Properties

Label 105.4.p
Level $105$
Weight $4$
Character orbit 105.p
Rep. character $\chi_{105}(59,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $88$
Newform subspaces $1$
Sturm bound $64$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 105 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(64\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(105, [\chi])\).

Total New Old
Modular forms 104 104 0
Cusp forms 88 88 0
Eisenstein series 16 16 0

Trace form

\( 88 q - 164 q^{4} + 30 q^{10} + 114 q^{15} - 548 q^{16} - 228 q^{19} + 300 q^{21} + 72 q^{24} + 160 q^{25} - 318 q^{30} + 816 q^{31} - 336 q^{36} - 336 q^{39} + 30 q^{40} + 1377 q^{45} - 1296 q^{46} + 688 q^{49}+ \cdots - 660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(105, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
105.4.p.a 105.p 105.p $88$ $6.195$ None 105.4.p.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$