Properties

Label 105.4.d.b.64.8
Level $105$
Weight $4$
Character 105.64
Analytic conductor $6.195$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Defining polynomial: \(x^{10} + 37 x^{8} + 398 x^{6} + 1149 x^{4} + 1040 x^{2} + 100\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{9}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.8
Root \(4.40248i\) of defining polynomial
Character \(\chi\) \(=\) 105.64
Dual form 105.4.d.b.64.3

$q$-expansion

\(f(q)\) \(=\) \(q+3.33774i q^{2} +3.00000i q^{3} -3.14050 q^{4} +(10.1427 + 4.70380i) q^{5} -10.0132 q^{6} +7.00000i q^{7} +16.2197i q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+3.33774i q^{2} +3.00000i q^{3} -3.14050 q^{4} +(10.1427 + 4.70380i) q^{5} -10.0132 q^{6} +7.00000i q^{7} +16.2197i q^{8} -9.00000 q^{9} +(-15.7000 + 33.8537i) q^{10} +18.3258 q^{11} -9.42151i q^{12} -10.1457i q^{13} -23.3642 q^{14} +(-14.1114 + 30.4281i) q^{15} -79.2613 q^{16} -24.6984i q^{17} -30.0397i q^{18} -77.4282 q^{19} +(-31.8532 - 14.7723i) q^{20} -21.0000 q^{21} +61.1666i q^{22} -149.411i q^{23} -48.6592 q^{24} +(80.7486 + 95.4184i) q^{25} +33.8636 q^{26} -27.0000i q^{27} -21.9835i q^{28} +10.2984 q^{29} +(-101.561 - 47.1001i) q^{30} +124.423 q^{31} -134.796i q^{32} +54.9773i q^{33} +82.4367 q^{34} +(-32.9266 + 70.9989i) q^{35} +28.2645 q^{36} +215.905i q^{37} -258.435i q^{38} +30.4370 q^{39} +(-76.2943 + 164.512i) q^{40} +495.056 q^{41} -70.0925i q^{42} +220.606i q^{43} -57.5521 q^{44} +(-91.2843 - 42.3342i) q^{45} +498.696 q^{46} +212.957i q^{47} -237.784i q^{48} -49.0000 q^{49} +(-318.482 + 269.518i) q^{50} +74.0951 q^{51} +31.8625i q^{52} -532.455i q^{53} +90.1190 q^{54} +(185.873 + 86.2007i) q^{55} -113.538 q^{56} -232.284i q^{57} +34.3732i q^{58} +324.143 q^{59} +(44.3169 - 95.5595i) q^{60} +653.967 q^{61} +415.292i q^{62} -63.0000i q^{63} -184.178 q^{64} +(47.7232 - 102.905i) q^{65} -183.500 q^{66} -819.077i q^{67} +77.5653i q^{68} +448.234 q^{69} +(-236.976 - 109.900i) q^{70} -466.940 q^{71} -145.978i q^{72} -173.066i q^{73} -720.634 q^{74} +(-286.255 + 242.246i) q^{75} +243.163 q^{76} +128.280i q^{77} +101.591i q^{78} -810.186 q^{79} +(-803.923 - 372.829i) q^{80} +81.0000 q^{81} +1652.37i q^{82} -12.3208i q^{83} +65.9506 q^{84} +(116.176 - 250.508i) q^{85} -736.326 q^{86} +30.8951i q^{87} +297.239i q^{88} +33.8297 q^{89} +(141.300 - 304.683i) q^{90} +71.0198 q^{91} +469.227i q^{92} +373.269i q^{93} -710.795 q^{94} +(-785.330 - 364.206i) q^{95} +404.387 q^{96} -810.761i q^{97} -163.549i q^{98} -164.932 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 54q^{4} - 14q^{5} - 6q^{6} - 90q^{9} + O(q^{10}) \) \( 10q - 54q^{4} - 14q^{5} - 6q^{6} - 90q^{9} + 92q^{10} + 132q^{11} - 14q^{14} + 310q^{16} - 348q^{19} + 366q^{20} - 210q^{21} + 198q^{24} - 374q^{25} + 892q^{26} - 740q^{29} - 378q^{30} + 684q^{31} - 224q^{34} + 486q^{36} - 12q^{39} - 2156q^{40} + 1604q^{41} - 580q^{44} + 126q^{45} + 1280q^{46} - 490q^{49} - 2504q^{50} - 648q^{51} + 54q^{54} - 452q^{55} + 462q^{56} - 1408q^{59} - 852q^{60} + 1300q^{61} - 150q^{64} - 3296q^{65} + 3036q^{66} - 696q^{69} - 882q^{70} + 2940q^{71} + 2624q^{74} - 408q^{75} + 8740q^{76} + 1640q^{79} - 4126q^{80} + 810q^{81} + 1134q^{84} - 1704q^{85} + 1664q^{86} - 572q^{89} - 828q^{90} - 28q^{91} - 5080q^{94} + 1268q^{95} + 330q^{96} - 1188q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.33774i 1.18007i 0.807378 + 0.590035i \(0.200886\pi\)
−0.807378 + 0.590035i \(0.799114\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −3.14050 −0.392563
\(5\) 10.1427 + 4.70380i 0.907190 + 0.420720i
\(6\) −10.0132 −0.681313
\(7\) 7.00000i 0.377964i
\(8\) 16.2197i 0.716818i
