30 + 3597.99i −0.362889 + 0.628543i
$$321$$ 512.894 + 1546.65i 0.0891806 + 0.268927i
$$322$$ −142.818 + 2096.62i −0.0247171 + 0.362858i
$$323$$ 3883.34i 0.668962i
$$324$$ −6424.94 6797.61i −1.10167 1.16557i
$$325$$ −475.364 + 274.452i −0.0811337 + 0.0468426i
$$326$$ 14269.7 8238.63i 2.42431 1.39968i
$$327$$ −830.079 + 4024.71i −0.140378 + 0.680633i
$$328$$ 6497.37i 1.09377i
$$329$$ −1983.02 + 971.605i −0.332302 + 0.162816i
$$330$$ −5047.62 + 1673.88i −0.842007 + 0.279224i
$$331$$ 1601.38 2773.68i 0.265921 0.460589i −0.701883 0.712292i $$-0.747657\pi$$
0.967805 + 0.251703i $$0.0809905\pi$$
$$332$$ 4044.67 + 7005.57i 0.668615 + 1.15807i
$$333$$ 6492.42 + 2797.04i 1.06842 + 0.460292i
$$334$$ 6906.48 + 3987.46i 1.13145 + 0.653246i
$$335$$ −134.336 −0.0219091
$$336$$ −187.405 52.1498i −0.0304279 0.00846727i
$$337$$ −11770.7 −1.90264 −0.951320 0.308204i $$-0.900272\pi$$
−0.951320 + 0.308204i $$0.900272\pi$$
$$338$$ 6778.40 + 3913.51i 1.09082 + 0.629784i
$$339$$ −8255.80 + 9281.23i −1.32269 + 1.48698i
$$340$$ 1175.42 + 2035.89i 0.187489 + 0.324740i
$$341$$ −6791.39 + 11763.0i −1.07852 + 1.86805i
$$342$$ −10471.4 + 7803.08i −1.65564 + 1.23375i
$$343$$ 1287.17 6220.68i 0.202626 0.979256i
$$344$$ 6658.80i 1.04366i
$$345$$ 632.607 + 130.472i 0.0987200 + 0.0203606i
$$346$$ 13856.2 7999.87i 2.15293 1.24299i
$$347$$ 810.218 467.780i 0.125345 0.0723681i −0.436016 0.899939i $$-0.643611\pi$$
0.561362 + 0.827571i $$0.310278\pi$$
$$348$$ −2063.77 425.644i −0.317902 0.0655659i
$$349$$ 6000.40i 0.920326i −0.887834 0.460163i $$-0.847791\pi$$
0.887834 0.460163i $$-0.152209\pi$$
$$350$$ −1178.52 + 1754.03i −0.179985 + 0.267877i
$$351$$ 2524.49 + 1765.10i 0.383896 + 0.268415i
$$352$$ 4161.88 7208.59i 0.630196 1.09153i
$$353$$ −3391.26 5873.83i −0.511327 0.885644i −0.999914 0.0131291i $$-0.995821\pi$$
0.488587 0.872515i $$-0.337513\pi$$
$$354$$ −98.3688 + 110.587i −0.0147690 + 0.0166035i
$$355$$ 2770.13 + 1599.34i 0.414150 + 0.239110i
$$356$$ −9003.31 −1.34038
$$357$$ −2517.42 + 2469.51i −0.373210 + 0.366107i
$$358$$ −9144.05 −1.34994
$$359$$ −394.879 227.984i −0.0580528 0.0335168i 0.470693 0.882297i $$-0.344004\pi$$
−0.528745 + 0.848780i $$0.677337\pi$$
$$360$$ 1177.62 2733.45i 0.172405 0.400182i
$$361$$ 2185.66 + 3785.68i 0.318656 + 0.551929i
$$362$$ −2488.05 + 4309.42i −0.361240 + 0.625686i
$$363$$ 3355.34 1112.69i 0.485151 0.160884i
$$364$$ −5205.27 354.572i −0.749533 0.0510567i
$$365$$ 3578.21i 0.513129i
$$366$$ 3886.87 18845.8i 0.555110 2.69150i
$$367$$ −4548.06 + 2625.82i −0.646884 + 0.373479i −0.787262 0.616619i $$-0.788502\pi$$
0.140377 + 0.990098i $$0.455169\pi$$
$$368$$ −43.5217 + 25.1273i −0.00616502 + 0.00355938i
$$369$$ −927.365 7902.86i −0.130831 1.11492i
$$370$$ 5974.93i 0.839518i
$$371$$ −11960.6 814.732i −1.67376 0.114013i
$$372$$ −6355.60 19165.5i −0.885813 2.67119i
$$373$$ 277.993 481.498i 0.0385896 0.0668391i −0.846086 0.533047i $$-0.821047\pi$$
0.884675 + 0.466208i $$0.154380\pi$$
$$374$$ −3750.33 6495.76i −0.518516 0.898095i
$$375$$ 485.305 + 431.687i 0.0668295 + 0.0594459i
$$376$$ 2276.56 + 1314.37i 0.312246 + 0.180276i
$$377$$ 693.963 0.0948034
