Properties

Label 105.4.s.a.26.10
Level $105$
Weight $4$
Character 105.26
Analytic conductor $6.195$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.10
Character \(\chi\) \(=\) 105.26
Dual form 105.4.s.a.101.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.815639 + 0.470909i) q^{2} +(-4.77022 - 2.06035i) q^{3} +(-3.55649 - 6.16002i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(-2.92054 - 3.92684i) q^{6} +(13.9941 + 12.1312i) q^{7} -14.2337i q^{8} +(18.5099 + 19.6566i) q^{9} +O(q^{10})\) \(q+(0.815639 + 0.470909i) q^{2} +(-4.77022 - 2.06035i) q^{3} +(-3.55649 - 6.16002i) q^{4} +(-2.50000 + 4.33013i) q^{5} +(-2.92054 - 3.92684i) q^{6} +(13.9941 + 12.1312i) q^{7} -14.2337i q^{8} +(18.5099 + 19.6566i) q^{9} +(-4.07820 + 2.35455i) q^{10} +(-55.6111 + 32.1071i) q^{11} +(4.27345 + 36.7122i) q^{12} +67.4233i q^{13} +(5.70141 + 16.4846i) q^{14} +(20.8471 - 15.5048i) q^{15} +(-21.7491 + 37.6706i) q^{16} +(-25.5674 - 44.2840i) q^{17} +(5.84096 + 24.7492i) q^{18} +(99.0631 + 57.1941i) q^{19} +35.5649 q^{20} +(-41.7602 - 86.7011i) q^{21} -60.4781 q^{22} +(-74.0258 - 42.7388i) q^{23} +(-29.3263 + 67.8978i) q^{24} +(-12.5000 - 21.6506i) q^{25} +(-31.7503 + 54.9931i) q^{26} +(-47.7971 - 131.903i) q^{27} +(24.9587 - 129.348i) q^{28} +138.431i q^{29} +(24.3051 - 2.82921i) q^{30} +(-23.9598 + 13.8332i) q^{31} +(-134.093 + 77.4185i) q^{32} +(331.429 - 38.5796i) q^{33} -48.1597i q^{34} +(-87.5148 + 30.2681i) q^{35} +(55.2546 - 183.930i) q^{36} +(63.3925 - 109.799i) q^{37} +(53.8665 + 93.2995i) q^{38} +(138.915 - 321.624i) q^{39} +(61.6337 + 35.5842i) q^{40} +72.8096 q^{41} +(6.76709 - 90.3821i) q^{42} -550.446 q^{43} +(395.560 + 228.377i) q^{44} +(-131.390 + 31.0089i) q^{45} +(-40.2522 - 69.7189i) q^{46} +(-86.4414 + 149.721i) q^{47} +(181.363 - 134.886i) q^{48} +(48.6676 + 339.530i) q^{49} -23.5455i q^{50} +(30.7216 + 263.922i) q^{51} +(415.329 - 239.790i) q^{52} +(-151.278 + 87.3402i) q^{53} +(23.1293 - 130.093i) q^{54} -321.071i q^{55} +(172.672 - 199.187i) q^{56} +(-354.713 - 476.933i) q^{57} +(-65.1883 + 112.909i) q^{58} +(-159.186 - 275.719i) q^{59} +(-169.652 - 73.2760i) q^{60} +(4.36492 + 2.52009i) q^{61} -26.0567 q^{62} +(20.5711 + 499.624i) q^{63} +202.158 q^{64} +(-291.951 - 168.558i) q^{65} +(288.494 + 124.606i) q^{66} +(-96.8702 - 167.784i) q^{67} +(-181.860 + 314.991i) q^{68} +(265.062 + 356.392i) q^{69} +(-85.6340 - 16.5237i) q^{70} +22.7504i q^{71} +(279.786 - 263.465i) q^{72} +(354.237 - 204.519i) q^{73} +(103.411 - 59.7043i) q^{74} +(15.0199 + 129.033i) q^{75} -813.641i q^{76} +(-1167.72 - 225.321i) q^{77} +(264.760 - 196.912i) q^{78} +(-311.784 + 540.026i) q^{79} +(-108.746 - 188.353i) q^{80} +(-43.7636 + 727.685i) q^{81} +(59.3864 + 34.2867i) q^{82} +1139.34 q^{83} +(-385.561 + 565.595i) q^{84} +255.674 q^{85} +(-448.965 - 259.210i) q^{86} +(285.215 - 660.344i) q^{87} +(457.002 + 791.551i) q^{88} +(-169.189 + 293.044i) q^{89} +(-121.770 - 36.5809i) q^{90} +(-817.926 + 943.525i) q^{91} +608.000i q^{92} +(142.794 - 16.6218i) q^{93} +(-141.010 + 81.4121i) q^{94} +(-495.316 + 285.971i) q^{95} +(799.161 - 93.0255i) q^{96} +53.6953i q^{97} +(-120.193 + 299.852i) q^{98} +(-1660.47 - 498.824i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + O(q^{10}) \) \( 32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + 36q^{11} + 246q^{12} + 18q^{14} + 20q^{15} - 376q^{16} - 72q^{17} - 442q^{18} - 198q^{19} - 640q^{20} - 218q^{21} + 204q^{22} + 72q^{23} - 50q^{24} - 400q^{25} - 312q^{26} + 508q^{27} + 350q^{28} + 40q^{30} + 510q^{31} + 810q^{32} + 290q^{33} - 70q^{35} - 612q^{36} - 658q^{37} - 192q^{38} - 648q^{39} - 1404q^{41} + 1892q^{42} + 332q^{43} + 2034q^{44} - 490q^{45} - 468q^{46} + 408q^{47} + 2810q^{48} + 980q^{49} - 888q^{51} + 3378q^{52} + 1152q^{53} + 2714q^{54} - 3354q^{56} - 816q^{57} - 1080q^{58} - 48q^{59} - 420q^{60} - 1662q^{61} - 2076q^{62} + 874q^{63} - 1952q^{64} + 870q^{65} - 1892q^{66} - 1298q^{67} + 1182q^{68} + 2450q^{69} - 450q^{70} - 2708q^{72} + 378q^{73} + 2898q^{74} - 50q^{75} - 3528q^{77} - 1896q^{78} - 326q^{79} - 1880q^{80} - 3308q^{81} - 2916q^{82} - 1536q^{83} + 1380q^{84} + 720q^{85} + 5202q^{86} - 1090q^{87} + 1668q^{88} - 1590q^{89} + 910q^{90} + 2082q^{91} - 4950q^{93} - 1152q^{94} + 990q^{95} + 7416q^{96} - 7830q^{98} + 3128q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.815639 + 0.470909i 0.288372 + 0.166492i 0.637207 0.770692i \(-0.280089\pi\)
−0.348835 + 0.937184i \(0.613423\pi\)
\(3\) −4.77022 2.06035i −0.918029 0.396514i
\(4\) −3.55649 6.16002i −0.444561 0.770002i
\(5\) −2.50000 + 4.33013i −0.223607 + 0.387298i
\(6\) −2.92054 3.92684i −0.198718 0.267188i
\(7\) 13.9941 + 12.1312i 0.755608 + 0.655024i
\(8\) 14.2337i 0.629046i
\(9\) 18.5099 + 19.6566i 0.685554 + 0.728022i
\(10\) −4.07820 + 2.35455i −0.128964 + 0.0744573i
\(11\) −55.6111 + 32.1071i −1.52431 + 0.880059i −0.524720 + 0.851275i \(0.675830\pi\)
−0.999586 + 0.0287839i \(0.990837\pi\)
\(12\) 4.27345 + 36.7122i 0.102803 + 0.883159i
\(13\) 67.4233i 1.43845i 0.694777 + 0.719225i \(0.255503\pi\)
−0.694777 + 0.719225i \(0.744497\pi\)
\(14\) 5.70141 + 16.4846i 0.108840 + 0.314693i
\(15\) 20.8471 15.5048i 0.358847 0.266888i
\(16\) −21.7491 + 37.6706i −0.339830 + 0.588603i
\(17\) −25.5674 44.2840i −0.364764 0.631791i 0.623974 0.781445i \(-0.285517\pi\)
−0.988738 + 0.149655i \(0.952184\pi\)
\(18\) 5.84096 + 24.7492i 0.0764849 + 0.324080i
\(19\) 99.0631 + 57.1941i 1.19614 + 0.690591i 0.959692 0.281053i \(-0.0906838\pi\)
0.236447 + 0.971644i \(0.424017\pi\)
\(20\) 35.5649 0.397628
\(21\) −41.7602 86.7011i −0.433944 0.900940i
\(22\) −60.4781 −0.586090
\(23\) −74.0258 42.7388i −0.671106 0.387463i 0.125389 0.992108i \(-0.459982\pi\)
−0.796496 + 0.604644i \(0.793315\pi\)
\(24\) −29.3263 + 67.8978i −0.249425 + 0.577482i
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −31.7503 + 54.9931i −0.239490 + 0.414809i
\(27\) −47.7971 131.903i −0.340687 0.940177i
\(28\) 24.9587 129.348i 0.168456 0.873018i