\(9\) −9.00000 −0.333333
\(10\) −15.7000 + 33.8537i −0.496479 + 1.07055i
\(11\) 18.3258 0.502311 0.251156 0.967947i \(-0.419189\pi\)
0.251156 + 0.967947i \(0.419189\pi\)
\(12\) 9.42151i 0.226646i
\(13\) 10.1457i 0.216454i −0.994126 0.108227i \(-0.965483\pi\)
0.994126 0.108227i \(-0.0345174\pi\)
\(14\) −23.3642 −0.446024
\(15\) −14.1114 + 30.4281i −0.242903 + 0.523767i
\(16\) −79.2613 −1.23846
\(17\) 24.6984i 0.352367i −0.984357 0.176183i \(-0.943625\pi\)
0.984357 0.176183i \(-0.0563752\pi\)
\(18\) 30.0397i 0.393356i
\(19\) −77.4282 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(20\) −31.8532 14.7723i −0.356129 0.165159i
\(21\) −21.0000 −0.218218
\(22\) 61.1666i 0.592762i
\(23\) 149.411i 1.35454i −0.735735 0.677270i \(-0.763163\pi\)
0.735735 0.677270i \(-0.236837\pi\)
\(24\) −48.6592 −0.413855
\(25\) 80.7486 + 95.4184i 0.645989 + 0.763347i
\(26\) 33.8636 0.255431
\(27\) 27.0000i 0.192450i
\(28\) 21.9835i 0.148375i
\(29\) 10.2984 0.0659434 0.0329717 0.999456i \(-0.489503\pi\)
0.0329717 + 0.999456i \(0.489503\pi\)
\(30\) −101.561 47.1001i −0.618081 0.286642i
\(31\) 124.423 0.720872 0.360436 0.932784i \(-0.382628\pi\)
0.360436 + 0.932784i \(0.382628\pi\)
\(32\) 134.796i 0.744647i
\(33\) 54.9773i 0.290010i
\(34\) 82.4367 0.415817
\(35\) −32.9266 + 70.9989i −0.159017 + 0.342886i
\(36\) 28.2645 0.130854
\(37\) 215.905i 0.959312i 0.877457 + 0.479656i \(0.159239\pi\)
−0.877457 + 0.479656i \(0.840761\pi\)
\(38\) 258.435i 1.10326i
\(39\) 30.4370 0.124970
\(40\) −76.2943 + 164.512i −0.301580 + 0.650290i
\(41\) 495.056 1.88573 0.942863 0.333181i \(-0.108122\pi\)
0.942863 + 0.333181i \(0.108122\pi\)
\(42\) 70.0925i 0.257512i
\(43\) 220.606i 0.782375i 0.920311 + 0.391188i \(0.127936\pi\)
−0.920311 + 0.391188i \(0.872064\pi\)
\(44\) −57.5521 −0.197189
\(45\) −91.2843 42.3342i −0.302397 0.140240i
\(46\) 498.696 1.59845
\(47\) 212.957i 0.660915i 0.943821 + 0.330457i \(0.107203\pi\)
−0.943821 + 0.330457i \(0.892797\pi\)
\(48\) 237.784i 0.715024i
\(49\) −49.0000 −0.142857
\(50\) −318.482 + 269.518i −0.900802 + 0.762311i
\(51\) 74.0951 0.203439
\(52\) 31.8625i 0.0849719i
\(53\) 532.455i 1.37997i −0.723825 0.689984i \(-0.757618\pi\)
0.723825 0.689984i \(-0.242382\pi\)
\(54\) 90.1190 0.227104
\(55\) 185.873 + 86.2007i 0.455692 + 0.211333i
\(56\) −113.538 −0.270932
\(57\) 232.284i 0.539769i
\(58\) 34.3732i 0.0778177i
\(59\) 324.143 0.715252 0.357626 0.933865i \(-0.383586\pi\)
0.357626 + 0.933865i \(0.383586\pi\)
\(60\) 44.3169 95.5595i 0.0953547 0.205611i
\(61\) 653.967 1.37265 0.686327 0.727293i \(-0.259222\pi\)
0.686327 + 0.727293i \(0.259222\pi\)
\(62\) 415.292i 0.850679i
\(63\) 63.0000i 0.125988i
\(64\) −184.178 −0.359722
\(65\) 47.7232 102.905i 0.0910667 0.196365i
\(66\) −183.500 −0.342231
\(67\) 819.077i 1.49353i −0.665091 0.746763i \(-0.731607\pi\)
0.665091 0.746763i \(-0.268393\pi\)
\(68\) 77.5653i 0.138326i
\(69\) 448.234 0.782044
\(70\) −236.976 109.900i −0.404629 0.187651i
\(71\) −466.940 −0.780501 −0.390250 0.920709i \(-0.627612\pi\)
−0.390250 + 0.920709i \(0.627612\pi\)
\(72\) 145.978i 0.238939i
\(73\) 173.066i 0.277478i −0.990329 0.138739i \(-0.955695\pi\)
0.990329 0.138739i \(-0.0443048\pi\)
\(74\) −720.634 −1.13205
\(75\) −286.255 + 242.246i −0.440719 + 0.372962i
\(76\) 243.163 0.367010
\(77\) 128.280i 0.189856i
\(78\) 101.591i 0.147473i
\(79\) −810.186 −1.15384 −0.576918 0.816802i \(-0.695745\pi\)
−0.576918 + 0.816802i \(0.695745\pi\)
\(80\) −803.923 372.829i −1.12352 0.521044i
\(81\) 81.0000 0.111111
\(82\) 1652.37i 2.22529i
\(83\) 12.3208i 0.0162937i −0.999967 0.00814687i \(-0.997407\pi\)
0.999967 0.00814687i \(-0.00259326\pi\)
\(84\) 65.9506 0.0856642