$$378$$ 11717.4 + 1826.03i 1.59439 + 0.248468i
$$379$$ −775.818 −0.105148 −0.0525740 0.998617i $$-0.516743\pi$$
−0.0525740 + 0.998617i $$0.516743\pi$$
$$380$$ −5887.65 3399.24i −0.794816 0.458887i
$$381$$ −9383.67 8346.93i −1.26179 1.12238i
$$382$$ −2487.08 4307.76i −0.333116 0.576974i
$$383$$ 2985.84 5171.63i 0.398354 0.689969i −0.595169 0.803600i $$-0.702915\pi$$
0.993523 + 0.113631i $$0.0362483\pi$$
$$384$$ 3774.11 + 11380.9i 0.501554 + 1.51245i
$$385$$ 2316.10 3447.13i 0.306596 0.456317i
$$386$$ 22577.9i 2.97716i
$$387$$ −950.406 8099.22i −0.124837 1.06384i
$$388$$ −5870.77 + 3389.49i −0.768152 + 0.443493i
$$389$$ 677.294 391.036i 0.0882781 0.0509674i −0.455211 0.890384i $$-0.650436\pi$$
0.543489 + 0.839416i $$0.317103\pi$$
$$390$$ −525.893 + 2549.84i −0.0682811 + 0.331067i
$$391$$ 911.038i 0.117834i
$$392$$ −7001.19 + 2858.03i −0.902075 + 0.368246i
$$393$$ 7091.24 2351.58i 0.910193 0.301835i
$$394$$ −7522.27 + 13029.0i −0.961844 + 1.66596i
$$395$$ −1563.62 2708.26i −0.199175 0.344981i
$$396$$ −6147.13 + 14268.5i −0.780063 + 1.81066i
$$397$$ 2311.52 + 1334.56i 0.292221 + 0.168714i 0.638943 0.769254i $$-0.279372\pi$$
−0.346722 + 0.937968i $$0.612705\pi$$
$$398$$ −3587.31 −0.451798
$$399$$ 2734.01 9824.93i 0.343037 1.23274i
$$400$$ −50.5345 −0.00631681
$$401$$ 12909.6 + 7453.36i 1.60767 + 0.928187i 0.989890 + 0.141834i $$0.0452999\pi$$
0.617777 + 0.786353i $$0.288033\pi$$
$$402$$ −423.479 + 476.078i −0.0525403 + 0.0590662i
$$403$$ 3324.87 + 5758.84i 0.410976 + 0.711831i
$$404$$ −11066.3 + 19167.3i −1.36279 + 2.36042i
$$405$$ 1042.21 3492.82i 0.127872 0.428543i
$$406$$ 2399.14 1175.49i 0.293269 0.143691i
$$407$$ 11742.3i 1.43008i
$$408$$ 4111.42 + 847.963i 0.498886 + 0.102893i
$$409$$ −6740.03 + 3891.36i −0.814849 + 0.470453i −0.848637 0.528976i $$-0.822576\pi$$
0.0337880 + 0.999429i $$0.489243\pi$$
$$410$$ 5824.27 3362.64i 0.701561 0.405047i
$$411$$ 6832.43 + 1409.16i 0.819998 + 0.169121i
$$412$$ 5002.97i 0.598249i
$$413$$ 7.85510 115.316i 0.000935894 0.0137393i
$$414$$ 2456.61 1830.62i 0.291632 0.217319i
$$415$$ −1576.19 + 2730.04i −0.186438 + 0.322921i
$$416$$ −2037.54 3529.12i −0.240140 0.415935i
$$417$$ −2225.86 + 2502.33i −0.261393 + 0.293860i
$$418$$ 18785.3 + 10845.7i 2.19813 + 1.26909i
$$419$$ −10191.7 −1.18830 −0.594149 0.804355i $$-0.702511\pi$$
−0.594149 + 0.804355i $$0.702511\pi$$
$$420$$ 1540.50 + 5978.39i 0.178973 + 0.694561i
$$421$$ 11747.0 1.35989 0.679946 0.733262i $$-0.262003\pi$$
0.679946 + 0.733262i $$0.262003\pi$$
$$422$$ −462.618 267.093i −0.0533647 0.0308101i
$$423$$ 2956.62 + 1273.76i 0.339848 + 0.146412i
$$424$$ 7135.57 + 12359.2i 0.817296 + 1.41560i
$$425$$ −458.056 + 793.377i −0.0522800 + 0.0905516i
$$426$$ 14400.5 4775.44i 1.63781 0.543124i
$$427$$ 6611.76 + 13494.4i 0.749334 + 1.52937i
$$428$$ 4023.56i 0.454407i
$$429$$ 1033.52 5011.09i 0.116314 0.563957i
$$430$$ 5968.98 3446.19i 0.669418 0.386489i
$$431$$ 4728.20 2729.83i 0.528421 0.305084i −0.211952 0.977280i $$-0.567982\pi$$
0.740373 + 0.672196i $$0.234649\pi$$
$$432$$ 120.027 + 256.939i 0.0133676 + 0.0286157i