\(29\) 138.431i 0.886411i 0.896420 + 0.443205i \(0.146159\pi\)
−0.896420 + 0.443205i \(0.853841\pi\)
\(30\) 24.3051 2.82921i 0.147916 0.0172180i
\(31\) −23.9598 + 13.8332i −0.138816 + 0.0801455i −0.567800 0.823167i \(-0.692205\pi\)
0.428984 + 0.903312i \(0.358872\pi\)
\(32\) −134.093 + 77.4185i −0.740765 + 0.427681i
\(33\) 331.429 38.5796i 1.74831 0.203511i
\(34\) 48.1597i 0.242921i
\(35\) −87.5148 + 30.2681i −0.422649 + 0.146178i
\(36\) 55.2546 183.930i 0.255808 0.851528i
\(37\) 63.3925 109.799i 0.281667 0.487861i −0.690129 0.723687i \(-0.742446\pi\)
0.971795 + 0.235826i \(0.0757794\pi\)
\(38\) 53.8665 + 93.2995i 0.229955 + 0.398294i
\(39\) 138.915 321.624i 0.570365 1.32054i
\(40\) 61.6337 + 35.5842i 0.243628 + 0.140659i
\(41\) 72.8096 0.277340 0.138670 0.990339i \(-0.455717\pi\)
0.138670 + 0.990339i \(0.455717\pi\)
\(42\) 6.76709 90.3821i 0.0248615 0.332054i
\(43\) −550.446 −1.95215 −0.976073 0.217444i \(-0.930228\pi\)
−0.976073 + 0.217444i \(0.930228\pi\)
\(44\) 395.560 + 228.377i 1.35529 + 0.782480i
\(45\) −131.390 + 31.0089i −0.435256 + 0.102723i
\(46\) −40.2522 69.7189i −0.129019 0.223467i
\(47\) −86.4414 + 149.721i −0.268272 + 0.464660i −0.968416 0.249341i \(-0.919786\pi\)
0.700144 + 0.714002i \(0.253119\pi\)
\(48\) 181.363 134.886i 0.545363 0.405607i
\(49\) 48.6676 + 339.530i 0.141888 + 0.989883i
\(50\) 23.5455i 0.0665967i
\(51\) 30.7216 + 263.922i 0.0843506 + 0.724636i
\(52\) 415.329 239.790i 1.10761 0.639479i
\(53\) −151.278 + 87.3402i −0.392068 + 0.226360i −0.683056 0.730366i \(-0.739349\pi\)
0.290988 + 0.956727i \(0.406016\pi\)
\(54\) 23.1293 130.093i 0.0582869 0.327842i
\(55\) 321.071i 0.787148i
\(56\) 172.672 199.187i 0.412040 0.475312i
\(57\) −354.713 476.933i −0.824261 1.10827i
\(58\) −65.1883 + 112.909i −0.147580 + 0.255616i
\(59\) −159.186 275.719i −0.351259 0.608399i 0.635211 0.772339i \(-0.280913\pi\)
−0.986470 + 0.163940i \(0.947580\pi\)
\(60\) −169.652 73.2760i −0.365033 0.157665i
\(61\) 4.36492 + 2.52009i 0.00916181 + 0.00528958i 0.504574 0.863369i \(-0.331650\pi\)
−0.495412 + 0.868658i \(0.664983\pi\)
\(62\) −26.0567 −0.0533742
\(63\) 20.5711 + 499.624i 0.0411384 + 0.999153i
\(64\) 202.158 0.394839
\(65\) −291.951 168.558i −0.557109 0.321647i
\(66\) 288.494 + 124.606i 0.538047 + 0.232393i
\(67\) −96.8702 167.784i −0.176636 0.305942i 0.764091 0.645109i \(-0.223188\pi\)
−0.940726 + 0.339167i \(0.889855\pi\)
\(68\) −181.860 + 314.991i −0.324320 + 0.561739i
\(69\) 265.062 + 356.392i 0.462460 + 0.621805i
\(70\) −85.6340 16.5237i −0.146217 0.0282138i
\(71\) 22.7504i 0.0380278i 0.999819 + 0.0190139i \(0.00605268\pi\)
−0.999819 + 0.0190139i \(0.993947\pi\)
\(72\) 279.786 263.465i 0.457959 0.431245i
\(73\) 354.237 204.519i 0.567950 0.327906i −0.188380 0.982096i \(-0.560324\pi\)
0.756330 + 0.654190i \(0.226990\pi\)
\(74\) 103.411 59.7043i 0.162450 0.0937903i
\(75\) 15.0199 + 129.033i 0.0231247 + 0.198659i
\(76\) 813.641i 1.22804i
\(77\) −1167.72 225.321i −1.72824 0.333477i
\(78\) 264.760 196.912i 0.384336 0.285845i
\(79\) −311.784 + 540.026i −0.444031 + 0.769084i −0.997984 0.0634634i \(-0.979785\pi\)
0.553953 + 0.832548i \(0.313119\pi\)
\(80\) −108.746 188.353i −0.151977 0.263231i
\(81\) −43.7636 + 727.685i −0.0600324 + 0.998196i
\(82\) 59.3864 + 34.2867i 0.0799772 + 0.0461748i
\(83\) 1139.34 1.50674 0.753369 0.657598i \(-0.228427\pi\)
0.753369 + 0.657598i \(0.228427\pi\)
\(84\) −385.561 + 565.595i −0.500811 + 0.734661i
\(85\) 255.674 0.326255
\(86\) −448.965 259.210i −0.562944 0.325016i
\(87\) 285.215 660.344i 0.351474 0.813751i
\(88\) 457.002 + 791.551i 0.553597 + 0.958859i
\(89\) −169.189 + 293.044i −0.201506 + 0.349018i −0.949014 0.315235i \(-0.897917\pi\)
0.747508 + 0.664253i \(0.231250\pi\)
\(90\) −121.770 36.5809i −0.142618 0.0428441i
\(91\) −817.926 + 943.525i −0.942219 + 1.08690i
\(92\) 608.000i 0.689004i
\(93\) 142.794 16.6218i 0.159216 0.0185334i
\(94\) −141.010 + 81.4121i −0.154724 + 0.0893300i
\(95\) −495.316 + 285.971i −0.534930 + 0.308842i
\(96\) 799.161 93.0255i 0.849625 0.0988998i
\(97\) 53.6953i 0.0562055i 0.999605 + 0.0281028i \(0.00894656\pi\)
−0.999605 + 0.0281028i \(0.991053\pi\)
\(98\) −120.193 + 299.852i −0.123891 + 0.309078i
\(99\) −1660.47 498.824i −1.68570 0.506401i
\(100\) −88.9122 + 154.000i −0.0889122 + 0.154000i
\(101\) 850.191 + 1472.57i 0.837596 + 1.45076i 0.891899 + 0.452234i \(0.149373\pi\)
−0.0543035 + 0.998524i \(0.517294\pi\)
\(102\) −99.2255 + 229.732i −0.0963215 + 0.223008i
\(103\) −118.675 68.5171i −0.113528 0.0655455i 0.442161 0.896936i \(-0.354212\pi\)
−0.555689 + 0.831390i \(0.687545\pi\)
\(104\) 959.682 0.904851
\(105\) 479.827 + 35.9256i 0.445965 + 0.0333903i
\(106\) −164.517 −0.150748
\(107\) −1181.41 682.087i −1.06739 0.616260i −0.139926 0.990162i \(-0.544686\pi\)
−0.927468 + 0.373902i \(0.878020\pi\)
\(108\) −642.536 + 763.543i −0.572482 + 0.680296i
\(109\) 765.640 + 1326.13i 0.672798 + 1.16532i 0.977107 + 0.212747i \(0.0682412\pi\)
−0.304309 + 0.952573i \(0.598425\pi\)
\(110\) 151.195 261.878i 0.131054 0.226991i
\(111\) −528.620 + 393.155i −0.452022 + 0.336186i
\(112\) −761.349 + 263.322i −0.642327 + 0.222157i
\(113\) 1273.71i 1.06035i −0.847887 0.530177i \(-0.822125\pi\)
0.847887 0.530177i \(-0.177875\pi\)
\(114\) −64.7256 556.043i −0.0531764 0.456826i
\(115\) 370.129 213.694i 0.300128 0.173279i
\(116\) 852.735 492.327i 0.682539 0.394064i
\(117\) −1325.31 + 1248.00i −1.04722 + 0.986135i
\(118\) 299.849i 0.233927i
\(119\) 179.427 929.876i 0.138219 0.716316i
\(120\) −220.690 296.731i −0.167885 0.225731i
\(121\) 1396.23 2418.34i 1.04901 1.81693i
\(122\) 2.37347 + 4.11096i 0.00176134 + 0.00305073i
\(123\) −347.318 150.013i −0.254606 0.109969i
\(124\) 170.425 + 98.3950i 0.123424 + 0.0712591i
\(125\) 125.000 0.0894427
\(126\) −218.499 + 417.200i −0.154488 + 0.294977i
\(127\) −89.8483 −0.0627775 −0.0313888 0.999507i \(-0.509993\pi\)
−0.0313888 + 0.999507i \(0.509993\pi\)
\(128\) 1237.63 + 714.546i 0.854625 + 0.493418i
\(129\) 2625.75 + 1134.11i 1.79213 + 0.774053i
\(130\) −158.751 274.965i −0.107103 0.185508i