\(85\) 116.176 250.508i 0.148248 0.319664i
\(86\) −736.326 −0.923257
\(87\) 30.8951i 0.0380724i
\(88\) 297.239i 0.360066i
\(89\) 33.8297 0.0402914 0.0201457 0.999797i \(-0.493587\pi\)
0.0201457 + 0.999797i \(0.493587\pi\)
\(90\) 141.300 304.683i 0.165493 0.356849i
\(91\) 71.0198 0.0818120
\(92\) 469.227i 0.531742i
\(93\) 373.269i 0.416196i
\(94\) −710.795 −0.779925
\(95\) −785.330 364.206i −0.848139 0.393335i
\(96\) 404.387 0.429922
\(97\) 810.761i 0.848663i −0.905507 0.424331i \(-0.860509\pi\)
0.905507 0.424331i \(-0.139491\pi\)
\(98\) 163.549i 0.168581i
\(99\) −164.932 −0.167437
\(100\) −253.591 299.662i −0.253591 0.299662i
\(101\) 1646.84 1.62245 0.811223 0.584737i \(-0.198802\pi\)
0.811223 + 0.584737i \(0.198802\pi\)
\(102\) 247.310i 0.240072i
\(103\) 921.360i 0.881401i 0.897654 + 0.440700i \(0.145270\pi\)
−0.897654 + 0.440700i \(0.854730\pi\)
\(104\) 164.560 0.155158
\(105\) −212.997 98.7797i −0.197965 0.0918087i
\(106\) 1777.19 1.62846
\(107\) 1060.84i 0.958464i −0.877688 0.479232i \(-0.840915\pi\)
0.877688 0.479232i \(-0.159085\pi\)
\(108\) 84.7936i 0.0755488i
\(109\) −1533.03 −1.34713 −0.673566 0.739127i \(-0.735238\pi\)
−0.673566 + 0.739127i \(0.735238\pi\)
\(110\) −287.715 + 620.394i −0.249387 + 0.537748i
\(111\) −647.715 −0.553859
\(112\) 554.829i 0.468093i
\(113\) 2072.67i 1.72549i 0.505637 + 0.862746i \(0.331257\pi\)
−0.505637 + 0.862746i \(0.668743\pi\)
\(114\) 775.305 0.636965
\(115\) 702.801 1515.43i 0.569883 1.22883i
\(116\) −32.3420 −0.0258869
\(117\) 91.3111i 0.0721514i
\(118\) 1081.91i 0.844046i
\(119\) 172.889 0.133182
\(120\) −493.535 228.883i −0.375445 0.174117i
\(121\) −995.166 −0.747683
\(122\) 2182.77i 1.61983i
\(123\) 1485.17i 1.08872i
\(124\) −390.751 −0.282988
\(125\) 370.180 + 1347.62i 0.264879 + 0.964282i
\(126\) 210.278 0.148675
\(127\) 365.145i 0.255129i −0.991830 0.127565i \(-0.959284\pi\)
0.991830 0.127565i \(-0.0407160\pi\)
\(128\) 1693.10i 1.16914i
\(129\) −661.819 −0.451705
\(130\) 343.469 + 159.288i 0.231725 + 0.107465i
\(131\) 1300.83 0.867586 0.433793 0.901013i \(-0.357175\pi\)
0.433793 + 0.901013i \(0.357175\pi\)
\(132\) 172.656i 0.113847i
\(133\) 541.997i 0.353362i
\(134\) 2733.87 1.76246
\(135\) 127.003 273.853i 0.0809677 0.174589i
\(136\) 400.601 0.252583
\(137\) 2578.40i 1.60794i −0.594670 0.803970i \(-0.702717\pi\)
0.594670 0.803970i \(-0.297283\pi\)
\(138\) 1496.09i 0.922866i
\(139\) −3065.49 −1.87059 −0.935294 0.353872i \(-0.884865\pi\)
−0.935294 + 0.353872i \(0.884865\pi\)
\(140\) 103.406 222.972i 0.0624243 0.134604i
\(141\) −638.871 −0.381579
\(142\) 1558.52i 0.921044i
\(143\) 185.927i 0.108727i
\(144\) 713.351 0.412819
\(145\) 104.453 + 48.4414i 0.0598232 + 0.0277437i
\(146\) 577.650 0.327443
\(147\) 147.000i 0.0824786i
\(148\) 678.050i 0.376590i
\(149\) 2704.34 1.48690 0.743449 0.668793i \(-0.233189\pi\)
0.743449 + 0.668793i \(0.233189\pi\)
\(150\) −808.553 955.445i −0.440121 0.520078i
\(151\) 388.869 0.209574 0.104787 0.994495i \(-0.466584\pi\)
0.104787 + 0.994495i \(0.466584\pi\)
\(152\) 1255.86i 0.670158i
\(153\) 222.285i 0.117456i
\(154\) −428.166 −0.224043
\(155\) 1261.98 + 585.261i 0.653968 + 0.303286i
\(156\) −95.5876 −0.0490586
\(157\) 2885.78i 1.46694i −0.679720 0.733472i \(-0.737899\pi\)
0.679720 0.733472i \(-0.262101\pi\)
\(158\) 2704.19i 1.36161i
\(159\) 1597.36 0.796725
\(160\) 634.051 1367.19i 0.313288 0.675537i
\(161\) 1045.88 0.511968
\(162\) 270.357i 0.131119i
\(163\) 571.954i 0.274840i −0.990513 0.137420i \(-0.956119\pi\)
0.990513 0.137420i \(-0.0438809\pi\)
\(164\) −1554.73 −0.740266
\(165\) −258.602 + 557.618i −0.122013 + 0.263094i
\(166\) 41.1235 0.0192277
\(167\) 2423.96i 1.12319i 0.827414 + 0.561593i \(0.189811\pi\)