$$433$$ 1450.51i 0.160987i 0.996755 + 0.0804934i $$0.0256496\pi$$
−0.996755 + 0.0804934i $$0.974350\pi$$
$$434$$ 21249.4 + 14277.3i 2.35024 + 1.57911i
$$435$$ −258.472 779.429i −0.0284891 0.0859098i
$$436$$ −5073.57 + 8787.69i −0.557294 + 0.965261i
$$437$$ −1317.33 2281.68i −0.144202 0.249766i
$$438$$ −12680.9 11279.9i −1.38338 1.23054i
$$439$$ −7329.40 4231.63i −0.796841 0.460056i 0.0455245 0.998963i $$-0.485504\pi$$
−0.842365 + 0.538907i $$0.818837\pi$$
$$440$$ −4943.76 −0.535646
$$441$$ −8107.75 + 4475.55i −0.875472 + 0.483268i
$$442$$ −3672.10 −0.395168
$$443$$ −36.6425 21.1556i −0.00392988 0.00226892i 0.498034 0.867158i $$-0.334056\pi$$
−0.501964 + 0.864889i $$0.667389\pi$$
$$444$$ 13042.6 + 11601.6i 1.39408 + 1.24006i
$$445$$ −1754.27 3038.49i −0.186877 0.323681i
$$446$$ 8175.53 14160.4i 0.867987 1.50340i
$$447$$ −1980.10 5971.04i −0.209520 0.631813i
$$448$$ −12773.4 8582.35i −1.34707 0.905085i
$$449$$ 944.250i 0.0992470i 0.998768 + 0.0496235i $$0.0158021\pi$$
−0.998768 + 0.0496235i $$0.984198\pi$$
$$450$$ 3059.74 359.046i 0.320528 0.0376125i
$$451$$ −11446.2 + 6608.46i −1.19508 + 0.689979i
$$452$$ −26562.9 + 15336.1i −2.76419 + 1.59591i
$$453$$ 579.595 2810.22i 0.0601143 0.291469i
$$454$$ 5799.55i 0.599530i
$$455$$ −894.570 1825.79i −0.0921716 0.188119i
$$456$$ −11523.1 + 3821.26i −1.18337 + 0.392427i
$$457$$ −4436.67 + 7684.53i −0.454133 + 0.786581i −0.998638 0.0521768i $$-0.983384\pi$$
0.544505 + 0.838757i $$0.316717\pi$$
$$458$$ 6589.60 + 11413.5i 0.672297 + 1.16445i
$$459$$ 5121.82 + 444.572i 0.520841 + 0.0452088i
$$460$$ 1381.25 + 797.468i 0.140003 + 0.0808307i
$$461$$ 8958.04 0.905027 0.452514 0.891757i $$-0.350527\pi$$
0.452514 + 0.891757i $$0.350527\pi$$
$$462$$ −4915.16 19074.8i −0.494965 1.92086i
$$463$$ −5709.17 −0.573062 −0.286531 0.958071i $$-0.592502\pi$$
−0.286531 + 0.958071i $$0.592502\pi$$
$$464$$ 55.3297 + 31.9446i 0.00553582 + 0.00319611i
$$465$$ 5229.71 5879.27i 0.521552 0.586333i
$$466$$ −3744.44 6485.56i −0.372227 0.644716i
$$467$$ 9120.65 15797.4i 0.903754 1.56535i 0.0811730 0.996700i $$-0.474133\pi$$
0.822581 0.568648i $$-0.192533\pi$$
$$468$$ 4544.86 + 6099.00i 0.448902 + 0.602406i
$$469$$ 33.8163 496.437i 0.00332940 0.0488771i
$$470$$ 2720.96i 0.267039i
$$471$$ 11112.9 + 2291.98i 1.08716 + 0.224223i
$$472$$ −119.159 + 68.7963i −0.0116202 + 0.00670891i
$$473$$ −11730.6 + 6772.66i −1.14032 + 0.658366i
$$474$$ −14527.0 2996.14i −1.40770 0.290331i
$$475$$ 2649.33i 0.255915i
$$476$$ −7819.50 + 3831.27i −0.752954 + 0.368920i
$$477$$ 10443.1 + 14014.2i 1.00243 + 1.34521i
$$478$$ −7039.23 + 12192.3i −0.673571 + 1.16666i
$$479$$ −4771.66 8264.76i −0.455162 0.788364i 0.543535 0.839386i $$-0.317085\pi$$
−0.998698 + 0.0510220i $$0.983752\pi$$
$$480$$ −3204.86 + 3602.92i −0.304752 + 0.342604i
$$481$$ −4978.50 2874.34i −0.471934 0.272471i
$$482$$ 2602.37 0.245923
$$483$$ −641.405 + 2304.95i −0.0604243 + 0.217140i
$$484$$ 8728.82 0.819762
$$485$$ −2287.81 1320.87i −0.214194 0.123665i
$$486$$ −9092.88 14704.3i −0.848686 1.37243i
$$487$$ −3629.41 6286.32i −0.337709 0.584929i 0.646293 0.763090i $$-0.276319\pi$$
−0.984001 + 0.178161i $$0.942985\pi$$