\(131\) −788.646 + 1365.98i −0.525987 + 0.911037i 0.473554 + 0.880765i \(0.342971\pi\)
−0.999542 + 0.0302722i \(0.990363\pi\)
\(132\) −1416.37 1904.40i −0.933935 1.25573i
\(133\) 692.462 + 2002.13i 0.451459 + 1.30532i
\(134\) 182.468i 0.117633i
\(135\) 690.650 + 122.790i 0.440309 + 0.0782823i
\(136\) −630.324 + 363.918i −0.397425 + 0.229454i
\(137\) 1978.11 1142.06i 1.23359 0.712212i 0.265811 0.964025i \(-0.414360\pi\)
0.967776 + 0.251813i \(0.0810269\pi\)
\(138\) 48.3668 + 415.508i 0.0298352 + 0.256307i
\(139\) 1032.66i 0.630139i −0.949069 0.315070i \(-0.897972\pi\)
0.949069 0.315070i \(-0.102028\pi\)
\(140\) 497.697 + 431.445i 0.300451 + 0.260455i
\(141\) 720.821 536.102i 0.430525 0.320198i
\(142\) −10.7134 + 18.5561i −0.00633131 + 0.0109662i
\(143\) −2164.76 3749.48i −1.26592 2.19264i
\(144\) −1143.05 + 269.767i −0.661488 + 0.156115i
\(145\) −599.422 346.077i −0.343306 0.198208i
\(146\) 385.240 0.218374
\(147\) 467.394 1719.90i 0.262245 0.965001i
\(148\) −901.819 −0.500872
\(149\) 2186.22 + 1262.22i 1.20203 + 0.693992i 0.961006 0.276528i \(-0.0891837\pi\)
0.241023 + 0.970519i \(0.422517\pi\)
\(150\) −48.5118 + 112.317i −0.0264065 + 0.0611376i
\(151\) −1561.52 2704.64i −0.841556 1.45762i −0.888578 0.458725i \(-0.848306\pi\)
0.0470221 0.998894i \(-0.485027\pi\)
\(152\) 814.083 1410.03i 0.434414 0.752426i
\(153\) 397.222 1322.26i 0.209892 0.698683i
\(154\) −846.334 733.672i −0.442854 0.383902i
\(155\) 138.332i 0.0716843i
\(156\) −2475.26 + 288.130i −1.27038 + 0.147877i
\(157\) −283.566 + 163.717i −0.144147 + 0.0832231i −0.570339 0.821410i \(-0.693188\pi\)
0.426192 + 0.904633i \(0.359855\pi\)
\(158\) −508.607 + 293.644i −0.256092 + 0.147855i
\(159\) 901.578 104.947i 0.449684 0.0523451i
\(160\) 774.185i 0.382529i
\(161\) −517.448 1496.11i −0.253296 0.732361i
\(162\) −378.369 + 572.920i −0.183503 + 0.277857i
\(163\) 1249.41 2164.05i 0.600378 1.03989i −0.392385 0.919801i \(-0.628350\pi\)
0.992764 0.120085i \(-0.0383166\pi\)
\(164\) −258.947 448.509i −0.123295 0.213553i
\(165\) −661.517 + 1531.58i −0.312115 + 0.722625i
\(166\) 929.294 + 536.528i 0.434501 + 0.250859i
\(167\) 2295.49 1.06366 0.531828 0.846852i \(-0.321505\pi\)
0.531828 + 0.846852i \(0.321505\pi\)
\(168\) −1234.08 + 594.402i −0.566733 + 0.272971i
\(169\) −2348.90 −1.06914
\(170\) 208.537 + 120.399i 0.0940829 + 0.0543188i
\(171\) 709.411 + 3005.90i 0.317252 + 1.34425i
\(172\) 1957.66 + 3390.76i 0.867848 + 1.50316i
\(173\) −749.930 + 1298.92i −0.329573 + 0.570837i −0.982427 0.186646i \(-0.940238\pi\)
0.652854 + 0.757484i \(0.273572\pi\)
\(174\) 543.595 404.292i 0.236838 0.176145i
\(175\) 87.7225 454.620i 0.0378926 0.196378i
\(176\) 2793.20i 1.19628i
\(177\) 191.277 + 1643.22i 0.0812276 + 0.697807i
\(178\) −275.994 + 159.345i −0.116217 + 0.0670980i
\(179\) 429.860 248.180i 0.179493 0.103630i −0.407562 0.913178i \(-0.633621\pi\)
0.587054 + 0.809548i \(0.300287\pi\)
\(180\) 658.304 + 699.085i 0.272595 + 0.289482i
\(181\) 1497.18i 0.614831i 0.951575 + 0.307415i \(0.0994641\pi\)
−0.951575 + 0.307415i \(0.900536\pi\)
\(182\) −1111.45 + 384.407i −0.452670 + 0.156561i
\(183\) −15.6294 21.0146i −0.00631342 0.00848877i
\(184\) −608.331 + 1053.66i −0.243732 + 0.422157i
\(185\) 316.963 + 548.996i 0.125965 + 0.218178i
\(186\) 124.296 + 53.6858i 0.0489991 + 0.0211636i
\(187\) 2843.66 + 1641.79i 1.11203 + 0.642028i
\(188\) 1229.71 0.477053
\(189\) 931.269 2425.70i 0.358412 0.933564i
\(190\) −538.665 −0.205678
\(191\) 584.786 + 337.627i 0.221537 + 0.127905i 0.606662 0.794960i \(-0.292508\pi\)
−0.385124 + 0.922865i \(0.625841\pi\)
\(192\) −964.336 416.515i −0.362474 0.156559i
\(193\) −5.52531 9.57011i −0.00206073 0.00356928i 0.864993 0.501784i \(-0.167323\pi\)
−0.867054 + 0.498214i \(0.833989\pi\)
\(194\) −25.2856 + 43.7960i −0.00935775 + 0.0162081i
\(195\) 1045.38 + 1405.58i 0.383905 + 0.516183i
\(196\) 1918.42 1507.33i 0.699134 0.549318i
\(197\) 3040.50i 1.09963i 0.835288 + 0.549813i \(0.185301\pi\)
−0.835288 + 0.549813i \(0.814699\pi\)
\(198\) −1119.45 1188.79i −0.401796 0.426686i
\(199\) 1340.00 773.648i 0.477336 0.275590i −0.241969 0.970284i \(-0.577793\pi\)
0.719306 + 0.694694i \(0.244460\pi\)
\(200\) −308.168 + 177.921i −0.108954 + 0.0629046i
\(201\) 116.399 + 999.953i 0.0408464 + 0.350902i
\(202\) 1601.45i 0.557811i
\(203\) −1679.33 + 1937.21i −0.580620 + 0.669780i
\(204\) 1516.50 1127.88i 0.520473 0.387095i
\(205\) −182.024 + 315.275i −0.0620152 + 0.107413i
\(206\) −64.5307 111.770i −0.0218256 0.0378030i
\(207\) −530.114 2246.19i −0.177997 0.754207i
\(208\) −2539.87 1466.40i −0.846676 0.488829i
\(209\) −7345.34 −2.43104
\(210\) 374.448 + 255.258i 0.123045 + 0.0838783i
\(211\) −2361.86 −0.770602 −0.385301 0.922791i \(-0.625902\pi\)
−0.385301 + 0.922791i \(0.625902\pi\)
\(212\) 1076.03 + 621.249i 0.348596 + 0.201262i
\(213\) 46.8737 108.524i 0.0150785 0.0349106i
\(214\) −642.403 1112.67i −0.205204 0.355424i
\(215\) 1376.12 2383.50i 0.436513 0.756063i
\(216\) −1877.47 + 680.329i −0.591414 + 0.214308i
\(217\) −503.107 97.0785i −0.157388 0.0303692i
\(218\) 1442.19i 0.448061i
\(219\) −2111.17 + 245.749i −0.651413 + 0.0758272i
\(220\) −1977.80 + 1141.88i −0.606106 + 0.349935i
\(221\) 2985.77 1723.84i 0.908799 0.524695i
\(222\) −616.304 + 71.7403i −0.186323 + 0.0216887i
\(223\) 816.141i 0.245080i 0.992464 + 0.122540i \(0.0391040\pi\)
−0.992464 + 0.122540i \(0.960896\pi\)
\(224\) −2815.68 543.308i −0.839869 0.162059i
\(225\) 194.203 646.460i 0.0575418 0.191544i
\(226\) 599.800 1038.88i 0.176540 0.305777i
\(227\) 1121.51 + 1942.51i 0.327917 + 0.567969i 0.982098 0.188369i \(-0.0603201\pi\)
−0.654181 + 0.756338i \(0.726987\pi\)
\(228\) −1676.38 + 3881.24i −0.486935 + 1.12738i
\(229\) 3383.87 + 1953.68i 0.976473 + 0.563767i 0.901203 0.433397i \(-0.142685\pi\)
0.0752693 + 0.997163i \(0.476018\pi\)
\(230\) 402.522 0.115398
\(231\) 5106.05 + 3480.74i 1.45434 + 0.991411i
\(232\) 1970.38 0.557593
\(233\) −1273.22 735.092i −0.357988 0.206684i 0.310210 0.950668i \(-0.399601\pi\)