−0.827414 + 0.561593i \(0.810189\pi\)
\(168\) 340.614i 0.156422i
\(169\) 2094.07 0.953148
\(170\) 836.131 + 387.766i 0.377225 + 0.174943i
\(171\) 696.853 0.311636
\(172\) 692.815i 0.307131i
\(173\) 626.440i 0.275303i −0.990481 0.137651i \(-0.956045\pi\)
0.990481 0.137651i \(-0.0439554\pi\)
\(174\) −103.120 −0.0449281
\(175\) −667.929 + 565.240i −0.288518 + 0.244161i
\(176\) −1452.52 −0.622091
\(177\) 972.430i 0.412951i
\(178\) 112.915i 0.0475467i
\(179\) −2322.11 −0.969623 −0.484812 0.874619i \(-0.661112\pi\)
−0.484812 + 0.874619i \(0.661112\pi\)
\(180\) 286.679 + 132.951i 0.118710 + 0.0550531i
\(181\) −4664.94 −1.91570 −0.957852 0.287263i \(-0.907255\pi\)
−0.957852 + 0.287263i \(0.907255\pi\)
\(182\) 237.045i 0.0965438i
\(183\) 1961.90i 0.792502i
\(184\) 2423.41 0.970958
\(185\) −1015.57 + 2189.86i −0.403602 + 0.870279i
\(186\) −1245.87 −0.491140
\(187\) 452.617i 0.176998i
\(188\) 668.792i 0.259451i
\(189\) 189.000 0.0727393
\(190\) 1215.63 2621.23i 0.464162 1.00086i
\(191\) −3730.26 −1.41315 −0.706575 0.707638i \(-0.749761\pi\)
−0.706575 + 0.707638i \(0.749761\pi\)
\(192\) 552.533i 0.207686i
\(193\) 2585.26i 0.964202i 0.876116 + 0.482101i \(0.160126\pi\)
−0.876116 + 0.482101i \(0.839874\pi\)
\(194\) 2706.11 1.00148
\(195\) 308.714 + 143.170i 0.113372 + 0.0525774i
\(196\) 153.885 0.0560804
\(197\) 2405.91i 0.870122i 0.900401 + 0.435061i \(0.143273\pi\)
−0.900401 + 0.435061i \(0.856727\pi\)
\(198\) 550.500i 0.197587i
\(199\) −1192.35 −0.424740 −0.212370 0.977189i \(-0.568118\pi\)
−0.212370 + 0.977189i \(0.568118\pi\)
\(200\) −1547.66 + 1309.72i −0.547181 + 0.463056i
\(201\) 2457.23 0.862287
\(202\) 5496.74i 1.91460i
\(203\) 72.0885i 0.0249243i
\(204\) −232.696 −0.0798626
\(205\) 5021.20 + 2328.64i 1.71071 + 0.793364i
\(206\) −3075.26 −1.04011
\(207\) 1344.70i 0.451513i
\(208\) 804.160i 0.268069i
\(209\) −1418.93 −0.469615
\(210\) 329.701 710.927i 0.108341 0.233613i
\(211\) −764.904 −0.249565 −0.124782 0.992184i \(-0.539823\pi\)
−0.124782 + 0.992184i \(0.539823\pi\)
\(212\) 1672.18i 0.541724i
\(213\) 1400.82i 0.450622i
\(214\) 3540.82 1.13105
\(215\) −1037.69 + 2237.54i −0.329161 + 0.709763i
\(216\) 437.933 0.137952
\(217\) 870.961i 0.272464i
\(218\) 5116.84i 1.58971i
\(219\) 519.199 0.160202
\(220\) −583.734 270.713i −0.178888 0.0829614i
\(221\) −250.582 −0.0762713
\(222\) 2161.90i 0.653592i
\(223\) 1585.18i 0.476016i −0.971263 0.238008i \(-0.923506\pi\)
0.971263 0.238008i \(-0.0764945\pi\)
\(224\) 943.569 0.281450
\(225\) −726.737 858.765i −0.215330 0.254449i
\(226\) −6918.04 −2.03620
\(227\) 2363.07i 0.690936i 0.938431 + 0.345468i \(0.112280\pi\)
−0.938431 + 0.345468i \(0.887720\pi\)
\(228\) 729.490i 0.211893i
\(229\) −1626.44 −0.469337 −0.234669 0.972075i \(-0.575401\pi\)
−0.234669 + 0.972075i \(0.575401\pi\)
\(230\) 5058.12 + 2345.77i 1.45010 + 0.672501i
\(231\) −384.841 −0.109613
\(232\) 167.037i 0.0472694i
\(233\) 1720.34i 0.483705i −0.970313 0.241853i \(-0.922245\pi\)
0.970313 0.241853i \(-0.0777551\pi\)
\(234\) −304.773 −0.0851437
\(235\) −1001.71 + 2159.96i −0.278060 + 0.599575i
\(236\) −1017.97 −0.280781
\(237\) 2430.56i 0.666168i
\(238\) 577.057i 0.157164i
\(239\) −7217.75 −1.95346 −0.976732 0.214466i \(-0.931199\pi\)
−0.976732 + 0.214466i \(0.931199\pi\)
\(240\) 1118.49 2411.77i 0.300825 0.648663i
\(241\) 5094.78 1.36176 0.680879 0.732396i \(-0.261598\pi\)
0.680879 + 0.732396i \(0.261598\pi\)
\(242\) 3321.61i 0.882318i
\(243\) 243.000i 0.0641500i
\(244\) −2053.79 −0.538853
\(245\) −496.992 230.486i −0.129599 0.0601029i
\(246\) −4957.10 −1.28477
\(247\) 785.561i 0.202365i
\(248\) 2018.11i 0.516734i
\(249\) 36.9623 0.00940720