$$488$$ 8944.29 15492.0i 0.829691 1.43707i
$$489$$ 17805.8 5904.69i 1.64664 0.546052i
$$490$$ −6185.34 4796.76i −0.570256 0.442235i
$$491$$ 4273.37i 0.392779i −0.980526 0.196390i $$-0.937078\pi$$
0.980526 0.196390i $$-0.0629218\pi$$
$$492$$ 3968.78 19243.0i 0.363671 1.76329i
$$493$$ 1003.04 579.107i 0.0916325 0.0529040i
$$494$$ 9196.72 5309.73i 0.837611 0.483595i
$$495$$ −6013.18 + 705.619i −0.546005 + 0.0640711i
$$496$$ 612.204i 0.0554209i
$$497$$ −6607.65 + 9834.39i −0.596366 + 0.887591i
$$498$$ 4706.32 + 14192.0i 0.423484 + 1.27703i
$$499$$ 570.563 988.245i 0.0511862 0.0886571i −0.839297 0.543673i $$-0.817033\pi$$
0.890483 + 0.455016i $$0.150366\pi$$
$$500$$ 801.909 + 1388.95i 0.0717250 + 0.124231i
$$501$$ 6783.93 + 6034.41i 0.604957 + 0.538119i
$$502$$ 14541.5 + 8395.54i 1.29287 + 0.746437i
$$503$$ −8487.44 −0.752358 −0.376179 0.926547i $$-0.622762\pi$$
−0.376179 + 0.926547i $$0.622762\pi$$
$$504$$ 9804.99 + 5039.96i 0.866565 + 0.445432i
$$505$$ −8624.93 −0.760009
$$506$$ −4407.06 2544.42i −0.387189 0.223544i
$$507$$ 6658.11 + 5922.50i 0.583229 + 0.518792i
$$508$$ −15505.4 26856.1i −1.35421 2.34557i
$$509$$ −332.930 + 576.652i −0.0289919 + 0.0502154i −0.880157 0.474682i $$-0.842563\pi$$
0.851165 + 0.524898i $$0.175896\pi$$
$$510$$ 1367.70 + 4124.35i 0.118751 + 0.358097i
$$511$$ 13223.2 + 900.740i 1.14474 + 0.0779773i
$$512$$ 731.690i 0.0631571i
$$513$$ −13470.4 + 6292.55i −1.15932 + 0.541565i
$$514$$ 18753.1 10827.1i 1.60927 0.929113i
$$515$$ 1688.43 974.815i 0.144468 0.0834087i
$$516$$ 4067.39 19721.1i 0.347009 1.68250i
$$517$$ 5347.39i 0.454889i
$$518$$ −22080.3 1504.06i −1.87288 0.127577i
$$519$$ 17289.8 5733.58i 1.46230 0.484925i
$$520$$ −1210.16 + 2096.06i −0.102056 + 0.176766i
$$521$$ −4394.33 7611.20i −0.369518 0.640024i 0.619972 0.784624i $$-0.287144\pi$$
−0.989490 + 0.144600i $$0.953811\pi$$
$$522$$ −3577.05 1541.05i −0.299929 0.129215i
$$523$$ 9827.76 + 5674.06i 0.821679 + 0.474396i 0.850995 0.525174i $$-0.176000\pi$$
−0.0293162 + 0.999570i $$0.509333\pi$$
$$524$$ 18447.7 1.53796
$$525$$ −1717.46 + 1684.77i −0.142773 + 0.140056i
$$526$$ −3768.00 −0.312344
$$527$$ 9611.42 + 5549.16i 0.794460 + 0.458681i
$$528$$ 313.074 351.960i 0.0258045 0.0290096i
$$529$$ −5774.45 10001.6i −0.474599 0.822030i
$$530$$ −7385.87 + 12792.7i −0.605324 + 1.04845i
$$531$$ −135.116 + 100.686i −0.0110424 + 0.00822859i
$$532$$ 14043.9 20902.1i 1.14451 1.70342i
$$533$$ 6470.62i 0.525842i
$$534$$ −16298.3 3361.46i −1.32078 0.272406i
$$535$$ −1357.89 + 783.980i −0.109732 + 0.0633540i
$$536$$ −512.980 + 296.169i −0.0413383 + 0.0238667i
$$537$$ −10195.9 2102.85i −0.819338 0.168985i
$$538$$ 18741.4i 1.50186i
$$539$$ 12155.8 + 9426.86i 0.971405 + 0.753328i
$$540$$ 5157.36 7376.21i 0.410996 0.587818i
$$541$$ −9438.27 + 16347.6i −0.750061 + 1.29914i 0.197732 + 0.980256i $$0.436643\pi$$
−0.947793 + 0.318887i $$0.896691\pi$$
$$542$$ −11313.2 19595.0i −0.896572 1.55291i
$$543$$ −3765.28 + 4232.95i −0.297576 + 0.334537i
$$544$$ −5890.05 3400.62i −0.464216 0.268016i
$$545$$ −3954.29 −0.310795
$$546$$ −9290.51 2585.30i −0.728199 0.202638i
