# Properties

 Label 105.4.s.a.101.4 Level $105$ Weight $4$ Character 105.101 Analytic conductor $6.195$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 105.s (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$6.19520055060$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$16$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 101.4 Character $$\chi$$ $$=$$ 105.101 Dual form 105.4.s.a.26.4

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-3.06378 + 1.76887i) q^{2} +(-0.433556 + 5.17803i) q^{3} +(2.25781 - 3.91065i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(-7.83096 - 16.6312i) q^{6} +(5.77785 - 17.5959i) q^{7} -12.3268i q^{8} +(-26.6241 - 4.48993i) q^{9} +O(q^{10})$$ $$q+(-3.06378 + 1.76887i) q^{2} +(-0.433556 + 5.17803i) q^{3} +(2.25781 - 3.91065i) q^{4} +(-2.50000 - 4.33013i) q^{5} +(-7.83096 - 16.6312i) q^{6} +(5.77785 - 17.5959i) q^{7} -12.3268i q^{8} +(-26.6241 - 4.48993i) q^{9} +(15.3189 + 8.84436i) q^{10} +(3.05657 + 1.76471i) q^{11} +(19.2706 + 13.3865i) q^{12} -14.5404i q^{13} +(13.4229 + 64.1302i) q^{14} +(23.5054 - 11.0677i) q^{15} +(39.8671 + 69.0518i) q^{16} +(30.9412 - 53.5917i) q^{17} +(89.5123 - 33.3384i) q^{18} +(-39.8972 + 23.0346i) q^{19} -22.5781 q^{20} +(88.6072 + 37.5467i) q^{21} -12.4862 q^{22} +(99.5813 - 57.4933i) q^{23} +(63.8287 + 5.34436i) q^{24} +(-12.5000 + 21.6506i) q^{25} +(25.7201 + 44.5486i) q^{26} +(34.7920 - 135.914i) q^{27} +(-55.7661 - 62.3234i) q^{28} -127.376i q^{29} +(-52.4380 + 75.4871i) q^{30} +(183.725 + 106.074i) q^{31} +(-158.885 - 91.7322i) q^{32} +(-10.4629 + 15.0619i) q^{33} +218.924i q^{34} +(-90.6372 + 18.9710i) q^{35} +(-77.6707 + 93.9799i) q^{36} +(-142.232 - 246.353i) q^{37} +(81.4907 - 141.146i) q^{38} +(75.2907 + 6.30408i) q^{39} +(-53.3767 + 30.8170i) q^{40} -328.199 q^{41} +(-337.888 + 41.7001i) q^{42} -108.351 q^{43} +(13.8023 - 7.96879i) q^{44} +(47.1182 + 126.510i) q^{45} +(-203.396 + 352.293i) q^{46} +(-194.765 - 337.343i) q^{47} +(-374.837 + 176.495i) q^{48} +(-276.233 - 203.333i) q^{49} -88.4436i q^{50} +(264.085 + 183.450i) q^{51} +(-56.8624 - 32.8295i) q^{52} +(514.874 + 297.263i) q^{53} +(133.819 + 477.951i) q^{54} -17.6471i q^{55} +(-216.902 - 71.2225i) q^{56} +(-101.976 - 216.576i) q^{57} +(225.313 + 390.253i) q^{58} +(275.460 - 477.110i) q^{59} +(9.78888 - 116.910i) q^{60} +(411.663 - 237.674i) q^{61} -750.523 q^{62} +(-232.834 + 442.533i) q^{63} +11.1767 q^{64} +(-62.9618 + 36.3510i) q^{65} +(5.41347 - 64.6540i) q^{66} +(208.025 - 360.310i) q^{67} +(-139.719 - 242.000i) q^{68} +(254.528 + 540.562i) q^{69} +(244.135 - 218.448i) q^{70} -399.916i q^{71} +(-55.3466 + 328.190i) q^{72} +(-134.493 - 77.6498i) q^{73} +(871.535 + 503.181i) q^{74} +(-106.688 - 74.1122i) q^{75} +208.032i q^{76} +(48.7122 - 43.5870i) q^{77} +(-241.825 + 113.865i) q^{78} +(-586.016 - 1015.01i) q^{79} +(199.335 - 345.259i) q^{80} +(688.681 + 239.080i) q^{81} +(1005.53 - 580.543i) q^{82} +4.43096 q^{83} +(346.891 - 261.738i) q^{84} -309.412 q^{85} +(331.963 - 191.659i) q^{86} +(659.560 + 55.2248i) q^{87} +(21.7533 - 37.6778i) q^{88} +(505.709 + 875.913i) q^{89} +(-368.140 - 304.253i) q^{90} +(-255.852 - 84.0123i) q^{91} -519.236i q^{92} +(-628.908 + 905.346i) q^{93} +(1193.43 + 689.028i) q^{94} +(199.486 + 115.173i) q^{95} +(543.878 - 782.940i) q^{96} -27.5269i q^{97} +(1205.99 + 134.347i) q^{98} +(-73.4549 - 60.7076i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + O(q^{10})$$ $$32q - 2q^{3} + 64q^{4} - 80q^{5} - 28q^{6} + 46q^{7} + 100q^{9} + 36q^{11} + 246q^{12} + 18q^{14} + 20q^{15} - 376q^{16} - 72q^{17} - 442q^{18} - 198q^{19} - 640q^{20} - 218q^{21} + 204q^{22} + 72q^{23} - 50q^{24} - 400q^{25} - 312q^{26} + 508q^{27} + 350q^{28} + 40q^{30} + 510q^{31} + 810q^{32} + 290q^{33} - 70q^{35} - 612q^{36} - 658q^{37} - 192q^{38} - 648q^{39} - 1404q^{41} + 1892q^{42} + 332q^{43} + 2034q^{44} - 490q^{45} - 468q^{46} + 408q^{47} + 2810q^{48} + 980q^{49} - 888q^{51} + 3378q^{52} + 1152q^{53} + 2714q^{54} - 3354q^{56} - 816q^{57} - 1080q^{58} - 48q^{59} - 420q^{60} - 1662q^{61} - 2076q^{62} + 874q^{63} - 1952q^{64} + 870q^{65} - 1892q^{66} - 1298q^{67} + 1182q^{68} + 2450q^{69} - 450q^{70} - 2708q^{72} + 378q^{73} + 2898q^{74} - 50q^{75} - 3528q^{77} - 1896q^{78} - 326q^{79} - 1880q^{80} - 3308q^{81} - 2916q^{82} - 1536q^{83} + 1380q^{84} + 720q^{85} + 5202q^{86} - 1090q^{87} + 1668q^{88} - 1590q^{89} + 910q^{90} + 2082q^{91} - 4950q^{93} - 1152q^{94} + 990q^{95} + 7416q^{96} - 7830q^{98} + 3128q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/105\mathbb{Z}\right)^\times$$.