−0.668198 + 0.743984i \(0.732934\pi\)
\(234\) −1668.67 + 393.817i −0.466173 + 0.110020i
\(235\) −432.207 748.604i −0.119975 0.207802i
\(236\) −1132.29 + 1961.18i −0.312312 + 0.540941i
\(237\) 2599.92 1933.66i 0.712586 0.529977i
\(238\) 584.235 673.949i 0.159119 0.183553i
\(239\) 3458.17i 0.935944i 0.883743 + 0.467972i \(0.155015\pi\)
−0.883743 + 0.467972i \(0.844985\pi\)
\(240\) 130.668 + 1122.54i 0.0351441 + 0.301915i
\(241\) 2323.76 1341.63i 0.621107 0.358596i −0.156193 0.987727i \(-0.549922\pi\)
0.777300 + 0.629130i \(0.216589\pi\)
\(242\) 2277.63 1314.99i 0.605008 0.349301i
\(243\) 1708.05 3381.05i 0.450910 0.892569i
\(244\) 35.8506i 0.00940616i
\(245\) −1591.88 638.087i −0.415107 0.166391i
\(246\) −212.643 285.912i −0.0551124 0.0741019i
\(247\) −3856.21 + 6679.16i −0.993381 + 1.72059i
\(248\) 196.897 + 341.036i 0.0504152 + 0.0873217i
\(249\) −5434.92 2347.44i −1.38323 0.597442i
\(250\) 101.955 + 58.8637i 0.0257928 + 0.0148915i
\(251\) −5464.21 −1.37409 −0.687047 0.726613i \(-0.741093\pi\)
−0.687047 + 0.726613i \(0.741093\pi\)
\(252\) 3004.53 1903.62i 0.751062 0.475861i
\(253\) 5488.87 1.36396
\(254\) −73.2838 42.3104i −0.0181033 0.0104519i
\(255\) −1219.62 526.776i −0.299512 0.129365i
\(256\) −135.658 234.966i −0.0331196 0.0573648i
\(257\) −2046.30 + 3544.29i −0.496672 + 0.860261i −0.999993 0.00383897i \(-0.998778\pi\)
0.503321 + 0.864100i \(0.332111\pi\)
\(258\) 1607.60 + 2161.51i 0.387926 + 0.521589i
\(259\) 2219.11 767.508i 0.532390 0.184134i
\(260\) 2397.90i 0.571967i
\(261\) −2721.07 + 2562.34i −0.645327 + 0.607682i
\(262\) −1286.50 + 742.762i −0.303360 + 0.175145i
\(263\) 784.155 452.732i 0.183852 0.106147i −0.405249 0.914206i \(-0.632815\pi\)
0.589101 + 0.808059i \(0.299482\pi\)
\(264\) −549.130 4717.45i −0.128018 1.09977i
\(265\) 873.402i 0.202463i
\(266\) −378.024 + 1959.10i −0.0871360 + 0.451581i
\(267\) 1410.84 1049.30i 0.323378 0.240509i
\(268\) −689.036 + 1193.44i −0.157051 + 0.272020i
\(269\) −2849.99 4936.32i −0.645973 1.11886i −0.984076 0.177749i \(-0.943118\pi\)
0.338103 0.941109i \(-0.390215\pi\)
\(270\) 505.498 + 425.386i 0.113939 + 0.0958822i
\(271\) −6732.45 3886.98i −1.50910 0.871282i −0.999944 0.0106106i \(-0.996622\pi\)
−0.509161 0.860671i \(-0.670044\pi\)
\(272\) 2224.27 0.495832
\(273\) 5845.67 2815.61i 1.29596 0.624207i
\(274\) 2151.23 0.474309
\(275\) 1390.28 + 802.677i 0.304861 + 0.176012i
\(276\) 1252.69 2900.29i 0.273200 0.632526i
\(277\) 934.939 + 1619.36i 0.202798 + 0.351256i 0.949429 0.313982i \(-0.101663\pi\)
−0.746631 + 0.665239i \(0.768330\pi\)
\(278\) 486.291 842.281i 0.104913 0.181715i
\(279\) −715.407 214.916i −0.153514 0.0461171i
\(280\) 430.826 + 1245.66i 0.0919528 + 0.265866i
\(281\) 7378.91i 1.56651i 0.621702 + 0.783254i \(0.286441\pi\)
−0.621702 + 0.783254i \(0.713559\pi\)
\(282\) 840.385 97.8243i 0.177462 0.0206573i
\(283\) 2481.15 1432.49i 0.521162 0.300893i −0.216248 0.976338i \(-0.569382\pi\)
0.737410 + 0.675445i \(0.236049\pi\)
\(284\) 140.143 80.9115i 0.0292815 0.0169057i
\(285\) 2951.96 343.620i 0.613541 0.0714186i
\(286\) 4077.63i 0.843060i
\(287\) 1018.90 + 883.269i 0.209561 + 0.181664i
\(288\) −4003.83 1202.80i −0.819195 0.246095i
\(289\) 1149.12 1990.33i 0.233894 0.405116i
\(290\) −325.941 564.547i −0.0659998 0.114315i
\(291\) 110.631 256.138i 0.0222863 0.0515983i
\(292\) −2519.68 1454.74i −0.504977 0.291548i
\(293\) 406.520 0.0810551 0.0405276 0.999178i \(-0.487096\pi\)
0.0405276 + 0.999178i \(0.487096\pi\)
\(294\) 1191.14 1182.72i 0.236289 0.234618i
\(295\) 1591.86 0.314176
\(296\) −1562.85 902.310i −0.306887 0.177181i
\(297\) 6893.07 + 5800.65i 1.34672 + 1.13329i
\(298\) 1188.78 + 2059.03i 0.231088 + 0.400256i
\(299\) 2881.59 4991.06i 0.557347 0.965353i
\(300\) 741.425 551.426i 0.142687 0.106122i
\(301\) −7702.98 6677.58i −1.47506 1.27870i
\(302\) 2941.35i 0.560448i
\(303\) −1021.58 8776.19i −0.193691 1.66396i
\(304\) −4309.07 + 2487.84i −0.812968 + 0.469367i
\(305\) −21.8246 + 12.6004i −0.00409729 + 0.00236557i
\(306\) 946.655 891.433i 0.176852 0.166535i
\(307\) 5919.18i 1.10041i 0.835030 + 0.550204i \(0.185450\pi\)
−0.835030 + 0.550204i \(0.814550\pi\)
\(308\) 2765.01 + 7994.54i 0.511529 + 1.47900i
\(309\) 424.937 + 571.353i 0.0782324 + 0.105188i
\(310\) 65.1417 112.829i 0.0119348 0.0206717i
\(311\) −1072.74 1858.04i −0.195593 0.338778i 0.751501 0.659731i \(-0.229330\pi\)
−0.947095 + 0.320954i \(0.895997\pi\)
\(312\) −4577.89 1977.28i −0.830679 0.358786i
\(313\) −5709.02 3296.10i −1.03097 0.595229i −0.113706 0.993514i \(-0.536272\pi\)
−0.917262 + 0.398285i \(0.869605\pi\)
\(314\) −308.383 −0.0554238
\(315\) −2214.86 1159.98i −0.396169 0.207485i
\(316\) 4435.43 0.789596
\(317\) 694.037 + 400.702i 0.122968 + 0.0709958i 0.560223 0.828342i \(-0.310716\pi\)
−0.437254 + 0.899338i \(0.644049\pi\)
\(318\) 784.783 + 338.962i 0.138391 + 0.0597738i
\(319\) −4444.60 7698.27i −0.780094 1.35116i
\(320\) −505.394 + 875.368i −0.0882887 + 0.152921i
\(321\) 4230.24 + 5687.82i 0.735543 + 0.988981i
\(322\) 282.482 1463.96i 0.0488886 0.253364i
\(323\) 5849.21i 1.00761i
\(324\) 4638.20 2318.42i 0.795302 0.397534i
\(325\) 1459.76 842.791i 0.249147 0.143845i
\(326\) 2038.14 1176.72i 0.346264 0.199916i
\(327\) −919.988 7903.40i −0.155582 1.33657i
\(328\) 1036.35i 0.174460i
\(329\) −3025.96 + 1046.57i −0.507072 + 0.175377i
\(330\) −1260.79 + 937.699i −0.210316 + 0.156420i
\(331\) 303.803 526.202i 0.0504487 0.0873797i −0.839698 0.543053i \(-0.817268\pi\)
0.890147 + 0.455673i \(0.150602\pi\)
\(332\) −4052.06 7018.38i −0.669837 1.16019i
\(333\) 3331.67 786.294i 0.548271 0.129395i
\(334\) 1872.29 + 1080.97i 0.306729 + 0.177090i
\(335\) 968.702 0.157988
\(336\) 4174.33 + 312.540i 0.677763 + 0.0507455i
\(337\) 5122.34 0.827987 0.413994 0.910280i \(-0.364134\pi\)
0.413994 + 0.910280i \(0.364134\pi\)
\(338\) −1915.85 1106.12i −0.308309 0.178003i
\(339\) −2624.27 + 6075.85i −0.420445 + 0.973436i
\(340\) −909.300 1574.95i −0.145040 0.251217i
\(341\) 888.285 1538.55i 0.141065 0.244333i