$$547$$ 15999.4 1.25061 0.625307 0.780379i $$-0.284974\pi$$
0.625307 + 0.780379i $$0.284974\pi$$
$$548$$ 14918.2 + 8613.00i 1.16291 + 0.671404i
$$549$$ 8667.94 20119.8i 0.673841 1.56410i
$$550$$ −2558.59 4431.61i −0.198361 0.343571i
$$551$$ −1674.74 + 2900.73i −0.129485 + 0.224274i
$$552$$ 2703.34 896.474i 0.208446 0.0691241i
$$553$$ 10402.0 5096.58i 0.799885 0.391914i
$$554$$ 10464.5i 0.802515i
$$555$$ −1374.05 + 6662.21i −0.105091 + 0.509541i
$$556$$ −7161.69 + 4134.80i −0.546265 + 0.315386i
$$557$$ −11300.4 + 6524.27i −0.859627 + 0.496306i −0.863887 0.503685i $$-0.831977\pi$$
0.00426065 + 0.999991i $$0.498644\pi$$
$$558$$ −4349.70 37067.5i −0.329995 2.81217i
$$559$$ 6631.40i 0.501750i
$$560$$ 12.7210 186.750i 0.000959929 0.0140922i
$$561$$ −2687.89 8105.41i −0.202287 0.610001i
$$562$$ −9808.74 + 16989.2i −0.736222 + 1.27517i
$$563$$ 1062.90 + 1840.99i 0.0795661 + 0.137813i 0.903063 0.429508i $$-0.141313\pi$$
−0.823497 + 0.567321i $$0.807980\pi$$
$$564$$ 5939.53 + 5283.31i 0.443438 + 0.394446i
$$565$$ −10351.4 5976.41i −0.770776 0.445008i
$$566$$ −7663.68 −0.569132
$$567$$ 12645.3 + 4730.73i 0.936603 + 0.350392i
$$568$$ 14104.2 1.04190
$$569$$ 22953.8 + 13252.4i 1.69116 + 0.976394i 0.953581 + 0.301137i $$0.0973661\pi$$
0.737583 + 0.675257i $$0.235967\pi$$
$$570$$ −9389.05 8351.71i −0.689937 0.613710i
$$571$$ −10310.6 17858.5i −0.755667 1.30885i −0.945042 0.326949i $$-0.893979\pi$$
0.189375 0.981905i $$-0.439354\pi$$
$$572$$ 6317.00 10941.4i 0.461761 0.799793i
$$573$$ −1782.51 5375.22i −0.129957 0.391890i
$$574$$ 10960.5 + 22370.0i 0.797006 + 1.62666i
$$575$$ 621.538i 0.0450782i
$$576$$ 2614.68 + 22281.9i 0.189141 + 1.61183i
$$577$$ 12030.2 6945.61i 0.867976 0.501126i 0.00130062 0.999999i $$-0.499586\pi$$
0.866675 + 0.498873i $$0.166253\pi$$
$$578$$ 14111.4 8147.24i 1.01550 0.586299i
$$579$$ −5192.24 + 25175.0i −0.372680 + 1.80697i
$$580$$ 2027.66i 0.145162i
$$581$$ −9692.04 6512.01i −0.692072 0.464998i
$$582$$ −11893.1 + 3943.96i −0.847054 + 0.280897i
$$583$$ 14515.1 25141.0i 1.03114 1.78599i
$$584$$ −7888.84 13663.9i −0.558977 0.968177i
$$585$$ −1172.77 + 2722.20i −0.0828856 + 0.192392i
$$586$$ −13555.0 7825.96i −0.955546 0.551685i
$$587$$ −1785.23 −0.125527 −0.0627634 0.998028i $$-0.519991\pi$$
−0.0627634 + 0.998028i $$0.519991\pi$$
$$588$$ −22480.9 + 4187.97i −1.57669 + 0.293723i
$$589$$ −32095.5 −2.24529
$$590$$ −123.339 71.2096i −0.00860639 0.00496890i
$$591$$ −11383.8 + 12797.8i −0.792330 + 0.890743i
$$592$$ −264.625 458.343i −0.0183716 0.0318206i
$$593$$ −3382.75 + 5859.10i −0.234255 + 0.405741i −0.959056 0.283217i $$-0.908598\pi$$
0.724801 + 0.688958i $$0.241932\pi$$
$$594$$ −16455.2 + 23534.7i −1.13664 + 1.62566i
$$595$$ −2816.61 1892.46i −0.194067 0.130392i
$$596$$ 15533.5i 1.06758i
$$597$$ −3999.95 824.972i −0.274216 0.0565559i
$$598$$ −2157.57 + 1245.67i −0.147541 + 0.0851829i
$$599$$ −22410.2 + 12938.5i −1.52864 + 0.882561i −0.529221 + 0.848484i $$0.677516\pi$$
−0.999419 + 0.0340772i $$0.989151\pi$$
$$600$$ 2804.94 + 578.506i 0.190852 + 0.0393624i
$$601$$ 21917.8i 1.48760i −0.668403 0.743799i $$-0.733022\pi$$
0.668403 0.743799i $$-0.266978\pi$$