 $$n$$ $$22$$ $$31$$ $$71$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −3.06378 + 1.76887i −1.08321 + 0.625391i −0.931760 0.363075i $$-0.881727\pi$$
−0.151448 + 0.988465i $$0.548394\pi$$
$$3$$ −0.433556 + 5.17803i −0.0834379 + 0.996513i
$$4$$ 2.25781 3.91065i 0.282227 0.488831i
$$5$$ −2.50000 4.33013i −0.223607 0.387298i
$$6$$ −7.83096 16.6312i −0.532829 1.13161i
$$7$$ 5.77785 17.5959i 0.311975 0.950090i
$$8$$ 12.3268i 0.544773i
$$9$$ −26.6241 4.48993i −0.986076 0.166294i
$$10$$ 15.3189 + 8.84436i 0.484425 + 0.279683i
$$11$$ 3.05657 + 1.76471i 0.0837811 + 0.0483710i 0.541305 0.840826i $$-0.317930\pi$$
−0.457524 + 0.889197i $$0.651264\pi$$
$$12$$ 19.2706 + 13.3865i 0.463578 + 0.322030i
$$13$$ 14.5404i 0.310214i −0.987898 0.155107i $$-0.950428\pi$$
0.987898 0.155107i $$-0.0495723\pi$$
$$14$$ 13.4229 + 64.1302i 0.256244 + 1.22425i
$$15$$ 23.5054 11.0677i 0.404605 0.190512i
$$16$$ 39.8671 + 69.0518i 0.622923 + 1.07893i
$$17$$ 30.9412 53.5917i 0.441432 0.764582i −0.556364 0.830939i $$-0.687804\pi$$
0.997796 + 0.0663561i $$0.0211373\pi$$
$$18$$ 89.5123 33.3384i 1.17212 0.436552i
$$19$$ −39.8972 + 23.0346i −0.481739 + 0.278132i −0.721141 0.692788i $$-0.756382\pi$$
0.239402 + 0.970921i $$0.423049\pi$$
$$20$$ −22.5781 −0.252431
$$21$$ 88.6072 + 37.5467i 0.920747 + 0.390160i
$$22$$ −12.4862 −0.121003
$$23$$ 99.5813 57.4933i 0.902788 0.521225i 0.0246846 0.999695i $$-0.492142\pi$$
0.878104 + 0.478470i $$0.158809\pi$$
$$24$$ 63.8287 + 5.34436i 0.542874 + 0.0454547i
$$25$$ −12.5000 + 21.6506i −0.100000 + 0.173205i
$$26$$ 25.7201 + 44.5486i 0.194005 + 0.336027i
$$27$$ 34.7920 135.914i 0.247990 0.968763i
$$28$$ −55.7661 62.3234i −0.376386 0.420644i
$$29$$ 127.376i 0.815628i −0.913065 0.407814i $$-0.866291\pi$$
0.913065 0.407814i $$-0.133709\pi$$
$$30$$ −52.4380 + 75.4871i −0.319127 + 0.459400i
$$31$$ 183.725 + 106.074i 1.06445 + 0.614561i 0.926660 0.375900i $$-0.122666\pi$$
0.137791 + 0.990461i $$0.456000\pi$$
$$32$$ −158.885 91.7322i −0.877723 0.506753i
$$33$$ −10.4629 + 15.0619i −0.0551929 + 0.0794529i
$$34$$ 218.924i 1.10427i
$$35$$ −90.6372 + 18.9710i −0.437728 + 0.0916194i
$$36$$ −77.6707 + 93.9799i −0.359587 + 0.435092i
$$37$$ −142.232 246.353i −0.631969 1.09460i −0.987149 0.159804i $$-0.948914\pi$$
0.355180 0.934798i $$-0.384419\pi$$
$$38$$ 81.4907 141.146i 0.347882 0.602550i
$$39$$ 75.2907 + 6.30408i 0.309132 + 0.0258836i
$$40$$ −53.3767 + 30.8170i −0.210990 + 0.121815i
$$41$$ −328.199 −1.25015 −0.625075 0.780565i $$-0.714932\pi$$
−0.625075 + 0.780565i $$0.714932\pi$$
$$42$$ −337.888 + 41.7001i −1.24136 + 0.153202i
$$43$$ −108.351 −0.384264 −0.192132 0.981369i $$-0.561540\pi$$
−0.192132 + 0.981369i $$0.561540\pi$$
$$44$$ 13.8023 7.96879i 0.0472905 0.0273032i
$$45$$ 47.1182 + 126.510i 0.156088 + 0.419090i
$$46$$ −203.396 + 352.293i −0.651939 + 1.12919i
$$47$$ −194.765 337.343i −0.604455 1.04695i −0.992137 0.125154i $$-0.960058\pi$$
0.387682 0.921793i $$-0.373276\pi$$
$$48$$ −374.837 + 176.495i −1.12715 + 0.530727i
$$49$$ −276.233 203.333i −0.805344 0.592808i
$$50$$ 88.4436i 0.250156i
$$51$$ 264.085 + 183.450i 0.725084 + 0.503688i
$$52$$ −56.8624 32.8295i −0.151642 0.0875507i
$$53$$ 514.874 + 297.263i 1.33440 + 0.770418i 0.985971 0.166915i $$-0.0533807\pi$$
0.348433 + 0.937334i $$0.386714\pi$$
$$54$$ 133.819 + 477.951i 0.337230 + 1.20446i
$$55$$ 17.6471i 0.0432643i
$$56$$ −216.902 71.2225i −0.517584 0.169955i
$$57$$ −101.976 216.576i −0.236967 0.503266i
$$58$$ 225.313 + 390.253i 0.510086 + 0.883495i
$$59$$ 275.460 477.110i 0.607827 1.05279i −0.383770 0.923429i $$-0.625375\pi$$
0.991598 0.129359i $$-0.0412921\pi$$
$$60$$ 9.78888 116.910i 0.0210623 0.251551i
$$61$$ 411.663 237.674i 0.864067 0.498869i −0.00130515 0.999999i $$-0.500415\pi$$
0.865372 + 0.501130i $$0.167082\pi$$
$$62$$ −750.523 −1.53736
$$63$$ −232.834 + 442.533i −0.465625 + 0.884982i
$$64$$ 11.1767 0.0218295
$$65$$ −62.9618 + 36.3510i −0.120145 + 0.0693660i
$$66$$ 5.41347 64.6540i 0.0100962 0.120581i
$$67$$ 208.025 360.310i 0.379318 0.656998i −0.611645 0.791132i $$-0.709492\pi$$
0.990963 + 0.134134i $$0.0428253\pi$$
$$68$$ −139.719 242.000i −0.249168 0.431571i
$$69$$ 254.528 + 540.562i 0.444081 + 0.943130i
$$70$$ 244.135 218.448i 0.416853 0.372994i
$$71$$ 399.916i 0.668470i −0.942490 0.334235i $$-0.891522\pi$$
0.942490 0.334235i $$-0.108478\pi$$
$$72$$ −55.3466 + 328.190i −0.0905925 + 0.537188i
$$73$$ −134.493 77.6498i −0.215634 0.124496i 0.388293 0.921536i $$-0.373065\pi$$
−0.603927 + 0.797040i $$0.706398\pi$$
$$74$$ 871.535 + 503.181i 1.36911 + 0.790454i
$$75$$ −106.688 74.1122i −0.164257 0.114103i
$$76$$ 208.032i 0.313985i
$$77$$ 48.7122 43.5870i 0.0720944 0.0645090i
$$78$$ −241.825 + 113.865i −0.351042 + 0.165291i
$$79$$ −586.016 1015.01i −0.834581 1.44554i −0.894371 0.447326i $$-0.852376\pi$$
0.0597897 0.998211i $$-0.480957\pi$$
$$80$$ 199.335 345.259i 0.278580 0.482514i
$$81$$ 688.681 + 239.080i 0.944693 + 0.327957i
$$82$$ 1005.53 580.543i 1.35417 0.781832i
$$83$$ 4.43096 0.00585977 0.00292988 0.999996i $$-0.499067\pi$$
0.00292988 + 0.999996i $$0.499067\pi$$
$$84$$ 346.891 261.738i 0.450582 0.339976i
$$85$$ −309.412 −0.394829
$$86$$ 331.963 191.659i 0.416238 0.240315i
$$87$$ 659.560 + 55.2248i 0.812784 + 0.0680543i
$$88$$ 21.7533 37.6778i 0.0263512 0.0456417i
$$89$$ 505.709 + 875.913i 0.602303 + 1.04322i 0.992471 + 0.122476i $$0.0390836\pi$$
−0.390168 + 0.920744i $$0.627583\pi$$
$$90$$ −368.140 304.253i −0.431171 0.356346i
$$91$$ −255.852 84.0123i −0.294732 0.0967789i
$$92$$ 519.236i 0.588415i
$$93$$ −628.908 + 905.346i −0.701234 + 1.00946i
$$94$$ 1193.43 + 689.028i 1.30950 + 0.756041i
$$95$$ 199.486 + 115.173i 0.215440 + 0.124384i
$$96$$ 543.878 782.940i 0.578222 0.832380i
$$97$$ 27.5269i 0.0288137i −0.999896 0.0144069i $$-0.995414\pi$$
0.999896 0.0144069i $$-0.00458600\pi$$
$$98$$ 1205.99 + 134.347i 1.24309 + 0.138480i
$$99$$ −73.4549 60.7076i −0.0745707 0.0616298i
$$100$$ 56.4453 + 97.7662i 0.0564453 + 0.0977662i
$$101$$ −953.191 + 1650.97i −0.939069 + 1.62652i −0.171858 + 0.985122i $$0.554977\pi$$
−0.767211 + 0.641394i $$0.778356\pi$$
$$102$$ −1133.60 94.9158i −1.10042 0.0921379i
$$103$$ 1509.53 871.529i 1.44407 0.833732i 0.445948 0.895059i $$-0.352867\pi$$
0.998118 + 0.0613274i $$0.0195334\pi$$