\(342\) −836.885 + 2785.80i −0.132320 + 0.440465i
\(343\) −3437.85 + 5341.80i −0.541185 + 0.840904i
\(344\) 7834.88i 1.22799i
\(345\) −2205.88 + 256.773i −0.344233 + 0.0400702i
\(346\) −1223.35 + 706.299i −0.190079 + 0.109742i
\(347\) 667.351 385.295i 0.103243 0.0596073i −0.447490 0.894289i \(-0.647682\pi\)
0.550732 + 0.834682i \(0.314348\pi\)
\(348\) −5082.10 + 591.577i −0.782842 + 0.0911260i
\(349\) 11389.5i 1.74689i 0.486924 + 0.873444i \(0.338119\pi\)
−0.486924 + 0.873444i \(0.661881\pi\)
\(350\) 285.635 329.497i 0.0436224 0.0503210i
\(351\) 8893.34 3222.64i 1.35240 0.490061i
\(352\) 4971.36 8610.65i 0.752768 1.30383i
\(353\) −2644.22 4579.92i −0.398690 0.690551i 0.594875 0.803818i \(-0.297202\pi\)
−0.993565 + 0.113267i \(0.963868\pi\)
\(354\) −617.794 + 1430.35i −0.0927553 + 0.214752i
\(355\) −98.5121 56.8760i −0.0147281 0.00850328i
\(356\) 2406.87 0.358326
\(357\) −2771.77 + 4066.03i −0.410918 + 0.602793i
\(358\) 467.480 0.0690143
\(359\) 9789.76 + 5652.12i 1.43923 + 0.830940i 0.997796 0.0663531i \(-0.0211364\pi\)
0.441435 + 0.897293i \(0.354470\pi\)
\(360\) 441.371 + 1870.17i 0.0646176 + 0.273796i
\(361\) 3112.83 + 5391.59i 0.453832 + 0.786060i
\(362\) −705.035 + 1221.16i −0.102364 + 0.177300i
\(363\) −11642.9 + 8659.28i −1.68346 + 1.25205i
\(364\) 8721.08 + 1682.80i 1.25579 + 0.242315i
\(365\) 2045.19i 0.293288i
\(366\) −2.85194 24.5004i −0.000407304 0.00349905i
\(367\) −5782.25 + 3338.38i −0.822427 + 0.474829i −0.851253 0.524756i \(-0.824157\pi\)
0.0288255 + 0.999584i \(0.490823\pi\)
\(368\) 3219.99 1859.06i 0.456124 0.263343i
\(369\) 1347.70 + 1431.19i 0.190132 + 0.201910i
\(370\) 597.043i 0.0838886i
\(371\) −3176.53 612.936i −0.444521 0.0857738i
\(372\) −610.237 820.500i −0.0850520 0.114357i
\(373\) −2738.19 + 4742.68i −0.380102 + 0.658355i −0.991076 0.133295i \(-0.957444\pi\)
0.610975 + 0.791650i \(0.290778\pi\)
\(374\) 1546.26 + 2678.21i 0.213785 + 0.370286i
\(375\) −596.277 257.543i −0.0821110 0.0354653i
\(376\) 2131.08 + 1230.38i 0.292293 + 0.168755i
\(377\) −9333.44 −1.27506
\(378\) 1901.86 1539.95i 0.258786 0.209541i
\(379\) −3103.70 −0.420650 −0.210325 0.977631i \(-0.567452\pi\)
−0.210325 + 0.977631i \(0.567452\pi\)
\(380\) 3523.17 + 2034.10i 0.475618 + 0.274598i
\(381\) 428.596 + 185.119i 0.0576316 + 0.0248921i
\(382\) 317.983 + 550.763i 0.0425901 + 0.0737683i
\(383\) −6855.49 + 11874.1i −0.914620 + 1.58417i −0.107163 + 0.994242i \(0.534177\pi\)
−0.807457 + 0.589926i \(0.799157\pi\)
\(384\) −4431.55 5958.49i −0.588924 0.791843i
\(385\) 3894.97 4493.08i 0.515601 0.594776i
\(386\) 10.4077i 0.00137238i
\(387\) −10188.7 10819.9i −1.33830 1.42121i
\(388\) 330.764 190.967i 0.0432784 0.0249868i
\(389\) −3667.32 + 2117.33i −0.477996 + 0.275971i −0.719581 0.694408i \(-0.755666\pi\)
0.241585 + 0.970380i \(0.422333\pi\)
\(390\) 190.754 + 1638.73i 0.0247672 + 0.212770i
\(391\) 4370.87i 0.565331i
\(392\) 4832.76 692.720i 0.622682 0.0892542i
\(393\) 6576.40 4891.11i 0.844110 0.627797i
\(394\) −1431.80 + 2479.95i −0.183079 + 0.317101i
\(395\) −1558.92 2700.13i −0.198577 0.343945i
\(396\) 2832.69 + 12002.6i 0.359465 + 1.52312i
\(397\) −454.421 262.360i −0.0574477 0.0331674i 0.471001 0.882133i \(-0.343893\pi\)
−0.528449 + 0.848965i \(0.677226\pi\)
\(398\) 1457.27 0.183534
\(399\) 821.894 10977.3i 0.103123 1.37733i
\(400\) 1087.46 0.135932
\(401\) −2060.38 1189.56i −0.256584 0.148139i 0.366191 0.930540i \(-0.380662\pi\)
−0.622776 + 0.782401i \(0.713995\pi\)
\(402\) −375.948 + 870.414i −0.0466432 + 0.107991i
\(403\) −932.677 1615.44i −0.115285 0.199680i
\(404\) 6047.39 10474.4i 0.744725 1.28990i
\(405\) −3041.56 2008.72i −0.373176 0.246454i
\(406\) −2281.98 + 789.249i −0.278947 + 0.0964773i
\(407\) 8141.39i 0.991533i
\(408\) 3756.58 437.281i 0.455829 0.0530604i
\(409\) 5215.51 3011.18i 0.630539 0.364042i −0.150422 0.988622i \(-0.548063\pi\)
0.780961 + 0.624580i \(0.214730\pi\)
\(410\) −296.932 + 171.434i −0.0357669 + 0.0206500i
\(411\) −11789.1 + 1372.29i −1.41487 + 0.164697i
\(412\) 974.721i 0.116556i
\(413\) 1117.14 5789.55i 0.133101 0.689794i
\(414\) 625.370 2081.71i 0.0742397 0.247127i
\(415\) −2848.36 + 4933.50i −0.336917 + 0.583557i
\(416\) −5219.81 9040.97i −0.615197 1.06555i
\(417\) −2127.64 + 4926.03i −0.249859 + 0.578486i
\(418\) −5991.15 3458.99i −0.701044 0.404748i
\(419\) 5466.61 0.637378 0.318689 0.947859i \(-0.396758\pi\)
0.318689 + 0.947859i \(0.396758\pi\)
\(420\) −1485.20 3083.52i −0.172548 0.358238i
\(421\) −2195.04 −0.254108 −0.127054 0.991896i \(-0.540552\pi\)
−0.127054 + 0.991896i \(0.540552\pi\)
\(422\) −1926.42 1112.22i −0.222220 0.128299i
\(423\) −4543.03 + 1072.18i −0.522198 + 0.123242i
\(424\) 1243.17 + 2153.24i 0.142391 + 0.246629i
\(425\) −639.184 + 1107.10i −0.0729529 + 0.126358i
\(426\) 89.3371 66.4434i 0.0101606 0.00755679i
\(427\) 30.5113 + 88.2180i 0.00345795 + 0.00999805i
\(428\) 9703.34i 1.09586i
\(429\) 2601.16 + 22346.0i 0.292740 + 2.51486i
\(430\) 2244.83 1296.05i 0.251756 0.145352i
\(431\) 11549.8 6668.30i 1.29080 0.745245i 0.312005 0.950080i \(-0.398999\pi\)
0.978796 + 0.204836i \(0.0656659\pi\)
\(432\) 6008.42 + 1068.23i 0.669167 + 0.118971i
\(433\) 441.648i 0.0490167i −0.999700 0.0245083i \(-0.992198\pi\)
0.999700 0.0245083i \(-0.00780203\pi\)
\(434\) −364.639 316.099i −0.0403300 0.0349614i
\(435\) 2146.34 + 2885.88i 0.236572 + 0.318086i
\(436\) 5445.98 9432.71i 0.598200 1.03611i
\(437\) −4888.82 8467.68i −0.535157 0.926920i
\(438\) −1837.68 793.727i −0.200474 0.0865884i
\(439\) 6589.32 + 3804.34i 0.716380 + 0.413602i 0.813419 0.581678i \(-0.197604\pi\)
−0.0970386 + 0.995281i \(0.530937\pi\)
\(440\) −4570.02 −0.495153
\(441\) −5773.16 + 7241.32i −0.623385 + 0.781915i
\(442\) 3247.08 0.349430
\(443\) −4935.59 2849.57i −0.529339 0.305614i 0.211408 0.977398i \(-0.432195\pi\)
−0.740747 + 0.671784i \(0.765528\pi\)
\(444\) 4301.87 + 1858.06i 0.459815 + 0.198603i
\(445\) −845.945 1465.22i −0.0901160 0.156086i
\(446\) −384.329 + 665.677i −0.0408038 + 0.0706742i
\(447\) −7828.15 10525.4i −0.828320 1.11373i