$$602$$ 11232.8 + 22925.8i 0.760490 + 1.55214i
$$603$$ −581.674 + 433.453i −0.0392829 + 0.0292729i
$$604$$ 3542.58 6135.92i 0.238651 0.413356i
$$605$$ 1700.79 + 2945.85i 0.114292 + 0.197960i
$$606$$ −27189.1 + 30566.2i −1.82258 + 2.04895i
$$607$$ −10602.4 6121.27i −0.708956 0.409316i 0.101718 0.994813i $$-0.467566\pi$$
−0.810674 + 0.585497i $$0.800899\pi$$
$$608$$ 19668.7 1.31196
$$609$$ 2945.44 758.975i 0.195985 0.0505012i
$$610$$ 18516.1 1.22901
$$611$$ −2267.19 1308.96i −0.150116 0.0866693i
$$612$$ 11658.6 + 5022.75i 0.770054 + 0.331752i
$$613$$ 9316.91 + 16137.4i 0.613877 + 1.06327i 0.990580 + 0.136932i $$0.0437242\pi$$
−0.376704 + 0.926334i $$0.622943\pi$$
$$614$$ 1656.96 2869.94i 0.108908 0.188634i
$$615$$ 7267.53 2410.04i 0.476512 0.158020i
$$616$$ 1244.49 18269.6i 0.0813991 1.19497i
$$617$$ 11465.5i 0.748112i 0.927406 + 0.374056i $$0.122033\pi$$
−0.927406 + 0.374056i $$0.877967\pi$$
$$618$$ 1867.90 9056.68i 0.121582 0.589503i
$$619$$ −5119.14 + 2955.53i −0.332400 + 0.191911i −0.656906 0.753972i $$-0.728135\pi$$
0.324506 + 0.945884i $$0.394802\pi$$
$$620$$ 16826.5 9714.79i 1.08995 0.629283i
$$621$$ 3160.17 1476.24i 0.204208 0.0953939i
$$622$$ 30672.1i 1.97723i
$$623$$ 11670.3 5718.01i 0.750499 0.367717i
$$624$$ −72.5883 218.892i −0.00465682 0.0140428i
$$625$$ −312.500 + 541.266i −0.0200000 + 0.0346410i
$$626$$ 13729.6 + 23780.4i 0.876592 + 1.51830i
$$627$$ 18451.9 + 16413.3i 1.17528 + 1.04543i
$$628$$ 24264.2 + 14008.9i 1.54179 + 0.890155i
$$629$$ −9594.47 −0.608198
$$630$$ 556.626 + 11397.6i 0.0352008 + 0.720781i
$$631$$ −6488.94 −0.409383 −0.204691 0.978827i $$-0.565619\pi$$
−0.204691 + 0.978827i $$0.565619\pi$$
$$632$$ −11941.7 6894.57i −0.751609 0.433942i
$$633$$ −454.409 404.204i −0.0285326 0.0253802i
$$634$$ −11783.3 20409.2i −0.738128 1.27847i
$$635$$ 6042.38 10465.7i 0.377613 0.654045i
$$636$$ 13583.7 + 40962.2i 0.846904 + 2.55386i
$$637$$ 6972.37 2846.27i 0.433682 0.177038i
$$638$$ 6469.50i 0.401458i
$$639$$ 17155.1 2013.08i 1.06204 0.124626i
$$640$$ −9992.00 + 5768.88i −0.617138 + 0.356305i
$$641$$ 5980.20 3452.67i 0.368493 0.212749i −0.304307 0.952574i $$-0.598425\pi$$
0.672800 + 0.739825i $$0.265092\pi$$
$$642$$ −1502.23 + 7283.69i −0.0923493 + 0.447764i
$$643$$ 25890.4i 1.58790i 0.607983 + 0.793950i $$0.291979\pi$$
−0.607983 + 0.793950i $$0.708021\pi$$
$$644$$ −3294.74 + 4903.67i −0.201601 + 0.300049i
$$645$$ 7448.10 2469.92i 0.454680 0.150780i
$$646$$ 8861.87 15349.2i 0.539730 0.934840i
$$647$$ −10178.6 17629.8i −0.618487 1.07125i −0.989762 0.142728i $$-0.954413\pi$$
0.371275 0.928523i $$-0.378921\pi$$
$$648$$ −3720.76 15635.6i −0.225563 0.947874i
$$649$$ 242.392 + 139.945i 0.0146606 + 0.00846430i
$$650$$ −2505.22 −0.151174
$$651$$ 20410.3 + 20806.3i 1.22879 + 1.25263i
$$652$$ 46321.2 2.78233
$$653$$ 15369.4 + 8873.52i 0.921058 + 0.531773i 0.883972 0.467539i $$-0.154859\pi$$
0.0370853 + 0.999312i $$0.488193\pi$$
$$654$$ −12465.4 + 14013.7i −0.745317 + 0.837891i
$$655$$ 3594.48 + 6225.82i 0.214424 + 0.371394i
$$656$$ −297.857 + 515.904i −0.0177277 + 0.0307053i
$$657$$ −11545.6 15493.6i −0.685595 0.920038i