$$104$$ −179.237 −0.168996
$$105$$ −58.9361 477.547i −0.0547769 0.443846i
$$106$$ −2103.28 −1.92725
$$107$$ −1554.57 + 897.534i −1.40455 + 0.810915i −0.994855 0.101310i $$-0.967697\pi$$
−0.409690 + 0.912225i $$0.634363\pi$$
$$108$$ −452.956 442.927i −0.403572 0.394636i
$$109$$ −382.680 + 662.821i −0.336276 + 0.582447i −0.983729 0.179658i $$-0.942501\pi$$
0.647453 + 0.762105i $$0.275834\pi$$
$$110$$ 31.2155 + 54.0669i 0.0270571 + 0.0468643i
$$111$$ 1337.29 629.675i 1.14351 0.538434i
$$112$$ 1445.38 302.527i 1.21942 0.255233i
$$113$$ 142.010i 0.118222i −0.998251 0.0591112i $$-0.981173\pi$$
0.998251 0.0591112i $$-0.0188267\pi$$
$$114$$ 695.528 + 483.156i 0.571422 + 0.396945i
$$115$$ −497.906 287.466i −0.403739 0.233099i
$$116$$ −498.124 287.592i −0.398704 0.230192i
$$117$$ −65.2855 + 387.125i −0.0515867 + 0.305895i
$$118$$ 1949.01i 1.52052i
$$119$$ −764.222 854.084i −0.588707 0.657931i
$$120$$ −136.430 289.747i −0.103786 0.220418i
$$121$$ −659.272 1141.89i −0.495320 0.857920i
$$122$$ −840.829 + 1456.36i −0.623976 + 1.08076i
$$123$$ 142.293 1699.43i 0.104310 1.24579i
$$124$$ 829.634 478.989i 0.600833 0.346891i
$$125$$ 125.000 0.0894427
$$126$$ −69.4314 1767.67i −0.0490908 1.24982i
$$127$$ −2291.18 −1.60086 −0.800430 0.599426i $$-0.795396\pi$$
−0.800430 + 0.599426i $$0.795396\pi$$
$$128$$ 1236.84 714.087i 0.854077 0.493101i
$$129$$ 46.9762 561.045i 0.0320622 0.382925i
$$130$$ 128.601 222.743i 0.0867617 0.150276i
$$131$$ 259.146 + 448.855i 0.172838 + 0.299364i 0.939411 0.342793i $$-0.111373\pi$$
−0.766573 + 0.642157i $$0.778040\pi$$
$$132$$ 35.2786 + 74.9239i 0.0232622 + 0.0494037i
$$133$$ 174.796 + 835.118i 0.113960 + 0.544466i
$$134$$ 1471.88i 0.948888i
$$135$$ −675.503 + 189.130i −0.430652 + 0.120576i
$$136$$ −660.615 381.406i −0.416524 0.240480i
$$137$$ −1012.79 584.732i −0.631593 0.364650i 0.149776 0.988720i $$-0.452145\pi$$
−0.781369 + 0.624070i $$0.785478\pi$$
$$138$$ −1736.00 1205.93i −1.07086 0.743883i
$$139$$ 2599.73i 1.58638i 0.608977 + 0.793188i $$0.291580\pi$$
−0.608977 + 0.793188i $$0.708420\pi$$
$$140$$ −130.453 + 397.283i −0.0787521 + 0.239833i
$$141$$ 1831.21 862.243i 1.09373 0.514992i
$$142$$ 707.401 + 1225.25i 0.418055 + 0.724092i
$$143$$ 25.6597 44.4438i 0.0150054 0.0259901i
$$144$$ −751.385 2017.44i −0.434829 1.16750i
$$145$$ −551.556 + 318.441i −0.315891 + 0.182380i
$$146$$ 549.410 0.311435
$$147$$ 1172.63 1342.19i 0.657937 0.753073i
$$148$$ −1284.54 −0.713434
$$149$$ 435.444 251.404i 0.239416 0.138227i −0.375492 0.926825i $$-0.622526\pi$$
0.614908 + 0.788599i $$0.289193\pi$$
$$150$$ 457.964 + 38.3452i 0.249284 + 0.0208725i
$$151$$ −1175.38 + 2035.82i −0.633452 + 1.09717i 0.353389 + 0.935477i $$0.385029\pi$$
−0.986841 + 0.161695i $$0.948304\pi$$
$$152$$ 283.944 + 491.805i 0.151519 + 0.262439i
$$153$$ −1064.40 + 1287.91i −0.562431 + 0.680529i
$$154$$ −72.1434 + 219.706i −0.0377499 + 0.114964i
$$155$$ 1060.74i 0.549680i
$$156$$ 194.645 280.202i 0.0998981 0.143808i
$$157$$ 2469.13 + 1425.55i 1.25515 + 0.724659i 0.972127 0.234455i $$-0.0753306\pi$$
0.283019 + 0.959114i $$0.408664\pi$$
$$158$$ 3590.84 + 2073.17i 1.80805 + 1.04388i
$$159$$ −1762.46 + 2537.16i −0.879072 + 1.26547i
$$160$$ 917.322i 0.453254i
$$161$$ −436.282 2084.41i −0.213564 1.02034i
$$162$$ −2532.87 + 485.699i −1.22840 + 0.235556i
$$163$$ −1119.63 1939.25i −0.538011 0.931863i −0.999011 0.0444628i $$-0.985842\pi$$
0.461000 0.887400i $$-0.347491\pi$$
$$164$$ −741.013 + 1283.47i −0.352826 + 0.611112i
$$165$$ 91.3775 + 7.65102i 0.0431135 + 0.00360988i
$$166$$ −13.5755 + 7.83779i −0.00634735 + 0.00366464i
$$167$$ 2469.34 1.14421 0.572105 0.820181i $$-0.306127\pi$$
0.572105 + 0.820181i $$0.306127\pi$$
$$168$$ 462.831 1092.25i 0.212549 0.501599i
$$169$$ 1985.58 0.903767
$$170$$ 947.969 547.310i 0.427682 0.246922i
$$171$$ 1165.65 434.140i 0.521283 0.194149i
$$172$$ −244.636 + 423.723i −0.108450 + 0.187840i
$$173$$ 373.114 + 646.252i 0.163973 + 0.284009i 0.936290 0.351228i $$-0.114236\pi$$
−0.772317 + 0.635237i $$0.780902\pi$$
$$174$$ −2118.43 + 997.480i −0.922975 + 0.434590i
$$175$$ 308.740 + 345.043i 0.133363 + 0.149045i
$$176$$ 281.416i 0.120526i
$$177$$ 2351.07 + 1633.19i 0.998401 + 0.693550i
$$178$$ −3098.76 1789.07i −1.30484 0.753350i
$$179$$ −2952.97 1704.90i −1.23305 0.711901i −0.265384 0.964143i $$-0.585499\pi$$
−0.967664 + 0.252242i $$0.918832\pi$$
$$180$$ 601.122 + 101.374i 0.248916 + 0.0419778i
$$181$$ 2937.61i 1.20636i 0.797607 + 0.603178i $$0.206099\pi$$
−0.797607 + 0.603178i $$0.793901\pi$$
$$182$$ 932.480 195.174i 0.379780 0.0794906i
$$183$$ 1052.20 + 2234.65i 0.425034 + 0.902679i
$$184$$ −708.709 1227.52i −0.283950 0.491815i
$$185$$ −711.161 + 1231.77i −0.282625 + 0.489521i
$$186$$ 325.394 3886.23i 0.128274 1.53200i
$$187$$ 189.148 109.205i 0.0739673 0.0427050i
$$188$$ −1758.97 −0.682374
$$189$$ −2190.50 1397.49i −0.843045 0.537842i
$$190$$ −814.907 −0.311155
$$191$$ 92.6615 53.4982i 0.0351034 0.0202670i −0.482346 0.875981i $$-0.660215\pi$$
0.517449 + 0.855714i $$0.326882\pi$$
$$192$$ −4.84573 + 57.8735i −0.00182141 + 0.0217534i
$$193$$ 1091.15 1889.93i 0.406958 0.704871i −0.587590 0.809159i $$-0.699923\pi$$
0.994547 + 0.104288i $$0.0332563\pi$$
$$194$$ 48.6915 + 84.3362i 0.0180198 + 0.0312113i
$$195$$ −160.929 341.779i −0.0590994 0.125514i
$$196$$ −1418.85 + 621.161i −0.517073 + 0.226371i
$$197$$ 205.038i 0.0741541i −0.999312 0.0370771i $$-0.988195\pi$$
0.999312 0.0370771i $$-0.0118047\pi$$
$$198$$ 332.433 + 56.0622i 0.119318 + 0.0201221i
$$199$$ −2307.14 1332.03i −0.821854 0.474498i 0.0292011 0.999574i $$-0.490704\pi$$
−0.851056 + 0.525076i $$0.824037\pi$$
$$200$$ 266.883 + 154.085i 0.0943575 + 0.0544773i
$$201$$ 1775.51 + 1233.38i 0.623058 + 0.432814i
$$202$$ 6744.29i 2.34914i
$$203$$ −2241.31 735.962i −0.774920 0.254455i
$$204$$ 1313.66 618.549i 0.450856 0.212290i
$$205$$ 820.499 + 1421.15i 0.279542 + 0.484181i
$$206$$ −3083.25 + 5340.34i −1.04282 + 1.80621i
$$207$$ −2909.40 + 1083.59i −0.976895 + 0.363840i
$$208$$ 1004.04 579.683i 0.334701 0.193239i
$$209$$ −162.598 −0.0538141
$$210$$ 1025.29 + 1358.85i 0.336912 + 0.446521i
$$211$$ 3884.53 1.26740 0.633701 0.773578i $$-0.281535\pi$$
0.633701 + 0.773578i $$0.281535\pi$$
$$212$$ 2324.98 1342.33i 0.753209 0.434865i