\(250\) −4498.02 + 1235.56i −1.13792 + 0.312575i
\(251\) −4346.51 −1.09303 −0.546513 0.837451i \(-0.684045\pi\)
−0.546513 + 0.837451i \(0.684045\pi\)
\(252\) 197.852i 0.0494583i
\(253\) 2738.08i 0.680401i
\(254\) 1218.76 0.301070
\(255\) 751.524 + 348.528i 0.184558 + 0.0855910i
\(256\) 4177.71 1.01995
\(257\) 1428.13i 0.346632i −0.984866 0.173316i \(-0.944552\pi\)
0.984866 0.173316i \(-0.0554482\pi\)
\(258\) 2208.98i 0.533043i
\(259\) −1511.33 −0.362586
\(260\) −149.875 + 323.172i −0.0357494 + 0.0770857i
\(261\) −92.6853 −0.0219811
\(262\) 4341.82i 1.02381i
\(263\) 3447.78i 0.808362i −0.914679 0.404181i \(-0.867557\pi\)
0.914679 0.404181i \(-0.132443\pi\)
\(264\) −891.717 −0.207884
\(265\) 2504.56 5400.53i 0.580581 1.25189i
\(266\) 1809.05 0.416991
\(267\) 101.489i 0.0232623i
\(268\) 2572.31i 0.586303i
\(269\) 22.3975 0.00507657 0.00253829 0.999997i \(-0.499192\pi\)
0.00253829 + 0.999997i \(0.499192\pi\)
\(270\) 914.049 + 423.901i 0.206027 + 0.0955475i
\(271\) −1557.33 −0.349080 −0.174540 0.984650i \(-0.555844\pi\)
−0.174540 + 0.984650i \(0.555844\pi\)
\(272\) 1957.62i 0.436391i
\(273\) 213.059i 0.0472342i
\(274\) 8606.03 1.89748
\(275\) 1479.78 + 1748.61i 0.324487 + 0.383438i
\(276\) −1407.68 −0.307001
\(277\) 3734.92i 0.810142i −0.914285 0.405071i \(-0.867247\pi\)
0.914285 0.405071i \(-0.132753\pi\)
\(278\) 10231.8i 2.20742i
\(279\) −1119.81 −0.240291
\(280\) −1151.58 534.060i −0.245787 0.113986i
\(281\) −2422.37 −0.514258 −0.257129 0.966377i \(-0.582777\pi\)
−0.257129 + 0.966377i \(0.582777\pi\)
\(282\) 2132.39i 0.450290i
\(283\) 283.232i 0.0594926i −0.999557 0.0297463i \(-0.990530\pi\)
0.999557 0.0297463i \(-0.00946994\pi\)
\(284\) 1466.43 0.306396
\(285\) 1092.62 2355.99i 0.227092 0.489673i
\(286\) 620.577 0.128306
\(287\) 3465.39i 0.712737i
\(288\) 1213.16i 0.248216i
\(289\) 4302.99 0.875838
\(290\) −161.685 + 348.637i −0.0327395 + 0.0705955i
\(291\) 2432.28 0.489976
\(292\) 543.515i 0.108927i
\(293\) 8481.49i 1.69111i −0.533892 0.845553i \(-0.679271\pi\)
0.533892 0.845553i \(-0.320729\pi\)
\(294\) 490.648 0.0973305
\(295\) 3287.69 + 1524.70i 0.648870 + 0.300921i
\(296\) −3501.92 −0.687652
\(297\) 494.796i 0.0966699i
\(298\) 9026.37i 1.75464i
\(299\) −1515.88 −0.293196
\(300\) 898.985 760.773i 0.173010 0.146411i
\(301\) −1544.24 −0.295710
\(302\) 1297.94i 0.247312i
\(303\) 4940.53i 0.936720i
\(304\) 6137.05 1.15784
\(305\) 6632.99 + 3076.13i 1.24526 + 0.577504i
\(306\) −741.931 −0.138606
\(307\) 2005.50i 0.372834i −0.982471 0.186417i \(-0.940312\pi\)
0.982471 0.186417i \(-0.0596875\pi\)
\(308\) 402.865i 0.0745304i
\(309\) −2764.08 −0.508877
\(310\) −1953.45 + 4212.18i −0.357898 + 0.771727i
\(311\) 10021.4 1.82720 0.913602 0.406609i \(-0.133289\pi\)
0.913602 + 0.406609i \(0.133289\pi\)
\(312\) 493.681i 0.0895807i
\(313\) 631.178i 0.113982i 0.998375 + 0.0569908i \(0.0181506\pi\)
−0.998375 + 0.0569908i \(0.981849\pi\)
\(314\) 9631.97 1.73109
\(315\) 296.339 638.990i 0.0530058 0.114295i
\(316\) 2544.39 0.452953
\(317\) 1202.71i 0.213095i −0.994308 0.106547i \(-0.966020\pi\)
0.994308 0.106547i \(-0.0339796\pi\)
\(318\) 5331.58i 0.940190i
\(319\) 188.725 0.0331241
\(320\) −1868.06 866.335i −0.326336 0.151342i
\(321\) 3182.53 0.553369
\(322\) 3490.87i 0.604158i
\(323\) 1912.35i 0.329430i
\(324\) −254.381 −0.0436181
\(325\) 968.084 819.249i 0.165230 0.139827i
\(326\) 1909.03 0.324330
\(327\) 4599.08i 0.777767i
\(328\) 8029.68i 1.35172i
\(329\) −1490.70 −0.249802
\(330\) −1861.18 863.146i −0.310469 0.143984i
\(331\) −9297.55 −1.54393 −0.771963 0.635667i \(-0.780725\pi\)
−0.771963 + 0.635667i \(0.780725\pi\)
\(332\) 38.6934i 0.00639632i
\(333\) 1943.14i 0.319771i