$$658$$ −10055.3 684.944i −0.595737 0.0405804i
$$659$$ 346.589i 0.0204874i −0.999948 0.0102437i $$-0.996739\pi$$
0.999948 0.0102437i $$-0.00326073\pi$$
$$660$$ −14641.7 3019.79i −0.863526 0.178099i
$$661$$ −2606.71 + 1504.98i −0.153388 + 0.0885584i −0.574729 0.818344i $$-0.694893\pi$$
0.421342 + 0.906902i $$0.361559\pi$$
$$662$$ 12659.2 7308.79i 0.743223 0.429100i
$$663$$ −4094.50 844.473i −0.239845 0.0494670i
$$664$$ 13900.0i 0.812386i
$$665$$ 9790.57 + 666.914i 0.570920 + 0.0388899i
$$666$$ 19278.9 + 25871.4i 1.12168 + 1.50525i
$$667$$ 392.897 680.517i 0.0228081 0.0395048i
$$668$$ 11209.6 + 19415.6i 0.649272 + 1.12457i
$$669$$ 12372.4 13909.1i 0.715015 0.803825i
$$670$$ −530.974 306.558i −0.0306169 0.0176767i
$$671$$ −36388.9 −2.09356
$$672$$ −12507.8 12750.5i −0.718004 0.731934i
$$673$$ −21537.4 −1.23359 −0.616795 0.787124i $$-0.711569\pi$$
−0.616795 + 0.787124i $$0.711569\pi$$
$$674$$ −46524.6 26861.0i −2.65884 1.53508i
$$675$$ 3494.26 + 303.301i 0.199251 + 0.0172949i
$$676$$ 11001.7 + 19055.6i 0.625952 + 1.08418i
$$677$$ −3113.61 + 5392.93i −0.176759 + 0.306155i −0.940769 0.339050i $$-0.889895\pi$$
0.764010 + 0.645205i $$0.223228\pi$$
$$678$$ −53811.7 + 17844.9i −3.04812 + 1.01081i
$$679$$ 5457.15 8122.06i 0.308433 0.459052i
$$680$$ 4039.48i 0.227805i
$$681$$ 1333.72 6466.66i 0.0750490 0.363881i
$$682$$ −53687.0 + 30996.2i −3.01434 + 1.74033i
$$683$$ −10377.9 + 5991.66i −0.581402 + 0.335673i −0.761690 0.647941i $$-0.775630\pi$$
0.180288 + 0.983614i $$0.442297\pi$$
$$684$$ −36461.6 + 4278.60i −2.03822 + 0.239176i
$$685$$ 6712.88i 0.374432i
$$686$$ 19283.4 21650.4i 1.07324 1.20498i
$$687$$ 4722.82 + 14241.8i 0.262281 + 0.790915i
$$688$$ −305.258 + 528.722i −0.0169155 + 0.0292985i
$$689$$ −7106.20 12308.3i −0.392924 0.680564i
$$690$$ 2202.69 + 1959.33i 0.121529 + 0.108102i
$$691$$ 21090.2 + 12176.5i 1.16109 + 0.670354i 0.951564 0.307450i $$-0.0994758\pi$$
0.209522 + 0.977804i $$0.432809\pi$$
$$692$$ 44978.8 2.47086
$$693$$ −1093.91 22399.3i −0.0599630 1.22782i
$$694$$ 4269.94 0.233551
$$695$$ −2790.87 1611.31i −0.152322 0.0879432i
$$696$$ −2705.41 2406.50i −0.147339 0.131061i
$$697$$ 5399.70 + 9352.55i 0.293441 + 0.508254i
$$698$$ 13693.1 23717.1i 0.742536 1.28611i
$$699$$ −2683.67 8092.69i −0.145216 0.437902i
$$700$$ −5334.70 + 2613.81i −0.288047 + 0.141132i
$$701$$ 23347.4i 1.25794i −0.777428 0.628972i $$-0.783476\pi$$
0.777428 0.628972i $$-0.216524\pi$$
$$702$$ 5950.27 + 12737.6i 0.319912 + 0.684831i
$$703$$ 24029.2 13873.3i 1.28916 0.744296i
$$704$$ 32272.3 18632.4i 1.72771 0.997494i
$$705$$ −625.738 + 3033.94i −0.0334279 + 0.162078i
$$706$$ 30955.7i 1.65019i
$$707$$ 2171.15 31873.3i 0.115494 1.69550i
$$708$$ −394.930 + 130.965i −0.0209638 + 0.00695195i
$$709$$ 3202.09 5546.19i 0.169615 0.293782i −0.768669 0.639646i $$-0.779081\pi$$
0.938285 + 0.345864i $$0.112414\pi$$
$$710$$ 7299.45 + 12643.0i 0.385836 + 0.668288i
$$711$$ −15509.0 6681.55i −0.818050 0.352430i
$$712$$ −13397.8 7735.24i −0.705204 0.407149i
$$713$$ 7529.67 0.395496
$$714$$ −15585.8 + 4016.12i −0.816923 + 0.210503i
$$715$$ 4923.41 0.257518
$$716$$ −22262.0 12853.0i −1.16197 0.670863i