$$213$$ 2070.78 + 173.386i 0.666139 + 0.0557757i
$$214$$ 3175.24 5499.68i 1.01428 1.75678i
$$215$$ 270.877 + 469.174i 0.0859241 + 0.148825i
$$216$$ −1675.38 428.875i −0.527756 0.135098i
$$217$$ 2928.00 2619.93i 0.915971 0.819598i
$$218$$ 2707.65i 0.841216i
$$219$$ 460.384 662.746i 0.142054 0.204494i
$$220$$ −69.0117 39.8439i −0.0211490 0.0122104i
$$221$$ −779.246 449.898i −0.237184 0.136938i
$$222$$ −2983.35 + 4294.68i −0.901933 + 1.29838i
$$223$$ 563.780i 0.169298i 0.996411 + 0.0846490i $$0.0269769\pi$$
−0.996411 + 0.0846490i $$0.973023\pi$$
$$224$$ −2532.12 + 2265.71i −0.755289 + 0.675822i
$$225$$ 430.011 520.304i 0.127411 0.154164i
$$226$$ 251.197 + 435.085i 0.0739352 + 0.128059i
$$227$$ 437.969 758.584i 0.128057 0.221802i −0.794867 0.606784i $$-0.792459\pi$$
0.922924 + 0.384982i $$0.125793\pi$$
$$228$$ −1077.20 90.1934i −0.312890 0.0261983i
$$229$$ 4417.95 2550.70i 1.27487 0.736049i 0.298973 0.954262i $$-0.403356\pi$$
0.975901 + 0.218213i $$0.0700227\pi$$
$$230$$ 2033.96 0.583112
$$231$$ 204.575 + 271.131i 0.0582687 + 0.0772255i
$$232$$ −1570.15 −0.444332
$$233$$ −5036.52 + 2907.84i −1.41611 + 0.817591i −0.995954 0.0898610i $$-0.971358\pi$$
−0.420155 + 0.907452i $$0.638024\pi$$
$$234$$ −484.754 1301.54i −0.135425 0.363610i
$$235$$ −973.825 + 1686.71i −0.270321 + 0.468209i
$$236$$ −1243.87 2154.45i −0.343090 0.594250i
$$237$$ 5509.82 2594.35i 1.51013 0.711059i
$$238$$ 3852.17 + 1264.91i 1.04916 + 0.344504i
$$239$$ 3786.80i 1.02489i −0.858721 0.512443i $$-0.828741\pi$$
0.858721 0.512443i $$-0.171259\pi$$
$$240$$ 1701.34 + 1181.85i 0.457587 + 0.317868i
$$241$$ 2248.22 + 1298.01i 0.600915 + 0.346938i 0.769401 0.638766i $$-0.220555\pi$$
−0.168486 + 0.985704i $$0.553888\pi$$
$$242$$ 4039.72 + 2332.33i 1.07307 + 0.619538i
$$243$$ −1536.55 + 3462.36i −0.405636 + 0.914035i
$$244$$ 2146.49i 0.563177i
$$245$$ −189.876 + 1704.46i −0.0495133 + 0.444464i
$$246$$ 2570.12 + 5458.36i 0.666116 + 1.41469i
$$247$$ 334.933 + 580.121i 0.0862805 + 0.149442i
$$248$$ 1307.55 2264.74i 0.334797 0.579885i
$$249$$ −1.92107 + 22.9436i −0.000488926 + 0.00583933i
$$250$$ −382.972 + 221.109i −0.0968851 + 0.0559366i
$$251$$ 4377.60 1.10084 0.550422 0.834887i $$-0.314467\pi$$
0.550422 + 0.834887i $$0.314467\pi$$
$$252$$ 1204.89 + 1909.69i 0.301195 + 0.477377i
$$253$$ 405.837 0.100849
$$254$$ 7019.66 4052.80i 1.73407 1.00116i
$$255$$ 134.147 1602.15i 0.0329437 0.393452i
$$256$$ −2570.96 + 4453.04i −0.627677 + 1.08717i
$$257$$ 283.243 + 490.592i 0.0687480 + 0.119075i 0.898350 0.439280i $$-0.144766\pi$$
−0.829602 + 0.558355i $$0.811433\pi$$
$$258$$ 848.492 + 1802.01i 0.204747 + 0.434838i
$$259$$ −5156.61 + 1079.31i −1.23713 + 0.258939i
$$260$$ 328.295i 0.0783077i
$$261$$ −571.912 + 3391.28i −0.135634 + 0.804271i
$$262$$ −1587.93 916.794i −0.374438 0.216182i
$$263$$ 1051.70 + 607.199i 0.246580 + 0.142363i 0.618197 0.786023i $$-0.287863\pi$$
−0.371617 + 0.928386i $$0.621197\pi$$
$$264$$ 185.666 + 128.975i 0.0432838 + 0.0300676i
$$265$$ 2972.63i 0.689083i
$$266$$ −2012.75 2249.42i −0.463946 0.518500i
$$267$$ −4754.76 + 2238.82i −1.08984 + 0.513159i
$$268$$ −939.364 1627.03i −0.214107 0.370845i
$$269$$ 454.101 786.526i 0.102926 0.178273i −0.809963 0.586481i $$-0.800513\pi$$
0.912889 + 0.408208i $$0.133846\pi$$
$$270$$ 1735.04 1774.33i 0.391079 0.399935i
$$271$$ −3758.84 + 2170.17i −0.842558 + 0.486451i −0.858133 0.513427i $$-0.828376\pi$$
0.0155746 + 0.999879i $$0.495042\pi$$
$$272$$ 4934.14 1.09991
$$273$$ 545.945 1288.39i 0.121033 0.285629i
$$274$$ 4137.27 0.912195
$$275$$ −76.4143 + 44.1178i −0.0167562 + 0.00967420i
$$276$$ 2688.62 + 225.118i 0.586363 + 0.0490961i
$$277$$ −3194.05 + 5532.26i −0.692823 + 1.20001i 0.278086 + 0.960556i $$0.410300\pi$$
−0.970909 + 0.239449i $$0.923033\pi$$
$$278$$ −4598.59 7964.99i −0.992105 1.71838i
$$279$$ −4415.24 3649.03i −0.947433 0.783016i
$$280$$ 233.852 + 1117.27i 0.0499118 + 0.238463i
$$281$$ 3345.41i 0.710216i −0.934825 0.355108i $$-0.884444\pi$$
0.934825 0.355108i $$-0.115556\pi$$
$$282$$ −4085.23 + 5880.90i −0.862667 + 1.24185i
$$283$$ 949.320 + 548.090i 0.199404 + 0.115126i 0.596377 0.802704i $$-0.296606\pi$$
−0.396974 + 0.917830i $$0.629940\pi$$
$$284$$ −1563.93 902.937i −0.326769 0.188660i
$$285$$ −682.859 + 983.010i −0.141927 + 0.204311i
$$286$$ 181.555i 0.0375369i
$$287$$ −1896.29 + 5774.97i −0.390015 + 1.18776i
$$288$$ 3818.29 + 3155.66i 0.781232 + 0.645657i
$$289$$ 541.785 + 938.399i 0.110276 + 0.191003i
$$290$$ 1126.56 1951.26i 0.228117 0.395111i
$$291$$ 142.535 + 11.9344i 0.0287132 + 0.00240415i
$$292$$ −607.322 + 350.638i −0.121715 + 0.0702723i
$$293$$ −4350.28 −0.867392 −0.433696 0.901059i $$-0.642791\pi$$
−0.433696 + 0.901059i $$0.642791\pi$$
$$294$$ −1218.51 + 6186.39i −0.241718 + 1.22720i
$$295$$ −2754.60 −0.543657
$$296$$ −3036.75 + 1753.27i −0.596310 + 0.344280i
$$297$$ 346.193 354.032i 0.0676369 0.0691684i
$$298$$ −889.402 + 1540.49i −0.172891 + 0.299457i
$$299$$ −835.976 1447.95i −0.161691 0.280058i
$$300$$ −530.709 + 249.889i −0.102135 + 0.0480911i
$$301$$ −626.036 + 1906.54i −0.119881 + 0.365086i
$$302$$ 8316.40i 1.58462i
$$303$$ −8135.54 5651.44i −1.54249 1.07151i
$$304$$ −3181.17 1836.65i −0.600172 0.346510i
$$305$$ −2058.32 1188.37i −0.386422 0.223101i
$$306$$ 982.954 5828.65i 0.183633 1.08889i
$$307$$ 5750.86i 1.06912i −0.845132 0.534558i $$-0.820478\pi$$
0.845132 0.534558i $$-0.179522\pi$$
$$308$$ −60.4703 288.907i −0.0111871 0.0534482i
$$309$$ 3858.34 + 8194.27i 0.710335 + 1.50859i
$$310$$ 1876.31 + 3249.86i 0.343765 + 0.595418i
$$311$$ 2750.86 4764.63i 0.501565 0.868737i −0.498433 0.866928i $$-0.666091\pi$$
0.999998 0.00180853i $$-0.000575673\pi$$
$$312$$ 77.7092 928.095i 0.0141007 0.168407i
$$313$$ 623.841 360.175i 0.112657 0.0650424i −0.442613 0.896713i $$-0.645948\pi$$
0.555270 + 0.831670i $$0.312615\pi$$
$$314$$ −10086.5 −1.81278
$$315$$ 2498.31 98.1295i 0.446869 0.0175523i
$$316$$ −5292.46 −0.942164
$$317$$ −106.684 + 61.5942i −0.0189022 + 0.0109132i −0.509421 0.860517i $$-0.670141\pi$$
0.490519 + 0.871430i $$0.336807\pi$$
$$318$$ 911.889 10890.8i 0.160806 1.92053i
$$319$$ 224.783 389.335i 0.0394528 0.0683342i
$$320$$ −27.9418 48.3966i −0.00488123 0.00845454i
$$321$$ −3973.47 8438.77i −0.690895 1.46731i