\(334\) −8090.56 −1.32544
\(335\) 3852.77 8307.65i 0.628357 1.35491i
\(336\) 1664.49 0.270254
\(337\) 507.727i 0.0820702i 0.999158 + 0.0410351i \(0.0130656\pi\)
−0.999158 + 0.0410351i \(0.986934\pi\)
\(338\) 6989.44i 1.12478i
\(339\) −6218.02 −0.996213
\(340\) −364.852 + 786.722i −0.0581966 + 0.125488i
\(341\) 2280.15 0.362102
\(342\) 2325.92i 0.367752i
\(343\) 343.000i 0.0539949i
\(344\) −3578.17 −0.560820
\(345\) 4546.30 + 2108.40i 0.709463 + 0.329022i
\(346\) 2090.89 0.324876
\(347\) 6860.59i 1.06137i 0.847569 + 0.530685i \(0.178065\pi\)
−0.847569 + 0.530685i \(0.821935\pi\)
\(348\) 97.0261i 0.0149458i
\(349\) 9236.45 1.41666 0.708332 0.705879i \(-0.249448\pi\)
0.708332 + 0.705879i \(0.249448\pi\)
\(350\) −1886.62 2229.37i −0.288127 0.340471i
\(351\) −273.933 −0.0416566
\(352\) 2470.23i 0.374045i
\(353\) 9419.54i 1.42026i −0.704071 0.710129i \(-0.748636\pi\)
0.704071 0.710129i \(-0.251364\pi\)
\(354\) −3245.72 −0.487310
\(355\) −4736.03 2196.39i −0.708063 0.328373i
\(356\) −106.242 −0.0158169
\(357\) 518.666i 0.0768927i
\(358\) 7750.59i 1.14422i
\(359\) 2890.82 0.424990 0.212495 0.977162i \(-0.431841\pi\)
0.212495 + 0.977162i \(0.431841\pi\)
\(360\) 686.649 1480.61i 0.100527 0.216763i
\(361\) −863.879 −0.125948
\(362\) 15570.4i 2.26066i
\(363\) 2985.50i 0.431675i
\(364\) −223.038 −0.0321164
\(365\) 814.068 1755.36i 0.116740 0.251725i
\(366\) −6548.31 −0.935207
\(367\) 1570.51i 0.223379i −0.993743 0.111690i \(-0.964374\pi\)
0.993743 0.111690i \(-0.0356262\pi\)
\(368\) 11842.5i 1.67754i
\(369\) −4455.50 −0.628575
\(370\) −7309.17 3389.72i −1.02699 0.476278i
\(371\) 3727.18 0.521579
\(372\) 1172.25i 0.163383i
\(373\) 8713.38i 1.20955i 0.796397 + 0.604774i \(0.206737\pi\)
−0.796397 + 0.604774i \(0.793263\pi\)
\(374\) 1510.72 0.208870
\(375\) −4042.87 + 1110.54i −0.556728 + 0.152928i
\(376\) −3454.11 −0.473755
\(377\) 104.484i 0.0142737i
\(378\) 630.833i 0.0858374i
\(379\) 5779.65 0.783326 0.391663 0.920109i \(-0.371900\pi\)
0.391663 + 0.920109i \(0.371900\pi\)
\(380\) 2466.33 + 1143.79i 0.332948 + 0.154409i
\(381\) 1095.44 0.147299
\(382\) 12450.6i 1.66762i
\(383\) 12340.2i 1.64636i 0.567780 + 0.823181i \(0.307803\pi\)
−0.567780 + 0.823181i \(0.692197\pi\)
\(384\) 5079.30 0.675006
\(385\) −603.405 + 1301.11i −0.0798762 + 0.172235i
\(386\) −8628.92 −1.13783
\(387\) 1985.46i 0.260792i
\(388\) 2546.20i 0.333153i
\(389\) −7948.44 −1.03600 −0.517998 0.855382i \(-0.673322\pi\)
−0.517998 + 0.855382i \(0.673322\pi\)
\(390\) −477.863 + 1030.41i −0.0620450 + 0.133786i
\(391\) −3690.22 −0.477295
\(392\) 794.767i 0.102403i
\(393\) 3902.48i 0.500901i
\(394\) −8030.30 −1.02680
\(395\) −8217.47 3810.95i −1.04675 0.485442i
\(396\) 517.969 0.0657296
\(397\) 5363.64i 0.678069i −0.940774 0.339034i \(-0.889900\pi\)
0.940774 0.339034i \(-0.110100\pi\)
\(398\) 3979.75i 0.501223i
\(399\) 1625.99 0.204014
\(400\) −6400.23 7562.98i −0.800029 0.945373i
\(401\) 6057.13 0.754310 0.377155 0.926150i \(-0.376902\pi\)
0.377155 + 0.926150i \(0.376902\pi\)
\(402\) 8201.60i 1.01756i
\(403\) 1262.36i 0.156036i
\(404\) −5171.92 −0.636912
\(405\) 821.558 + 381.008i 0.100799 + 0.0467467i
\(406\) −240.613 −0.0294123
\(407\) 3956.62i 0.481873i
\(408\) 1201.80i 0.145829i
\(409\) −1248.52 −0.150942 −0.0754709 0.997148i \(-0.524046\pi\)
−0.0754709 + 0.997148i \(0.524046\pi\)
\(410\) −7772.41 + 16759.5i −0.936224 + 2.01876i
\(411\) 7735.20 0.928344
\(412\) 2893.53i 0.346005i
\(413\) 2269.00i 0.270340i
\(414\) −4488.27 −0.532817
\(415\) 57.9544 124.966i 0.00685511 0.0147815i
\(416\) −1367.59 −0.161182
\(417\) 9196.48i 1.07998i
\(418\) 4736.02i 0.554178i
\(419\) −8324.28 −0.970567 −0.485284 0.874357i \(-0.661284\pi\)