\(448\) 2829.01 + 2452.42i 0.298344 + 0.258629i
\(449\) 5060.48i 0.531890i −0.963988 0.265945i \(-0.914316\pi\)
0.963988 0.265945i \(-0.0856840\pi\)
\(450\) 462.824 435.825i 0.0484838 0.0456556i
\(451\) −4049.02 + 2337.70i −0.422752 + 0.244076i
\(452\) −7846.05 + 4529.92i −0.816476 + 0.471393i
\(453\) 1876.32 + 16119.0i 0.194607 + 1.67182i
\(454\) 2112.52i 0.218382i
\(455\) −2040.77 5900.54i −0.210270 0.607959i
\(456\) −6788.51 + 5048.87i −0.697152 + 0.518498i
\(457\) 1981.78 3432.54i 0.202853 0.351351i −0.746594 0.665280i \(-0.768312\pi\)
0.949446 + 0.313929i \(0.101645\pi\)
\(458\) 1840.01 + 3186.99i 0.187725 + 0.325149i
\(459\) −4619.15 + 5489.06i −0.469724 + 0.558186i
\(460\) −2632.72 1520.00i −0.266850 0.154066i
\(461\) 10353.9 1.04605 0.523023 0.852318i \(-0.324804\pi\)
0.523023 + 0.852318i \(0.324804\pi\)
\(462\) 2525.58 + 5243.52i 0.254330 + 0.528031i
\(463\) 5393.81 0.541408 0.270704 0.962663i \(-0.412744\pi\)
0.270704 + 0.962663i \(0.412744\pi\)
\(464\) −5214.76 3010.75i −0.521744 0.301229i
\(465\) −285.011 + 659.872i −0.0284238 + 0.0658083i
\(466\) −692.323 1199.14i −0.0688224 0.119204i
\(467\) 4504.90 7802.72i 0.446386 0.773163i −0.551762 0.834002i \(-0.686044\pi\)
0.998148 + 0.0608390i \(0.0193776\pi\)
\(468\) 12401.2 + 3725.45i 1.22488 + 0.367967i
\(469\) 679.816 3523.13i 0.0669318 0.346873i
\(470\) 814.121i 0.0798992i
\(471\) 1689.98 196.721i 0.165330 0.0192451i
\(472\) −3924.50 + 2265.81i −0.382711 + 0.220958i
\(473\) 30610.9 17673.2i 2.97567 1.71800i
\(474\) 3031.17 352.841i 0.293727 0.0341910i
\(475\) 2859.71i 0.276236i
\(476\) −6366.18 + 2201.82i −0.613011 + 0.212017i
\(477\) −4516.95 1356.94i −0.433579 0.130252i
\(478\) −1628.49 + 2820.62i −0.155827 + 0.269900i
\(479\) 7880.86 + 13650.0i 0.751744 + 1.30206i 0.946977 + 0.321302i \(0.104121\pi\)
−0.195233 + 0.980757i \(0.562546\pi\)
\(480\) −1595.09 + 3693.03i −0.151678 + 0.351173i
\(481\) 7403.01 + 4274.13i 0.701764 + 0.405164i
\(482\) 2527.14 0.238813
\(483\) −614.167 + 8202.90i −0.0578583 + 0.772764i
\(484\) −19862.7 −1.86539
\(485\) −232.508 134.238i −0.0217683 0.0125679i
\(486\) 2985.32 1953.38i 0.278635 0.182319i
\(487\) −8760.27 15173.2i −0.815124 1.41184i −0.909239 0.416275i \(-0.863335\pi\)
0.0941142 0.995561i \(-0.469998\pi\)
\(488\) 35.8701 62.1289i 0.00332739 0.00576320i
\(489\) −10418.7 + 7748.76i −0.963493 + 0.716587i
\(490\) −997.915 1270.08i −0.0920025 0.117094i
\(491\) 9526.52i 0.875613i 0.899069 + 0.437806i \(0.144244\pi\)
−0.899069 + 0.437806i \(0.855756\pi\)
\(492\) 311.148 + 2673.00i 0.0285115 + 0.244936i
\(493\) 6130.26 3539.31i 0.560026 0.323331i
\(494\) −6290.56 + 3631.86i −0.572926 + 0.330779i
\(495\) 6311.16 5943.00i 0.573061 0.539632i
\(496\) 1203.44i 0.108943i
\(497\) −275.990 + 318.370i −0.0249091 + 0.0287341i
\(498\) −3327.50 4474.02i −0.299415 0.402582i
\(499\) −6056.94 + 10490.9i −0.543378 + 0.941159i 0.455329 + 0.890323i \(0.349522\pi\)
−0.998707 + 0.0508355i \(0.983812\pi\)
\(500\) −444.561 770.002i −0.0397628 0.0688711i
\(501\) −10950.0 4729.51i −0.976467 0.421754i
\(502\) −4456.82 2573.15i −0.396250 0.228775i
\(503\) 5692.52 0.504606 0.252303 0.967648i \(-0.418812\pi\)
0.252303 + 0.967648i \(0.418812\pi\)
\(504\) 7111.49 292.803i 0.628514 0.0258780i
\(505\) −8501.91 −0.749168
\(506\) 4476.94 + 2584.76i 0.393328 + 0.227088i
\(507\) 11204.7 + 4839.54i 0.981500 + 0.423928i
\(508\) 319.544 + 553.467i 0.0279084 + 0.0483388i
\(509\) 8589.94 14878.2i 0.748020 1.29561i −0.200750 0.979642i \(-0.564338\pi\)
0.948770 0.315967i \(-0.102329\pi\)
\(510\) −746.705 1003.99i −0.0648326 0.0871714i
\(511\) 7438.28 + 1435.27i 0.643934 + 0.124252i
\(512\) 11688.3i 1.00889i
\(513\) 2809.16 15800.4i 0.241769 1.35986i
\(514\) −3338.08 + 1927.24i −0.286452 + 0.165383i
\(515\) 593.376 342.586i 0.0507714 0.0293129i
\(516\) −2352.31 20208.1i −0.200687 1.72405i
\(517\) 11101.5i 0.944379i
\(518\) 2171.42 + 418.993i 0.184183 + 0.0355396i
\(519\) 6253.55 4651.00i 0.528903 0.393365i
\(520\) −2399.20 + 4155.54i −0.202331 + 0.350447i
\(521\) −2930.98 5076.61i −0.246466 0.426891i 0.716077 0.698021i \(-0.245936\pi\)
−0.962543 + 0.271130i \(0.912603\pi\)
\(522\) −3426.05 + 808.568i −0.287268 + 0.0677970i
\(523\) 2030.28 + 1172.18i 0.169748 + 0.0980038i 0.582467 0.812854i \(-0.302088\pi\)
−0.412719 + 0.910858i \(0.635421\pi\)
\(524\) 11219.2 0.935334
\(525\) −1355.13 + 1987.90i −0.112653 + 0.165255i
\(526\) 852.783 0.0706903
\(527\) 1225.18 + 707.355i 0.101270 + 0.0584685i
\(528\) −5754.96 + 13324.2i −0.474342 + 1.09822i
\(529\) −2430.29 4209.38i −0.199744 0.345967i
\(530\) 411.293 712.381i 0.0337084 0.0583846i
\(531\) 2473.16 8232.60i 0.202121 0.672815i
\(532\) 9870.45 11386.1i 0.804395 0.927917i
\(533\) 4909.06i 0.398940i
\(534\) 1644.86 191.468i 0.133296 0.0155162i
\(535\) 5907.05 3410.44i 0.477353 0.275600i
\(536\) −2388.19 + 1378.82i −0.192451 + 0.111112i
\(537\) −2561.86 + 298.211i −0.205870 + 0.0239642i
\(538\) 5368.34i 0.430197i
\(539\) −13607.8 17319.0i −1.08744 1.38401i
\(540\) −1699.90 4691.12i −0.135467 0.373840i
\(541\) −2865.18 + 4962.64i −0.227697 + 0.394382i −0.957125 0.289675i \(-0.906453\pi\)
0.729428 + 0.684057i \(0.239786\pi\)
\(542\) −3660.83 6340.75i −0.290122 0.502507i
\(543\) 3084.71 7141.87i 0.243789 0.564432i
\(544\) 6856.80 + 3958.77i 0.540409 + 0.312006i
\(545\) −7656.40 −0.601769
\(546\) 6093.86 + 456.259i 0.477643 + 0.0357621i
\(547\) 13477.8 1.05351 0.526754 0.850018i \(-0.323409\pi\)
0.526754 + 0.850018i \(0.323409\pi\)
\(548\) −14070.3 8123.47i −1.09681 0.633243i
\(549\) 31.2581 + 132.446i 0.00242999 + 0.0102963i
\(550\) 755.976 + 1309.39i 0.0586090 + 0.101514i
\(551\) −7917.42 + 13713.4i −0.612147 + 1.06027i
\(552\) 5072.77 3772.81i 0.391144 0.290909i
\(553\) −10914.3 + 3774.84i −0.839282 + 0.290276i
\(554\) 1761.09i 0.135057i
\(555\) −380.860 3271.88i −0.0291290 0.250241i
\(556\) −6361.23 + 3672.66i −0.485209 + 0.280135i
\(557\) −10379.2 + 5992.46i −0.789556 + 0.455851i −0.839806 0.542886i \(-0.817332\pi\)
0.0502500 + 0.998737i \(0.483998\pi\)