$$322$$ 5023.73 + 5614.44i 0.869445 + 0.971679i
$$323$$ 2850.88i 0.491105i
$$324$$ 2489.87 2153.39i 0.426933 0.369237i
$$325$$ 314.809 + 181.755i 0.0537307 + 0.0310214i
$$326$$ 6860.56 + 3960.95i 1.16556 + 0.672935i
$$327$$ −3266.20 2268.90i −0.552358 0.383702i
$$328$$ 4045.65i 0.681048i
$$329$$ −7061.18 + 1477.95i −1.18327 + 0.247666i
$$330$$ −293.494 + 138.194i −0.0489585 + 0.0230525i
$$331$$ −4816.06 8341.66i −0.799742 1.38519i −0.919784 0.392425i $$-0.871636\pi$$
0.120042 0.992769i $$-0.461697\pi$$
$$332$$ 10.0043 17.3279i 0.00165378 0.00286443i
$$333$$ 2680.69 + 7197.54i 0.441144 + 1.18445i
$$334$$ −7565.49 + 4367.94i −1.23942 + 0.715578i
$$335$$ −2080.25 −0.339272
$$336$$ 939.843 + 7615.37i 0.152597 + 1.23647i
$$337$$ 4977.75 0.804615 0.402308 0.915505i $$-0.368208\pi$$
0.402308 + 0.915505i $$0.368208\pi$$
$$338$$ −6083.36 + 3512.23i −0.978968 + 0.565207i
$$339$$ 735.330 + 61.5691i 0.117810 + 0.00986422i
$$340$$ −698.595 + 1210.00i −0.111431 + 0.193005i
$$341$$ 374.379 + 648.444i 0.0594539 + 0.102977i
$$342$$ −2803.35 + 3391.99i −0.443239 + 0.536309i
$$343$$ −5173.87 + 3685.74i −0.814468 + 0.580208i
$$344$$ 1335.62i 0.209337i
$$345$$ 1704.38 2453.54i 0.265973 0.382882i
$$346$$ −2286.27 1319.98i −0.355234 0.205094i
$$347$$ 5974.28 + 3449.25i 0.924254 + 0.533618i 0.884990 0.465610i $$-0.154165\pi$$
0.0392645 + 0.999229i $$0.487499\pi$$
$$348$$ 1705.13 2454.62i 0.262656 0.378107i
$$349$$ 5143.79i 0.788942i 0.918908 + 0.394471i $$0.129072\pi$$
−0.918908 + 0.394471i $$0.870928\pi$$
$$350$$ −1556.25 511.014i −0.237671 0.0780424i
$$351$$ −1976.24 505.890i −0.300524 0.0769300i
$$352$$ −323.762 560.772i −0.0490244 0.0849127i
$$353$$ −2903.48 + 5028.97i −0.437781 + 0.758258i −0.997518 0.0704119i $$-0.977569\pi$$
0.559737 + 0.828670i $$0.310902\pi$$
$$354$$ −10092.1 845.006i −1.51522 0.126869i
$$355$$ −1731.69 + 999.791i −0.258897 + 0.149474i
$$356$$ 4567.18 0.679944
$$357$$ 4753.81 3586.87i 0.704757 0.531758i
$$358$$ 12063.0 1.78086
$$359$$ 6501.82 3753.83i 0.955857 0.551864i 0.0609616 0.998140i $$-0.480583\pi$$
0.894896 + 0.446276i $$0.147250\pi$$
$$360$$ 1559.47 580.817i 0.228309 0.0850326i
$$361$$ −2368.31 + 4102.03i −0.345285 + 0.598051i
$$362$$ −5196.25 9000.16i −0.754444 1.30674i
$$363$$ 6198.59 2918.66i 0.896257 0.422010i
$$364$$ −906.208 + 810.863i −0.130490 + 0.116760i
$$365$$ 776.498i 0.111353i
$$366$$ −7176.53 4985.25i −1.02493 0.711977i
$$367$$ 8497.92 + 4906.28i 1.20869 + 0.697835i 0.962472 0.271380i $$-0.0874800\pi$$
0.246214 + 0.969215i $$0.420813\pi$$
$$368$$ 7940.03 + 4584.18i 1.12474 + 0.649366i
$$369$$ 8738.00 + 1473.59i 1.23274 + 0.207892i
$$370$$ 5031.81i 0.707004i
$$371$$ 8205.48 7342.14i 1.14827 1.02745i
$$372$$ 2120.53 + 4503.54i 0.295549 + 0.627682i
$$373$$ −2300.91 3985.29i −0.319401 0.553219i 0.660962 0.750419i $$-0.270148\pi$$
−0.980363 + 0.197200i $$0.936815\pi$$
$$374$$ −386.338 + 669.157i −0.0534146 + 0.0925169i
$$375$$ −54.1945 + 647.254i −0.00746291 + 0.0891308i
$$376$$ −4158.36 + 2400.83i −0.570349 + 0.329291i
$$377$$ −1852.11 −0.253019
$$378$$ 9183.18 + 406.868i 1.24956 + 0.0553625i
$$379$$ 10325.6 1.39945 0.699726 0.714412i $$-0.253306\pi$$
0.699726 + 0.714412i $$0.253306\pi$$
$$380$$ 900.804 520.079i 0.121606 0.0702092i
$$381$$ 993.354 11863.8i 0.133572 1.59528i
$$382$$ −189.263 + 327.813i −0.0253495 + 0.0439067i
$$383$$ −1615.63 2798.35i −0.215548 0.373339i 0.737894 0.674916i $$-0.235820\pi$$
−0.953442 + 0.301577i $$0.902487\pi$$
$$384$$ 3161.33 + 6713.97i 0.420120 + 0.892242i
$$385$$ −310.518 101.963i −0.0411050 0.0134974i
$$386$$ 7720.43i 1.01803i
$$387$$ 2884.74 + 486.489i 0.378914 + 0.0639008i
$$388$$ −107.648 62.1506i −0.0140850 0.00813200i
$$389$$ 10881.5 + 6282.46i 1.41829 + 0.818851i 0.996149 0.0876781i $$-0.0279447\pi$$
0.422143 + 0.906529i $$0.361278\pi$$
$$390$$ 1097.61 + 762.470i 0.142512 + 0.0989978i
$$391$$ 7115.64i 0.920342i
$$392$$ −2506.45 + 3405.07i −0.322946 + 0.438730i
$$393$$ −2436.54 + 1147.27i −0.312741 + 0.147257i
$$394$$ 362.686 + 628.191i 0.0463753 + 0.0803244i
$$395$$ −2930.08 + 5075.04i −0.373236 + 0.646464i
$$396$$ −403.254 + 150.190i −0.0511724 + 0.0190589i
$$397$$ 1052.09 607.424i 0.133005 0.0767903i −0.432021 0.901863i $$-0.642199\pi$$
0.565026 + 0.825073i $$0.308866\pi$$
$$398$$ 9424.76 1.18699
$$399$$ −4400.05 + 543.029i −0.552076 + 0.0681339i
$$400$$ −1993.35 −0.249169
$$401$$ 7615.66 4396.91i 0.948399 0.547559i 0.0558160 0.998441i $$-0.482224\pi$$
0.892583 + 0.450882i $$0.148891\pi$$
$$402$$ −7621.44 638.142i −0.945579 0.0791731i
$$403$$ 1542.36 2671.44i 0.190646 0.330208i
$$404$$ 4304.25 + 7455.19i 0.530061 + 0.918093i
$$405$$ −686.454 3579.78i −0.0842226 0.439211i
$$406$$ 8168.68 1709.76i 0.998534 0.209000i
$$407$$ 1004.00i 0.122276i
$$408$$ 2261.35 3255.33i 0.274396 0.395007i
$$409$$ 4831.45 + 2789.44i 0.584107 + 0.337234i 0.762764 0.646677i $$-0.223842\pi$$
−0.178657 + 0.983911i $$0.557175\pi$$
$$410$$ −5027.65 2902.71i −0.605604 0.349646i
$$411$$ 3466.86 4990.73i 0.416077 0.598965i
$$412$$ 7871.00i 0.941205i
$$413$$ −6803.63 7603.64i −0.810617 0.905934i
$$414$$ 6997.01 8466.23i 0.830639 1.00505i
$$415$$ −11.0774 19.1866i −0.00131028 0.00226948i
$$416$$ −1333.82 + 2310.25i −0.157202 + 0.272282i
$$417$$ −13461.5 1127.13i −1.58084 0.132364i
$$418$$ 498.164 287.615i 0.0582919 0.0336548i
$$419$$ 5449.56 0.635390 0.317695 0.948193i $$-0.397091\pi$$
0.317695 + 0.948193i $$0.397091\pi$$
$$420$$ −2000.59 847.735i −0.232425 0.0984886i
$$421$$ 2759.33 0.319433 0.159717 0.987163i $$-0.448942\pi$$
0.159717 + 0.987163i $$0.448942\pi$$
$$422$$ −11901.3 + 6871.23i −1.37286 + 0.792621i
$$423$$ 3670.79 + 9855.92i 0.421938 + 1.13289i
$$424$$ 3664.30 6346.76i 0.419703 0.726948i
$$425$$ 773.530 + 1339.79i 0.0882864 + 0.152916i
$$426$$ −6651.10 + 3131.73i −0.756449 + 0.356180i
$$427$$ −1803.56 8616.84i −0.204404 0.976576i
$$428$$ 8105.86i 0.915447i
$$429$$ 219.007 + 152.135i 0.0246474 + 0.0171216i
$$430$$ −1659.82 958.295i −0.186147 0.107472i
$$431$$ −3948.36 2279.59i −0.441267 0.254766i 0.262868 0.964832i $$-0.415332\pi$$
−0.704135 + 0.710066i $$0.748665\pi$$
$$432$$ 10772.1 3016.03i 1.19971 0.335899i
$$433$$ 7442.63i 0.826027i −0.910725 0.413014i $$-0.864476\pi$$
0.910725 0.413014i $$-0.135524\pi$$