$$717$$ −10652.8 + 11975.9i −0.554862 + 0.623779i
$$718$$ −1040.53 1802.25i −0.0540839 0.0936760i
$$719$$ −11057.5 + 19152.2i −0.573541 + 0.993403i 0.422657 + 0.906290i $$0.361098\pi$$
−0.996198 + 0.0871132i $$0.972236\pi$$
$$720$$ −218.814 + 163.056i −0.0113260 + 0.00843992i
$$721$$ 3177.39 + 6484.96i 0.164122 + 0.334969i
$$722$$ 19951.0i 1.02839i
$$723$$ 2901.72 + 598.467i 0.149262 + 0.0307845i
$$724$$ −12114.7 + 6994.45i −0.621879 + 0.359042i
$$725$$ 684.307 395.085i 0.0350545 0.0202387i
$$726$$ 15801.4 + 3258.98i 0.807778 + 0.166601i
$$727$$ 2412.41i 0.123069i 0.998105 + 0.0615346i $$0.0195994\pi$$
−0.998105 + 0.0615346i $$0.980401\pi$$
$$728$$ −7441.33 4999.77i −0.378838 0.254538i
$$729$$ −6757.27 18486.7i −0.343305 0.939224i
$$730$$ 8165.57 14143.2i 0.414002 0.717072i
$$731$$ 5533.86 + 9584.92i 0.279996 + 0.484967i
$$732$$ 35952.8 40418.4i 1.81538 2.04086i
$$733$$ −25158.3 14525.2i −1.26773 0.731923i −0.293170 0.956060i $$-0.594710\pi$$
−0.974557 + 0.224138i $$0.928043\pi$$
$$734$$ −23968.8 −1.20532
$$735$$ −5793.72 6770.96i −0.290755 0.339797i
$$736$$ −4614.32 −0.231095
$$737$$ 1043.50 + 602.466i 0.0521545 + 0.0301114i
$$738$$ 14369.0 33353.0i 0.716710 1.66361i
$$739$$ 17961.7 + 31110.6i 0.894089 + 1.54861i 0.834928 + 0.550360i $$0.185510\pi$$
0.0591619 + 0.998248i $$0.481157\pi$$
$$740$$ −8398.42 + 14546.5i −0.417206 + 0.722621i
$$741$$ 11475.7 3805.53i 0.568920 0.188663i
$$742$$ −45416.1 30514.7i −2.24700 1.50974i
$$743$$ 707.501i 0.0349337i −0.999847 0.0174668i $$-0.994440\pi$$
0.999847 0.0174668i $$-0.00556015\pi$$
$$744$$ 7008.36 33980.6i 0.345348 1.67445i
$$745$$ 5242.33 3026.66i 0.257804 0.148843i
$$746$$ 2197.58 1268.77i 0.107854 0.0622695i
$$747$$ 1983.94 + 16906.8i 0.0971733 + 0.828096i
$$748$$ 21086.0i 1.03072i
$$749$$ −2555.37 5215.43i −0.124661 0.254429i
$$750$$ 933.090 + 2813.76i 0.0454288 + 0.136992i
$$751$$ 9718.47 16832.9i 0.472213 0.817897i −0.527281 0.849691i $$-0.676789\pi$$
0.999494 + 0.0317938i $$0.0101220\pi$$
$$752$$ −120.509 208.728i −0.00584376 0.0101217i
$$753$$ 14283.5 + 12705.4i 0.691259 + 0.614886i
$$754$$ 2742.94 + 1583.64i 0.132483 + 0.0764891i
$$755$$ 2761.05 0.133092
$$756$$ 25960.4 + 20915.8i 1.24890 + 1.00622i
$$757$$ 10730.3 0.515190 0.257595 0.966253i $$-0.417070\pi$$
0.257595 + 0.966253i $$0.417070\pi$$
$$758$$ −3066.48 1770.44i −0.146939 0.0848352i
$$759$$ −4328.86 3850.59i −0.207019 0.184147i
$$760$$ −5840.95 10116.8i −0.278781 0.482862i
$$761$$ −608.496 + 1053.95i −0.0289855 + 0.0502043i −0.880154 0.474688i $$-0.842561\pi$$
0.851169 + 0.524892i $$0.175894\pi$$
$$762$$ −18041.9 54405.7i −0.857726 2.58650i
$$763$$ 995.410 14613.0i 0.0472297 0.693352i
$$764$$ 13983.5i 0.662179i
$$765$$ 576.553 + 4913.30i 0.0272488 + 0.232210i
$$766$$ 23603.6 13627.5i 1.11336 0.642798i
$$767$$ 118.668 68.5131i 0.00558652 0.00322538i
$$768$$ −4077.07 + 19768.0i −0.191561 + 0.928799i
$$769$$ 40387.9i 1.89392i 0.321349 + 0.946961i $$0.395864\pi$$
−0.321349 + 0.946961i $$0.604136\pi$$
$$770$$ 17021.0 8339.67i 0.796617 0.390313i
$$771$$ 23400.2 7759.89i 1.09304 0.362472i
$$772$$ −31735.7 + 54967.9i