−0.485284 + 0.874357i \(0.661284\pi\)
\(420\) 668.917 + 310.218i 0.0777138 + 0.0360407i
\(421\) 1693.40 0.196036 0.0980179 0.995185i \(-0.468750\pi\)
0.0980179 + 0.995185i \(0.468750\pi\)
\(422\) 2553.05i 0.294504i
\(423\) 1916.61i 0.220305i
\(424\) 8636.27 0.989185
\(425\) 2356.68 1994.36i 0.268978 0.227625i
\(426\) 4675.57 0.531765
\(427\) 4577.77i 0.518814i
\(428\) 3331.58i 0.376257i
\(429\) 557.782 0.0627738
\(430\) −7468.33 3463.53i −0.837570 0.388433i
\(431\) 11754.6 1.31369 0.656844 0.754026i \(-0.271891\pi\)
0.656844 + 0.754026i \(0.271891\pi\)
\(432\) 2140.05i 0.238341i
\(433\) 14614.3i 1.62199i 0.585056 + 0.810993i \(0.301073\pi\)
−0.585056 + 0.810993i \(0.698927\pi\)
\(434\) −2907.04 −0.321526
\(435\) −145.324 + 313.359i −0.0160178 + 0.0345389i
\(436\) 4814.48 0.528834
\(437\) 11568.6i 1.26637i
\(438\) 1732.95i 0.189049i
\(439\) −1957.52 −0.212819 −0.106409 0.994322i \(-0.533935\pi\)
−0.106409 + 0.994322i \(0.533935\pi\)
\(440\) −1398.15 + 3014.80i −0.151487 + 0.326648i
\(441\) 441.000 0.0476190
\(442\) 836.377i 0.0900054i
\(443\) 356.774i 0.0382637i 0.999817 + 0.0191319i \(0.00609023\pi\)
−0.999817 + 0.0191319i \(0.993910\pi\)
\(444\) 2034.15 0.217425
\(445\) 343.124 + 159.128i 0.0365520 + 0.0169514i
\(446\) 5290.92 0.561732
\(447\) 8113.01i 0.858461i
\(448\) 1289.24i 0.135962i
\(449\) −7395.30 −0.777296 −0.388648 0.921386i \(-0.627058\pi\)
−0.388648 + 0.921386i \(0.627058\pi\)
\(450\) 2866.34 2425.66i 0.300267 0.254104i
\(451\) 9072.28 0.947222
\(452\) 6509.23i 0.677364i
\(453\) 1166.61i 0.120998i
\(454\) −7887.31 −0.815352
\(455\) 720.332 + 334.063i 0.0742191 + 0.0344200i
\(456\) 3767.59 0.386916
\(457\) 12722.2i 1.30223i 0.758979 + 0.651115i \(0.225698\pi\)
−0.758979 + 0.651115i \(0.774302\pi\)
\(458\) 5428.64i 0.553850i
\(459\) −666.856 −0.0678130
\(460\) −2207.15 + 4759.23i −0.223715 + 0.482391i
\(461\) −2206.45 −0.222916 −0.111458 0.993769i \(-0.535552\pi\)
−0.111458 + 0.993769i \(0.535552\pi\)
\(462\) 1284.50i 0.129351i
\(463\) 15912.0i 1.59718i −0.601875 0.798591i \(-0.705579\pi\)
0.601875 0.798591i \(-0.294421\pi\)
\(464\) −816.261 −0.0816681
\(465\) −1755.78 + 3785.95i −0.175102 + 0.377569i
\(466\) 5742.05 0.570806
\(467\) 7602.65i 0.753337i 0.926348 + 0.376669i \(0.122930\pi\)
−0.926348 + 0.376669i \(0.877070\pi\)
\(468\) 286.763i 0.0283240i
\(469\) 5733.54 0.564499
\(470\) −7209.38 3343.44i −0.707540 0.328130i
\(471\) 8657.33 0.846940
\(472\) 5257.52i 0.512705i
\(473\) 4042.78i 0.392996i
\(474\) 8112.57 0.786124
\(475\) −6252.21 7388.07i −0.603940 0.713659i
\(476\) −542.957 −0.0522824
\(477\) 4792.09i 0.459989i
\(478\) 24091.0i 2.30522i
\(479\) −1681.93 −0.160437 −0.0802184 0.996777i \(-0.525562\pi\)
−0.0802184 + 0.996777i \(0.525562\pi\)
\(480\) 4101.57 + 1902.15i 0.390021 + 0.180877i
\(481\) 2190.50 0.207647
\(482\) 17005.0i 1.60697i
\(483\) 3137.64i 0.295585i
\(484\) 3125.32 0.293513
\(485\) 3813.65 8223.30i 0.357050 0.769898i
\(486\) −811.071 −0.0757015
\(487\) 14107.0i 1.31263i −0.754487 0.656314i \(-0.772114\pi\)
0.754487 0.656314i \(-0.227886\pi\)
\(488\) 10607.2i 0.983943i
\(489\) 1715.86 0.158679
\(490\) 769.302 1658.83i 0.0709256 0.152935i
\(491\) 9010.20 0.828156 0.414078 0.910241i \(-0.364104\pi\)
0.414078 + 0.910241i \(0.364104\pi\)
\(492\) 4664.18i 0.427393i
\(493\) 254.353i 0.0232363i
\(494\) −2622.00 −0.238804
\(495\) −1672.85 775.806i −0.151897 0.0704442i
\(496\) −9861.92 −0.892769
\(497\) 3268.58i 0.295001i
\(498\) 123.371i 0.0111011i
\(499\) −2655.07 −0.238191 −0.119096 0.992883i \(-0.538000\pi\)
−0.119096 + 0.992883i \(0.538000\pi\)
\(500\) −1162.55 4232.22i −0.103982 0.378541i
\(501\) −7271.89 −0.648471