$$434$$ −4336.41 + 13206.1i −0.479618 + 1.46063i
$$435$$ −1409.77 2994.04i −0.155387 0.330007i
$$436$$ 1728.04 + 2993.05i 0.189812 + 0.328764i
$$437$$ −2648.67 + 4587.64i −0.289939 + 0.502189i
$$438$$ −238.200 + 2844.87i −0.0259855 + 0.310349i
$$439$$ −5233.12 + 3021.35i −0.568937 + 0.328476i −0.756725 0.653734i $$-0.773202\pi$$
0.187788 + 0.982210i $$0.439868\pi$$
$$440$$ −217.533 −0.0235693
$$441$$ 6441.49 + 6653.82i 0.695550 + 0.718478i
$$442$$ 3183.24 0.342560
$$443$$ 3456.00 1995.32i 0.370653 0.213997i −0.303091 0.952962i $$-0.598018\pi$$
0.673744 + 0.738965i $$0.264685\pi$$
$$444$$ 556.918 6651.37i 0.0595274 0.710946i
$$445$$ 2528.54 4379.56i 0.269358 0.466542i
$$446$$ −997.254 1727.29i −0.105877 0.183385i
$$447$$ 1112.99 + 2363.74i 0.117768 + 0.250114i
$$448$$ 64.5774 196.665i 0.00681026 0.0207400i
$$449$$ 897.052i 0.0942862i −0.998888 0.0471431i $$-0.984988\pi$$
0.998888 0.0471431i $$-0.0150117\pi$$
$$450$$ −397.106 + 2354.73i −0.0415994 + 0.246673i
$$451$$ −1003.17 579.178i −0.104739 0.0604710i
$$452$$ −555.349 320.631i −0.0577908 0.0333655i
$$453$$ −10032.0 6968.81i −1.04049 0.722789i
$$454$$ 3098.84i 0.320343i
$$455$$ 275.846 + 1317.90i 0.0284216 + 0.135789i
$$456$$ −2669.69 + 1257.05i −0.274166 + 0.129093i
$$457$$ 1123.05 + 1945.18i 0.114954 + 0.199106i 0.917761 0.397132i $$-0.129995\pi$$
−0.802807 + 0.596239i $$0.796661\pi$$
$$458$$ −9023.73 + 15629.6i −0.920636 + 1.59459i
$$459$$ −6207.34 6069.90i −0.631228 0.617252i
$$460$$ −2248.36 + 1298.09i −0.227892 + 0.131574i
$$461$$ 6503.45 0.657041 0.328520 0.944497i $$-0.393450\pi$$
0.328520 + 0.944497i $$0.393450\pi$$
$$462$$ −1106.37 468.816i −0.111413 0.0472106i
$$463$$ −12869.8 −1.29181 −0.645906 0.763417i $$-0.723520\pi$$
−0.645906 + 0.763417i $$0.723520\pi$$
$$464$$ 8795.57 5078.13i 0.880009 0.508073i
$$465$$ 5492.53 + 459.889i 0.547764 + 0.0458641i
$$466$$ 10287.2 17817.9i 1.02263 1.77124i
$$467$$ 14.4148 + 24.9672i 0.00142835 + 0.00247397i 0.866739 0.498763i $$-0.166212\pi$$
−0.865310 + 0.501236i $$0.832879\pi$$
$$468$$ 1366.51 + 1129.36i 0.134972 + 0.111549i
$$469$$ −5138.05 5742.21i −0.505870 0.565353i
$$470$$ 6890.28i 0.676224i
$$471$$ −8452.06 + 12167.2i −0.826859 + 1.19031i
$$472$$ −5881.25 3395.54i −0.573531 0.331128i
$$473$$ −331.183 191.208i −0.0321941 0.0185873i
$$474$$ −12291.8 + 17694.7i −1.19110 + 1.71465i
$$475$$ 1151.73i 0.111253i
$$476$$ −5065.49 + 1060.24i −0.487766 + 0.102093i
$$477$$ −12373.3 10226.1i −1.18771 0.981594i
$$478$$ 6698.36 + 11601.9i 0.640954 + 1.11016i
$$479$$ 4994.02 8649.90i 0.476373 0.825102i −0.523260 0.852173i $$-0.675285\pi$$
0.999634 + 0.0270705i $$0.00861785\pi$$
$$480$$ −4749.92 397.710i −0.451674 0.0378185i
$$481$$ −3582.08 + 2068.11i −0.339561 + 0.196046i
$$482$$ −9184.05 −0.867888
$$483$$ 10982.3 1355.37i 1.03460 0.127684i
$$484$$ −5954.05 −0.559171
$$485$$ −119.195 + 68.8172i −0.0111595 + 0.00644294i
$$486$$ −1416.83 13325.8i −0.132240 1.24377i
$$487$$ 2079.06 3601.04i 0.193452 0.335069i −0.752940 0.658089i $$-0.771365\pi$$
0.946392 + 0.323020i $$0.104698\pi$$
$$488$$ −2929.76 5074.50i −0.271771 0.470721i
$$489$$ 10526.9 4956.69i 0.973504 0.458383i
$$490$$ −2433.23 5557.94i −0.224331 0.512412i
$$491$$ 4981.52i 0.457867i 0.973442 + 0.228934i $$0.0735238\pi$$
−0.973442 + 0.228934i $$0.926476\pi$$
$$492$$ −6324.59 4393.45i −0.579542 0.402585i
$$493$$ −6826.32 3941.18i −0.623615 0.360044i
$$494$$ −2052.32 1184.91i −0.186920 0.107918i
$$495$$ −79.2345 + 469.838i −0.00719459 + 0.0426619i
$$496$$ 16915.4i 1.53130i
$$497$$ −7036.90 2310.66i −0.635107 0.208546i
$$498$$ −34.6986 73.6923i −0.00312225 0.00663098i
$$499$$ 4098.39 + 7098.62i 0.367674 + 0.636830i 0.989201 0.146563i $$-0.0468210\pi$$
−0.621528 + 0.783392i $$0.713488\pi$$
$$500$$ 282.227 488.831i 0.0252431 0.0437224i
$$501$$ −1070.60 + 12786.3i −0.0954704 + 1.14022i
$$502$$ −13412.0 + 7743.41i −1.19244 + 0.688457i
$$503$$ 2582.86 0.228954 0.114477 0.993426i $$-0.463481\pi$$
0.114477 + 0.993426i $$0.463481\pi$$
$$504$$ 5455.02 + 2870.11i 0.482115 + 0.253660i
$$505$$ 9531.91 0.839929
$$506$$ −1243.39 + 717.873i −0.109240 + 0.0630699i
$$507$$ −860.858 + 10281.4i −0.0754084 + 0.900616i
$$508$$ −5173.06 + 8960.00i −0.451806 + 0.782550i
$$509$$ 10831.6 + 18760.8i 0.943224 + 1.63371i 0.759269 + 0.650777i $$0.225557\pi$$
0.183955 + 0.982935i $$0.441110\pi$$
$$510$$ 2422.99 + 5145.90i 0.210376 + 0.446793i
$$511$$ −2143.40 + 1917.89i −0.185555 + 0.166032i
$$512$$ 6765.43i 0.583970i
$$513$$ 1742.62 + 6223.99i 0.149978 + 0.535665i
$$514$$ −1735.59 1002.04i −0.148937 0.0859886i
$$515$$ −7547.67 4357.65i −0.645806 0.372856i
$$516$$ −2087.99 1450.44i −0.178137 0.123745i
$$517$$ 1374.82i 0.116952i
$$518$$ 13889.5 12428.2i 1.17813 1.05417i
$$519$$ −3508.08 + 1651.81i −0.296701 + 0.139704i
$$520$$ 448.092 + 776.119i 0.0377888 + 0.0654520i
$$521$$ −9770.62 + 16923.2i −0.821610 + 1.42307i 0.0828730 + 0.996560i $$0.473590\pi$$
−0.904483 + 0.426510i $$0.859743\pi$$
$$522$$ −4246.53 11401.8i −0.356064 0.956018i
$$523$$ 13158.2 7596.91i 1.10013 0.635162i 0.163877 0.986481i $$-0.447600\pi$$
0.936256 + 0.351319i $$0.114267\pi$$
$$524$$ 2340.42 0.195118
$$525$$ −1920.50 + 1449.07i −0.159652 + 0.120462i
$$526$$ −4296.23 −0.356130
$$527$$ 11369.3 6564.09i 0.939766 0.542574i
$$528$$ −1457.18 122.009i −0.120105 0.0100564i
$$529$$ 527.456 913.580i 0.0433513 0.0750867i
$$530$$ 5258.20 + 9107.46i 0.430946 + 0.746421i
$$531$$ −9476.05 + 11465.8i −0.774436 + 0.937051i
$$532$$ 3660.51 + 1201.98i 0.298314 + 0.0979554i
$$533$$ 4772.15i 0.387814i
$$534$$ 10607.3 15269.8i 0.859596 1.23743i
$$535$$ 7772.87 + 4487.67i 0.628132 + 0.362652i
$$536$$ −4441.48 2564.29i −0.357915 0.206642i
$$537$$ 10108.3 14551.4i 0.812301 1.16935i
$$538$$ 3212.99i 0.257475i
$$539$$ −485.501 1108.97i −0.0387978 0.0886214i
$$540$$ −785.539 + 3068.68i −0.0626004 + 0.244546i
$$541$$ 7087.52 + 12276.0i 0.563247 + 0.975572i 0.997210 + 0.0746416i $$0.0237813\pi$$
−0.433964 + 0.900930i $$0.642885\pi$$
$$542$$ 7677.50 13297.8i 0.608444 1.05386i
$$543$$ −15211.0 1273.62i −1.20215 0.100656i
$$544$$ −9832.17 + 5676.61i −0.774910 + 0.447394i
$$545$$ 3826.80 0.300775
$$546$$ 606.337 + 4913.03i 0.0475253 + 0.385088i
$$547$$ −3915.65 −0.306072 −0.153036 0.988221i $$-0.548905\pi$$
−0.153036 + 0.988221i $$0.548905\pi$$