\(558\) −482.308 512.186i −0.0365909 0.0388576i
\(559\) 37112.9i 2.80806i
\(560\) 763.156 3955.04i 0.0575879 0.298448i
\(561\) −10182.2 13690.6i −0.766298 1.03033i
\(562\) −3474.80 + 6018.52i −0.260810 + 0.451737i
\(563\) 10791.9 + 18692.1i 0.807856 + 1.39925i 0.914346 + 0.404933i \(0.132705\pi\)
−0.106490 + 0.994314i \(0.533961\pi\)
\(564\) −5865.99 2533.63i −0.437948 0.189158i
\(565\) 5515.31 + 3184.26i 0.410674 + 0.237103i
\(566\) 2698.29 0.200385
\(567\) −9440.13 + 9652.37i −0.699203 + 0.714923i
\(568\) 323.822 0.0239212
\(569\) 21311.4 + 12304.1i 1.57016 + 0.906531i 0.996149 + 0.0876816i \(0.0279458\pi\)
0.574009 + 0.818849i \(0.305388\pi\)
\(570\) 2569.55 + 1109.84i 0.188819 + 0.0815543i
\(571\) 6101.58 + 10568.2i 0.447186 + 0.774549i 0.998202 0.0599461i \(-0.0190929\pi\)
−0.551016 + 0.834495i \(0.685760\pi\)
\(572\) −15397.9 + 26670.0i −1.12556 + 1.94952i
\(573\) −2093.93 2815.41i −0.152662 0.205263i
\(574\) 415.117 + 1200.24i 0.0301858 + 0.0872770i
\(575\) 2136.94i 0.154985i
\(576\) 3741.93 + 3973.73i 0.270683 + 0.287452i
\(577\) 6216.23 3588.94i 0.448501 0.258942i −0.258696 0.965959i \(-0.583293\pi\)
0.707197 + 0.707017i \(0.249959\pi\)
\(578\) 1874.53 1082.26i 0.134897 0.0778827i
\(579\) 6.63917 + 57.0356i 0.000476536 + 0.00409381i
\(580\) 4923.27i 0.352461i
\(581\) 15944.1 + 13821.6i 1.13850 + 0.986949i
\(582\) 210.853 156.819i 0.0150174 0.0111690i
\(583\) 5608.47 9714.16i 0.398421 0.690085i
\(584\) −2911.06 5042.10i −0.206268 0.357267i
\(585\) −2090.72 8858.77i −0.147762 0.626094i
\(586\) 331.574 + 191.434i 0.0233740 + 0.0134950i
\(587\) 12733.9 0.895374 0.447687 0.894190i \(-0.352248\pi\)
0.447687 + 0.894190i \(0.352248\pi\)
\(588\) −12256.9 + 3237.66i −0.859637 + 0.227073i
\(589\) −3164.70 −0.221391
\(590\) 1298.39 + 749.624i 0.0905995 + 0.0523077i
\(591\) 6264.47 14503.8i 0.436017 1.00949i
\(592\) 2757.47 + 4776.07i 0.191438 + 0.331580i
\(593\) −2541.30 + 4401.67i −0.175985 + 0.304814i −0.940502 0.339789i \(-0.889644\pi\)
0.764517 + 0.644604i \(0.222978\pi\)
\(594\) 2890.68 + 7977.25i 0.199673 + 0.551028i
\(595\) 3577.91 + 3101.63i 0.246521 + 0.213705i
\(596\) 17956.2i 1.23409i
\(597\) −7986.06 + 929.610i −0.547484 + 0.0637293i
\(598\) 4700.67 2713.94i 0.321446 0.185587i
\(599\) −10592.3 + 6115.45i −0.722518 + 0.417146i −0.815679 0.578505i \(-0.803636\pi\)
0.0931609 + 0.995651i \(0.470303\pi\)
\(600\) 1836.61 213.789i 0.124965 0.0145465i
\(601\) 9398.96i 0.637923i 0.947768 + 0.318961i \(0.103334\pi\)
−0.947768 + 0.318961i \(0.896666\pi\)
\(602\) −3138.32 9073.90i −0.212472 0.614326i
\(603\) 1505.00 5009.81i 0.101639 0.338334i
\(604\) −11107.1 + 19238.0i −0.748246 + 1.29600i
\(605\) 6981.13 + 12091.7i 0.469130 + 0.812557i
\(606\) 3299.55 7639.27i 0.221180 0.512086i
\(607\) 4198.27 + 2423.87i 0.280729 + 0.162079i 0.633753 0.773535i \(-0.281513\pi\)
−0.353024 + 0.935614i \(0.614847\pi\)
\(608\) −17711.5 −1.18141
\(609\) 12002.1 5780.90i 0.798603 0.384653i
\(610\) −23.7347 −0.00157539
\(611\) −10094.7 5828.16i −0.668391 0.385896i
\(612\) −9557.87 + 2255.71i −0.631297 + 0.148990i
\(613\) 10558.8 + 18288.4i 0.695705 + 1.20500i 0.969942 + 0.243334i \(0.0782413\pi\)
−0.274237 + 0.961662i \(0.588425\pi\)
\(614\) −2787.40 + 4827.91i −0.183209 + 0.317327i
\(615\) 1517.87 1128.90i 0.0995226 0.0740188i
\(616\) −3207.15 + 16621.0i −0.209772 + 1.08714i
\(617\) 5305.48i 0.346176i −0.984906 0.173088i \(-0.944625\pi\)
0.984906 0.173088i \(-0.0553745\pi\)
\(618\) 77.5397 + 666.125i 0.00504709 + 0.0433584i
\(619\) −8395.17 + 4846.95i −0.545122 + 0.314726i −0.747152 0.664653i \(-0.768579\pi\)
0.202030 + 0.979379i \(0.435246\pi\)
\(620\) −852.126 + 491.975i −0.0551971 + 0.0318681i
\(621\) −2099.17 + 11807.0i −0.135647 + 0.762962i
\(622\) 2020.66i 0.130259i
\(623\) −5922.62 + 2048.41i −0.380874 + 0.131730i
\(624\) 9094.47 + 12228.1i 0.583446 + 0.784478i
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) −3104.33 5376.86i −0.198201 0.343295i
\(627\) 35038.9 + 15133.9i 2.23177 + 0.963942i
\(628\) 2017.00 + 1164.51i 0.128164 + 0.0739955i
\(629\) −6483.12 −0.410968
\(630\) −1260.28 1989.13i −0.0796997 0.125792i
\(631\) −17181.2 −1.08395 −0.541976 0.840394i \(-0.682324\pi\)
−0.541976 + 0.840394i \(0.682324\pi\)
\(632\) 7686.56 + 4437.84i 0.483790 + 0.279316i
\(633\) 11266.6 + 4866.24i 0.707434 + 0.305554i
\(634\) 377.389 + 653.657i 0.0236404 + 0.0409464i
\(635\) 224.621 389.054i 0.0140375 0.0243136i
\(636\) −3852.93 5180.49i −0.240218 0.322987i
\(637\) −22892.2 + 3281.33i −1.42390 + 0.204099i
\(638\) 8372.02i 0.519516i
\(639\) −447.195 + 421.108i −0.0276851 + 0.0260701i
\(640\) −6188.15 + 3572.73i −0.382200 + 0.220663i
\(641\) −6061.60 + 3499.67i −0.373508 + 0.215645i −0.674990 0.737827i \(-0.735852\pi\)
0.301482 + 0.953472i \(0.402519\pi\)
\(642\) 771.907 + 6631.27i 0.0474528 + 0.407656i
\(643\) 13572.0i 0.832389i 0.909276 + 0.416195i \(0.136637\pi\)
−0.909276 + 0.416195i \(0.863363\pi\)
\(644\) −7375.78 + 8508.39i −0.451314 + 0.520618i
\(645\) −11475.2 + 8534.55i −0.700521 + 0.521004i
\(646\) 2754.45 4770.84i 0.167759 0.290567i
\(647\) 7632.99 + 13220.7i 0.463808 + 0.803339i 0.999147 0.0412985i \(-0.0131495\pi\)
−0.535339 + 0.844637i \(0.679816\pi\)
\(648\) 10357.6 + 622.918i 0.627912 + 0.0377632i
\(649\) 17705.0 + 10222.0i 1.07085 + 0.618257i
\(650\) 1587.51 0.0957960
\(651\) 2199.92 + 1499.66i 0.132445 + 0.0902862i
\(652\) −17774.1 −1.06762
\(653\) −14714.4 8495.38i −0.881808 0.509112i −0.0105537 0.999944i \(-0.503359\pi\)
−0.871254 + 0.490832i \(0.836693\pi\)
\(654\) 2971.41 6879.55i 0.177662 0.411333i
\(655\) −3943.23 6829.88i −0.235229 0.407428i
\(656\) −1583.55 + 2742.78i −0.0942486 + 0.163243i
\(657\) 10577.1 + 3177.46i 0.628083 + 0.188683i
\(658\) −2960.93 571.334i −0.175424 0.0338494i
\(659\) 18000.9i 1.06406i 0.846726 + 0.532029i \(0.178570\pi\)
−0.846726 + 0.532029i \(0.821430\pi\)
\(660\) 11787.2 1372.08i 0.695177 0.0809214i
\(661\) 7384.87 4263.66i 0.434551 0.250888i −0.266733 0.963771i \(-0.585944\pi\)