$$548$$ −4573.37 + 2640.43i −0.356505 + 0.205828i
$$549$$ −12027.3 + 4479.50i −0.934995 + 0.348234i
$$550$$ 156.078 270.334i 0.0121003 0.0209584i
$$551$$ 2934.07 + 5081.96i 0.226852 + 0.392920i
$$552$$ 6663.41 3137.52i 0.513792 0.241923i
$$553$$ −21245.9 + 4446.92i −1.63376 + 0.341957i
$$554$$ 22599.5i 1.73314i
$$555$$ −6069.80 4216.46i −0.464232 0.322484i
$$556$$ 10166.6 + 5869.71i 0.775470 + 0.447718i
$$557$$ 9426.69 + 5442.50i 0.717094 + 0.414015i 0.813682 0.581310i $$-0.197460\pi$$
−0.0965880 + 0.995324i $$0.530793\pi$$
$$558$$ 19982.0 + 3369.80i 1.51596 + 0.255654i
$$559$$ 1575.47i 0.119204i
$$560$$ −4923.42 5502.34i −0.371522 0.415208i
$$561$$ 483.459 + 1026.76i 0.0363844 + 0.0772725i
$$562$$ 5917.61 + 10249.6i 0.444162 + 0.769311i
$$563$$ −1235.82 + 2140.51i −0.0925111 + 0.160234i −0.908567 0.417739i $$-0.862823\pi$$
0.816056 + 0.577973i $$0.196156\pi$$
$$564$$ 762.613 9108.02i 0.0569358 0.679994i
$$565$$ −614.919 + 355.024i −0.0457873 + 0.0264353i
$$566$$ −3878.00 −0.287994
$$567$$ 8185.94 10736.6i 0.606309 0.795229i
$$568$$ −4929.70 −0.364165
$$569$$ 5773.89 3333.56i 0.425403 0.245606i −0.271984 0.962302i $$-0.587680\pi$$
0.697386 + 0.716696i $$0.254346\pi$$
$$570$$ 353.307 4219.61i 0.0259621 0.310070i
$$571$$ 1897.30 3286.22i 0.139053 0.240848i −0.788085 0.615566i $$-0.788927\pi$$
0.927139 + 0.374719i $$0.122261\pi$$
$$572$$ −115.869 200.692i −0.00846983 0.0146702i
$$573$$ 236.841 + 502.999i 0.0172673 + 0.0366720i
$$574$$ −4405.39 21047.5i −0.320344 1.53050i
$$575$$ 2874.66i 0.208490i
$$576$$ −297.570 50.1827i −0.0215256 0.00363012i
$$577$$ −20022.1 11559.8i −1.44459 0.834037i −0.446443 0.894812i $$-0.647309\pi$$
−0.998151 + 0.0607751i $$0.980643\pi$$
$$578$$ −3319.81 1916.70i −0.238903 0.137931i
$$579$$ 9313.05 + 6469.41i 0.668458 + 0.464351i
$$580$$ 2875.92i 0.205890i
$$581$$ 25.6014 77.9667i 0.00182810 0.00556731i
$$582$$ −457.806 + 215.562i −0.0326060 + 0.0153528i
$$583$$ 1049.17 + 1817.21i 0.0745318 + 0.129093i
$$584$$ −957.175 + 1657.88i −0.0678223 + 0.117472i
$$585$$ 1839.51 685.117i 0.130008 0.0484207i
$$586$$ 13328.3 7695.08i 0.939567 0.542459i
$$587$$ −16772.1 −1.17932 −0.589659 0.807653i $$-0.700738\pi$$
−0.589659 + 0.807653i $$0.700738\pi$$
$$588$$ −2601.24 7616.14i −0.182438 0.534157i
$$589$$ −9773.48 −0.683717
$$590$$ 8439.47 4872.53i 0.588894 0.339998i
$$591$$ 1061.69 + 88.8955i 0.0738956 + 0.00618726i
$$592$$ 11340.8 19642.8i 0.787335 1.36370i
$$593$$ −2564.12 4441.19i −0.177565 0.307551i 0.763481 0.645830i $$-0.223489\pi$$
−0.941046 + 0.338279i $$0.890155\pi$$
$$594$$ −434.421 + 1697.05i −0.0300076 + 0.117223i
$$595$$ −1787.74 + 5444.39i −0.123177 + 0.375123i
$$596$$ 2270.49i 0.156045i
$$597$$ 7897.57 11369.0i 0.541417 0.779398i
$$598$$ 5122.49 + 2957.47i 0.350291 + 0.202241i
$$599$$ −18075.2 10435.7i −1.23294 0.711839i −0.265300 0.964166i $$-0.585471\pi$$
−0.967642 + 0.252327i $$0.918804\pi$$
$$600$$ −913.567 + 1315.13i −0.0621604 + 0.0894830i
$$601$$ 5784.11i 0.392577i 0.980546 + 0.196288i $$0.0628889\pi$$
−0.980546 + 0.196288i $$0.937111\pi$$
$$602$$ −1454.38 6948.57i −0.0984655 0.470436i
$$603$$ −7156.24 + 8658.90i −0.483291 + 0.584772i
$$604$$ 5307.59 + 9193.01i 0.357554 + 0.619302i
$$605$$ −3296.36 + 5709.46i −0.221514 + 0.383674i
$$606$$ 34922.1 + 2924.03i 2.34095 + 0.196007i
$$607$$ −16931.6 + 9775.46i −1.13218 + 0.653664i −0.944482 0.328563i $$-0.893436\pi$$
−0.187697 + 0.982227i $$0.560102\pi$$
$$608$$ 8452.07 0.563778
$$609$$ 4782.57 11286.5i 0.318226 0.750987i
$$610$$ 8408.29 0.558101
$$611$$ −4905.10 + 2831.96i −0.324778 + 0.187511i
$$612$$ 2633.32 + 7070.36i 0.173931 + 0.466997i
$$613$$ −1564.33 + 2709.50i −0.103071 + 0.178525i −0.912949 0.408075i $$-0.866200\pi$$
0.809877 + 0.586599i $$0.199534\pi$$
$$614$$ 10172.5 + 17619.3i 0.668615 + 1.15808i
$$615$$ −7714.47 + 3632.42i −0.505817 + 0.238168i
$$616$$ −537.289 600.466i −0.0351428 0.0392751i
$$617$$ 19251.3i 1.25613i 0.778163 + 0.628063i $$0.216152\pi$$
−0.778163 + 0.628063i $$0.783848\pi$$
$$618$$ −26315.7 18280.5i −1.71290 1.18989i
$$619$$ 22828.6 + 13180.1i 1.48232 + 0.855820i 0.999799 0.0200617i $$-0.00638628\pi$$
0.482525 + 0.875882i $$0.339720\pi$$
$$620$$ −4148.17 2394.95i −0.268701 0.155134i
$$621$$ −4349.48 15534.8i −0.281061 1.00385i
$$622$$ 19463.7i 1.25470i
$$623$$ 18334.4 3837.51i 1.17906 0.246785i
$$624$$ 2566.31 + 5450.28i 0.164639 + 0.349657i
$$625$$ −312.500 541.266i −0.0200000 0.0346410i
$$626$$ −1274.21 + 2206.99i −0.0813538 + 0.140909i
$$627$$ 70.4954 841.939i 0.00449013 0.0536265i
$$628$$ 11149.7 6437.26i 0.708472 0.409036i
$$629$$ −17603.3 −1.11588
$$630$$ −7480.68 + 4719.83i −0.473075 + 0.298480i
$$631$$ 18010.0 1.13624 0.568118 0.822947i $$-0.307672\pi$$
0.568118 + 0.822947i $$0.307672\pi$$
$$632$$ −12511.8 + 7223.71i −0.787490 + 0.454658i
$$633$$ −1684.16 + 20114.2i −0.105749 + 1.26298i
$$634$$ 217.904 377.422i 0.0136500 0.0236425i
$$635$$ 5727.95 + 9921.10i 0.357963 + 0.620011i
$$636$$ 5942.61 + 12620.8i 0.370503 + 0.786867i
$$637$$ −2956.55 + 4016.54i −0.183897 + 0.249829i
$$638$$ 1590.45i 0.0986935i
$$639$$ −1795.60 + 10647.4i −0.111162 + 0.659162i
$$640$$ −6184.18 3570.44i −0.381955 0.220522i
$$641$$ −14086.0 8132.54i −0.867961 0.501117i −0.00129064 0.999999i $$-0.500411\pi$$
−0.866670 + 0.498882i $$0.833744\pi$$
$$642$$ 27100.9 + 18825.9i 1.66602 + 1.15732i
$$643$$ 3133.59i 0.192188i −0.995372 0.0960939i $$-0.969365\pi$$
0.995372 0.0960939i $$-0.0306349\pi$$
$$644$$ −9136.44 3000.07i −0.559047 0.183570i
$$645$$ −2546.84 + 1199.20i −0.155475 + 0.0732069i
$$646$$ −5042.84 8734.45i −0.307133 0.531970i
$$647$$ −150.407 + 260.513i −0.00913928 + 0.0158297i −0.870559 0.492064i $$-0.836242\pi$$
0.861420 + 0.507894i $$0.169576\pi$$
$$648$$ 2947.10 8489.24i 0.178662 0.514644i
$$649$$ 1683.93 972.215i 0.101849 0.0588025i
$$650$$ −1286.01 −0.0776020
$$651$$ 12296.7 + 16297.2i 0.740313 + 0.981162i
$$652$$ −10111.6 −0.607365
$$653$$ 4968.97 2868.83i 0.297780 0.171924i −0.343665 0.939092i $$-0.611668\pi$$
0.641445 + 0.767169i $$0.278335\pi$$
$$654$$ 14020.3 + 1173.92i 0.838282 + 0.0701892i
$$655$$ 1295.73 2244.27i 0.0772954 0.133879i
$$656$$ −13084.3 22662.8i −0.778747 1.34883i
$$657$$ 3232.12 + 2671.22i 0.191928 + 0.158621i
$$658$$ 19019.6 17018.4i 1.12684 1.00828i
$$659$$ 12643.0i 0.747346i −0.927561 0.373673i $$-0.878098\pi$$
0.927561 0.373673i $$-0.121902\pi$$
$$660$$ 236.234 340.070i 0.0139324 0.0200564i
$$661$$ −13547.8 7821.85i −0.797201 0.460264i 0.0452905 0.998974i $$-0.485579\pi$$
−0.842491 + 0.538710i $$0.818912\pi$$
$$662$$ 29510.7 + 17038.0i 1.73257 + 1.00030i
$$663$$ 2667.43 3839.90i 0.156251 0.224931i
$$664$$ 54.6196i 0.00319224i
$$665$$ 3179.18 2844.68i 0.185388 0.165883i
$$666$$ −20944.6 17309.9i −1.21860 1.00712i
$$667$$ −7323.29 12684.3i −0.425126 0.736340i
$$668$$ 5575.30 9656.71i 0.322927 0.559325i
$$669$$ −2919.27 244.430i −0.168708 0.0141259i
$$670$$ 6373.42 3679.70i 0.367503 0.212178i
$$671$$ 1677.71 0.0965233
$$672$$ −10634.1 14093.7i −0.610445 0.809044i
$$673$$ −11596.1 −0.664188 −0.332094 0.943246i $$-0.607755\pi$$
−0.332094 + 0.943246i $$0.607755\pi$$
$$674$$ −15250.7 + 8805.00i −0.871566 + 0.503199i
$$675$$ 2507.72 + 2452.19i 0.142996 + 0.139829i
$$676$$ 4483.06 7764.89i 0.255067 0.441789i
$$677$$ −16444.2 28482.1i −0.933532 1.61692i −0.777231 0.629215i $$-0.783377\pi$$
−0.156300 0.987710i $$-0.549957\pi$$
$$678$$ −2361.79 + 1112.07i −0.133782 + 0.0629924i
$$679$$ −484.361 159.046i −0.0273756 0.00898915i
$$680$$ 3814.06i 0.215092i
$$681$$ 3738.09 + 2596.71i 0.210344 + 0.146117i
$$682$$ −2294.03 1324.46i −0.128802 0.0743638i
$$683$$ 17140.8 + 9896.23i 0.960283 + 0.554420i 0.896260 0.443529i $$-0.146274\pi$$
0.0640229 + 0.997948i $$0.479607\pi$$
$$684$$ 934.048 5538.65i 0.0522138 0.309613i
$$685$$ 5847.32i 0.326153i
$$686$$ 9331.96 20444.2i 0.519382 1.13785i
$$687$$ 11292.2 + 23982.1i 0.627109 + 1.33184i
$$688$$ −4319.64 7481.83i −0.239367 0.414596i
$$689$$ 4322.32 7486.48i 0.238995 0.413951i
$$690$$ −881.837 + 10531.9i −0.0486536 + 0.581078i
$$691$$ 19063.9 11006.5i 1.04953 0.605945i 0.127010 0.991901i $$-0.459462\pi$$
0.922517 + 0.385956i $$0.126128\pi$$
$$692$$ 3369.69 0.185110
$$693$$ −1492.62 + 941.748i −0.0818180 + 0.0516220i
$$694$$ −24405.1 −1.33488
$$695$$ 11257.2 6499.33i 0.614401 0.354725i
$$696$$ 680.746 8130.27i 0.0370741 0.442783i
$$697$$ −10154.9 + 17588.8i −0.551856 + 0.955843i
$$698$$ −9098.70 15759.4i −0.493397 0.854588i
$$699$$ −12873.3 27340.0i −0.696583 1.47939i
$$700$$ 2046.42 428.329i 0.110496 0.0231276i
$$701$$ 10015.2i 0.539612i −0.962915 0.269806i $$-0.913040\pi$$
0.962915 0.269806i $$-0.0869596\pi$$
$$702$$ 6949.61 1945.78i 0.373641 0.104614i
$$703$$ 11349.3 + 6552.54i 0.608888 + 0.351541i
$$704$$ 34.1625 + 19.7237i 0.00182890 + 0.00105592i
$$705$$ −8311.65 5773.78i −0.444021 0.308444i
$$706$$ 20543.5i 1.09514i
$$707$$ 23543.0 + 26311.4i 1.25237 + 1.39963i
$$708$$ 11695.1 5506.75i 0.620804 0.292311i
$$709$$ 8975.91 + 15546.7i 0.475455 + 0.823511i 0.999605 0.0281144i $$-0.00895028\pi$$
−0.524150 + 0.851626i $$0.675617\pi$$
$$710$$ 3537.00 6126.27i 0.186960 0.323824i
$$711$$ 11044.8 + 29654.8i 0.582577 + 1.56420i
$$712$$ 10797.2 6233.78i 0.568319 0.328119i
$$713$$ 24394.1 1.28130
$$714$$ −8219.88 + 19398.3i −0.430842 + 1.01675i
$$715$$ −256.597 −0.0134212
$$716$$ −13334.5 + 7698.69i −0.695998 + 0.401835i
$$717$$ 19608.2 + 1641.79i 1.02131 + 0.0855143i
$$718$$ −13280.1 + 23001.8i −0.690262 + 1.19557i
$$719$$ −8242.13 14275.8i −0.427510 0.740468i 0.569142 0.822240i $$-0.307276\pi$$
−0.996651 + 0.0817712i $$0.973942\pi$$
$$720$$ −6857.30 + 8297.19i −0.354940 + 0.429470i
$$721$$ −6613.51 31597.2i −0.341609 1.63210i
$$722$$ 16756.9i 0.863752i
$$723$$ −7695.87 + 11078.6i −0.395868 + 0.569872i
$$724$$ 11487.9 + 6632.57i 0.589704 + 0.340466i
$$725$$ 2757.78 + 1592.21i 0.141271 + 0.0815628i
$$726$$ −13828.3 + 19906.6i −0.706912 + 1.01764i
$$727$$ 36315.4i 1.85263i 0.376744 + 0.926317i $$0.377044\pi$$
−0.376744 + 0.926317i $$0.622956\pi$$
$$728$$ −1035.60 + 3153.84i −0.0527226 + 0.160562i
$$729$$ −17262.0 9457.42i −0.877002 0.480487i
$$730$$ −1373.53 2379.02i −0.0696390 0.120618i
$$731$$ −3352.51 + 5806.72i −0.169627 + 0.293802i
$$732$$ 11114.6 + 930.625i 0.561213 + 0.0469903i
$$733$$ 19183.5 11075.6i 0.966657 0.558100i 0.0684416 0.997655i $$-0.478197\pi$$
0.898215 + 0.439555i $$0.144864\pi$$
$$734$$ −34714.3 −1.74568
$$735$$ −8743.41 1722.16i −0.438783 0.0864258i
$$736$$ −21095.9 −1.05653
$$737$$ 1271.69 734.209i 0.0635593 0.0366960i
$$738$$ −29377.9 + 10941.6i −1.46533 + 0.545755i
$$739$$ −3079.43 + 5333.73i −0.153287 + 0.265500i −0.932434 0.361341i $$-0.882319\pi$$
0.779147 + 0.626841i $$0.215652\pi$$
$$740$$ 3211.34 + 5562.20i 0.159529 + 0.276312i
$$741$$ −3149.10 + 1482.78i −0.156120 + 0.0735105i
$$742$$ −12152.4 + 37009.1i −0.601253 + 1.83106i
$$743$$ 31402.5i 1.55053i −0.631634 0.775267i $$-0.717615\pi$$
0.631634 0.775267i $$-0.282385\pi$$
$$744$$ 11160.0 + 7752.44i 0.549928 + 0.382014i
$$745$$ −2177.22 1257.02i −0.107070 0.0618169i
$$746$$ 14098.9 + 8140.03i 0.691956 + 0.399501i
$$747$$ −117.970 19.8947i −0.00577818 0.000974443i
$$748$$ 986.255i 0.0482100i
$$749$$ 6810.84 + 32540.0i 0.332260 + 1.58743i
$$750$$ −978.870 2078.90i −0.0476577 0.101214i
$$751$$ −13149.1 22774.9i −0.638903 1.10661i −0.985674 0.168663i $$-0.946055\pi$$
0.346771 0.937950i $$-0.387278\pi$$
$$752$$ 15529.4 26897.7i 0.753058 1.30433i
$$753$$ −1897.93 + 22667.4i −0.0918520 + 1.09700i
$$754$$ 5674.44 3276.14i 0.274073 0.158236i
$$755$$ 11753.8 0.566577
$$756$$ −10410.8 + 5411.02i −0.500844 + 0.260313i
$$757$$ 40494.0 1.94422 0.972112 0.234517i $$-0.0753507\pi$$
0.972112 + 0.234517i $$0.0753507\pi$$
$$758$$ −31635.4 + 18264.7i −1.51590 + 0.875204i
$$759$$ −175.953 + 2101.44i −0.00841460 + 0.100497i
$$760$$ 1419.72 2459.03i 0.0677613 0.117366i
$$761$$ 6077.17 + 10526.0i 0.289484 + 0.501401i 0.973687 0.227891i $$-0.0731829\pi$$
−0.684203 + 0.729292i $$0.739850\pi$$
$$762$$ 17942.1 + 38105.2i 0.852985 + 1.81155i
$$763$$ 9451.88 + 10563.3i 0.448468 + 0.501202i
$$764$$ 483.156i 0.0228795i
$$765$$ 8237.80 + 1389.24i 0.389331 + 0.0656576i
$$766$$ 9899.84 + 5715.68i 0.466966 + 0.269603i
$$767$$ −6937.38 4005.30i −0.326590 0.188557i
$$768$$ −21943.3 15243.2i −1.03101 0.716199i
$$769$$ 4997.38i 0.234344i −0.993112 0.117172i $$-0.962617\pi$$
0.993112 0.117172i $$-0.0373828\pi$$
$$770$$ 1131.71 236.876i 0.0529665 0.0110862i
$$771$$ −2663.10 + 1253.94i −0.124396 + 0.0585729i
$$772$$