0.701284 + 0.712882i \(0.252611\pi\)
\(662\) 495.587 286.127i 0.0290960 0.0167986i
\(663\) −17794.5 + 2071.35i −1.04235 + 0.121334i
\(664\) 16217.1i 0.947808i
\(665\) −10400.6 2006.89i −0.606496 0.117028i
\(666\) 3087.71 + 927.582i 0.179649 + 0.0539686i
\(667\) 5916.36 10247.4i 0.343452 0.594876i
\(668\) −8163.89 14140.3i −0.472860 0.819018i
\(669\) 1681.53 3893.17i 0.0971777 0.224991i
\(670\) 790.111 + 456.171i 0.0455592 + 0.0263036i
\(671\) −323.650 −0.0186205
\(672\) 12312.0 + 8392.98i 0.706765 + 0.481795i
\(673\) −19184.2 −1.09881 −0.549403 0.835558i \(-0.685145\pi\)
−0.549403 + 0.835558i \(0.685145\pi\)
\(674\) 4177.98 + 2412.16i 0.238768 + 0.137853i
\(675\) −2258.32 + 2683.63i −0.128775 + 0.153026i
\(676\) 8353.82 + 14469.2i 0.475297 + 0.823239i
\(677\) 11356.8 19670.5i 0.644721 1.11669i −0.339645 0.940554i \(-0.610307\pi\)
0.984366 0.176135i \(-0.0563597\pi\)
\(678\) −5001.64 + 3719.91i −0.283314 + 0.210711i
\(679\) −651.389 + 751.416i −0.0368159 + 0.0424694i
\(680\) 3639.18i 0.205230i
\(681\) −1347.60 11576.9i −0.0758297 0.651435i
\(682\) 1449.04 836.604i 0.0813587 0.0469724i
\(683\) −24470.4 + 14128.0i −1.37091 + 0.791496i −0.991043 0.133544i \(-0.957364\pi\)
−0.379869 + 0.925040i \(0.624031\pi\)
\(684\) 15993.4 15060.4i 0.894040 0.841887i
\(685\) 11420.6i 0.637022i
\(686\) −5319.55 + 2738.06i −0.296066 + 0.152390i
\(687\) −12116.5 16291.4i −0.672889 0.904739i
\(688\) 11971.7 20735.6i 0.663398 1.14904i
\(689\) −5888.76 10199.6i −0.325608 0.563970i
\(690\) −1920.12 829.335i −0.105939 0.0457569i
\(691\) 14206.1 + 8201.90i 0.782092 + 0.451541i 0.837171 0.546941i \(-0.184208\pi\)
−0.0550789 + 0.998482i \(0.517541\pi\)
\(692\) 10668.5 0.586062
\(693\) −17185.4 27124.1i −0.942021 1.48681i
\(694\) 725.757 0.0396965
\(695\) 4471.56 + 2581.66i 0.244052 + 0.140903i
\(696\) −9399.13 4059.66i −0.511887 0.221093i
\(697\) −1861.55 3224.30i −0.101164 0.175221i
\(698\) −5363.41 + 9289.69i −0.290842 + 0.503754i
\(699\) 4558.97 + 6129.81i 0.246690 + 0.331689i
\(700\) −3112.45 + 1076.48i −0.168057 + 0.0581245i
\(701\) 14814.6i 0.798200i −0.916907 0.399100i \(-0.869323\pi\)
0.916907 0.399100i \(-0.130677\pi\)
\(702\) 8771.33 + 1559.45i 0.471585 + 0.0838428i
\(703\) 12559.7 7251.36i 0.673825 0.389033i
\(704\) −11242.2 + 6490.69i −0.601856 + 0.347482i
\(705\) 519.337 + 4461.50i 0.0277438 + 0.238340i
\(706\) 4980.75i 0.265514i
\(707\) −5966.47 + 30921.1i −0.317387 + 1.64485i
\(708\) 9441.98 7022.36i 0.501202 0.372763i
\(709\) 17448.9 30222.4i 0.924269 1.60088i 0.131536 0.991311i \(-0.458009\pi\)
0.792733 0.609569i \(-0.208658\pi\)
\(710\) −53.5669 92.7805i −0.00283145 0.00490421i
\(711\) −16386.2 + 3867.24i −0.864318 + 0.203984i
\(712\) 4171.10 + 2408.18i 0.219548 + 0.126756i
\(713\) 2364.85 0.124214
\(714\) −4175.50 + 2011.16i −0.218857 + 0.105414i
\(715\) 21647.6 1.13227
\(716\) −3057.58 1765.30i −0.159591 0.0921399i
\(717\) 7125.03 16496.2i 0.371115 0.859224i
\(718\) 5323.28 + 9220.18i 0.276689 + 0.479240i
\(719\) −3517.61 + 6092.68i −0.182454 + 0.316020i −0.942716 0.333597i \(-0.891737\pi\)
0.760261 + 0.649617i \(0.225071\pi\)
\(720\) 1689.50 5623.97i 0.0874501 0.291102i
\(721\) −829.552 2398.50i −0.0428490 0.123890i
\(722\) 5863.45i 0.302237i
\(723\) −13849.1 + 1612.09i −0.712382 + 0.0829242i
\(724\) 9222.65 5324.70i 0.473421 0.273330i
\(725\) 2997.11 1730.38i 0.153531 0.0886411i
\(726\) −13574.2 + 1580.09i −0.693917 + 0.0807748i
\(727\) 21149.6i 1.07895i 0.842002 + 0.539475i \(0.181377\pi\)
−0.842002 + 0.539475i \(0.818623\pi\)
\(728\) 13429.8 + 11642.1i 0.683713 + 0.592699i
\(729\) −15113.9 + 12609.2i −0.767865 + 0.640612i
\(730\) −963.099 + 1668.14i −0.0488300 + 0.0845760i
\(731\) 14073.5 + 24375.9i 0.712073 + 1.23335i
\(732\) −73.8647 + 171.015i −0.00372967 + 0.00863512i
\(733\) −19880.5 11478.0i −1.00178 0.578377i −0.0930039 0.995666i \(-0.529647\pi\)
−0.908774 + 0.417289i \(0.862980\pi\)
\(734\) −6288.30 −0.316220
\(735\) 6278.91 + 6323.63i 0.315104 + 0.317348i
\(736\) 13235.1 0.662842
\(737\) 10774.1 + 6220.44i 0.538493 + 0.310899i
\(738\) 425.278 + 1801.98i 0.0212123 + 0.0898805i
\(739\) −13065.8 22630.7i −0.650385 1.12650i −0.983030 0.183447i \(-0.941274\pi\)
0.332645 0.943052i \(-0.392059\pi\)
\(740\) 2254.55 3904.99i 0.111998 0.193987i
\(741\) 32156.4 23915.9i 1.59419 1.18566i
\(742\) −2302.27 1995.79i −0.113907 0.0987438i
\(743\) 24758.7i 1.22249i −0.791442 0.611244i \(-0.790669\pi\)
0.791442 0.611244i \(-0.209331\pi\)
\(744\) −236.590 2032.49i −0.0116584 0.100154i
\(745\) −10931.1 + 6311.08i −0.537564 + 0.310363i
\(746\) −4466.74 + 2578.88i −0.219221 + 0.126568i
\(747\) 21089.2 + 22395.6i 1.03295 + 1.09694i
\(748\) 23356.0i 1.14168i
\(749\) −8258.18 23877.1i −0.402867 1.16482i
\(750\) −365.067 490.855i −0.0177738 0.0238980i
\(751\) 5640.48 9769.60i 0.274067 0.474698i −0.695832 0.718204i \(-0.744964\pi\)
0.969899 + 0.243506i \(0.0782977\pi\)
\(752\) −3760.05 6512.60i −0.182334 0.315811i
\(753\) 26065.5 + 11258.2i 1.26146 + 0.544847i
\(754\) −7612.72 4395.21i −0.367691 0.212286i
\(755\) 15615.2 0.752711
\(756\) −18254.4 + 2890.33i −0.878182 + 0.139048i
\(757\) −23382.2 −1.12264 −0.561320 0.827599i \(-0.689706\pi\)
−0.561320 + 0.827599i \(0.689706\pi\)
\(758\) −2531.50 1461.56i −0.121304 0.0700348i
\(759\) −26183.1 11309.0i −1.25216 0.540830i
\(760\) 4070.42 + 7050.17i 0.194276 + 0.336495i
\(761\) 1932.62 3347.40i 0.0920599 0.159452i −0.816318 0.577603i \(-0.803988\pi\)
0.908378 + 0.418151i \(0.137322\pi\)
\(762\) 262.405 + 352.820i 0.0124750 + 0.0167734i
\(763\) −5373.11 + 27846.1i −0.254941 + 1.32123i
\(764\) 4803.06i 0.227446i
\(765\) 4732.51 + 5025.67i 0.223665 + 0.237521i
\(766\) −11183.2 + 6456.63i −0.527501 + 0.304553i
\(767\) 18589.9 10732.9i 0.875151 0.505269i
\(768\) 163.006 + 1400.34i 0.00765880 + 0.0657950i
\(769\) 16183.4i 0.758892i −0.925214 0.379446i \(-0.876115\pi\)
0.925214 0.379446i \(-0.123885\pi\)
\(770\) 5292.73 1830.55i 0.247710 0.0856735i
\(771\) 17063.8 12691.0i 0.797064 0.592807i
\(772\) −39.3014 + 68.0720i