\(502\) 14507.5i 1.28985i
\(503\) 16559.4i 1.46789i −0.679208 0.733946i \(-0.737677\pi\)
0.679208 0.733946i \(-0.262323\pi\)
\(504\) 1021.84 0.0903105
\(505\) 16703.4 + 7746.42i 1.47187 + 0.682596i
\(506\) 9138.99 0.802920
\(507\) 6282.20i 0.550300i
\(508\) 1146.74i 0.100154i
\(509\) 12308.6 1.07184 0.535922 0.844268i \(-0.319964\pi\)
0.535922 + 0.844268i \(0.319964\pi\)
\(510\) −1163.30 + 2508.39i −0.101003 + 0.217791i
\(511\) 1211.46 0.104877
\(512\) 399.294i 0.0344658i
\(513\) 2090.56i 0.179923i
\(514\) 4766.74 0.409050
\(515\) −4333.89 + 9345.07i −0.370823 + 0.799598i
\(516\) 2078.44 0.177322
\(517\) 3902.60i 0.331985i
\(518\) 5044.44i 0.427876i
\(519\) 1879.32 0.158946
\(520\) 1669.08 + 774.058i 0.140758 + 0.0652783i
\(521\) −15045.9 −1.26521 −0.632605 0.774475i \(-0.718014\pi\)
−0.632605 + 0.774475i \(0.718014\pi\)
\(522\) 309.359i 0.0259392i
\(523\) 6372.16i 0.532763i −0.963868 0.266381i \(-0.914172\pi\)
0.963868 0.266381i \(-0.0858281\pi\)
\(524\) −4085.25 −0.340582
\(525\) −1695.72 2003.79i −0.140966 0.166576i
\(526\) 11507.8 0.953923
\(527\) 3073.05i 0.254011i
\(528\) 4357.57i 0.359164i
\(529\) −10156.8 −0.834779
\(530\) 18025.5 + 8359.57i 1.47732 + 0.685125i
\(531\) −2917.29 −0.238417
\(532\) 1702.14i 0.138717i
\(533\) 5022.68i 0.408173i
\(534\) −338.744 −0.0274511
\(535\) 4989.99 10759.8i 0.403245 0.869509i
\(536\) 13285.2 1.07059
\(537\) 6966.33i 0.559812i
\(538\) 74.7569i 0.00599071i
\(539\) −897.962 −0.0717588
\(540\) −398.852 + 860.036i −0.0317849 + 0.0685371i
\(541\) 4128.72 0.328110 0.164055 0.986451i \(-0.447543\pi\)
0.164055 + 0.986451i \(0.447543\pi\)
\(542\) 5197.95i 0.411939i
\(543\) 13994.8i 1.10603i
\(544\) −3329.23 −0.262389
\(545\) −15549.0 7211.05i −1.22210 0.566766i
\(546\) −711.136 −0.0557396
\(547\) 17987.6i 1.40602i 0.711179 + 0.703011i \(0.248162\pi\)
−0.711179 + 0.703011i \(0.751838\pi\)
\(548\) 8097.48i 0.631217i
\(549\) −5885.70 −0.457551
\(550\) −5836.42 + 4939.12i −0.452483 + 0.382918i
\(551\) −797.383 −0.0616509
\(552\) 7270.24i 0.560583i
\(553\) 5671.30i 0.436109i
\(554\) 12466.2 0.956024
\(555\) −6569.57 3046.72i −0.502456 0.233020i
\(556\) 9627.19 0.734323
\(557\) 13278.6i 1.01011i −0.863086 0.505057i \(-0.831471\pi\)
0.863086 0.505057i \(-0.168529\pi\)
\(558\) 3737.62i 0.283560i
\(559\) 2238.20 0.169348
\(560\) 2609.80 5627.46i 0.196936 0.424649i
\(561\) 1357.85 0.102190
\(562\) 8085.24i 0.606860i
\(563\) 517.822i 0.0387630i −0.999812 0.0193815i \(-0.993830\pi\)
0.999812 0.0193815i \(-0.00616971\pi\)
\(564\) 2006.38 0.149794
\(565\) −9749.43 + 21022.5i −0.725950 + 1.56535i
\(566\) 945.355 0.0702054
\(567\) 567.000i 0.0419961i
\(568\) 7573.64i 0.559477i
\(569\) −1071.91 −0.0789750 −0.0394875 0.999220i \(-0.512573\pi\)
−0.0394875 + 0.999220i \(0.512573\pi\)
\(570\) 7863.68 + 3646.88i 0.577848 + 0.267984i
\(571\) −24489.8 −1.79486 −0.897430 0.441157i \(-0.854568\pi\)
−0.897430 + 0.441157i \(0.854568\pi\)
\(572\) 583.905i 0.0426824i
\(573\) 11190.8i 0.815883i
\(574\) −11566.6 −0.841079
\(575\) 14256.6 12064.8i 1.03398 0.875018i
\(576\) 1657.60 0.119907
\(577\) 22765.1i 1.64250i 0.570568 + 0.821251i \(0.306723\pi\)
−0.570568 + 0.821251i \(0.693277\pi\)
\(578\) 14362.3i 1.03355i
\(579\) −7755.78 −0.556682
\(580\) −328.035 152.130i −0.0234844 0.0108912i
\(581\) 86.2454 0.00615846
\(582\) 8118.32i 0.578205i
\(583\) 9757.64i 0.693173i
\(584\) 2807.09 0.198901
\(585\) −429.509 + 926.141i −0.0303556 + 0.0654551i
\(586\) 28309.0 1.99562
\(587\) 10106.8i 0.710651i −0.934743 0.355325i \(-0.884370\pi\)
0.934743 0.355325i \(-0.115630\pi\)
\(588\) 461.654i 0.0323780i
\(589\) −9633.85 −0.673949
\(590\) −5089.07 + 10973.4i −0.355108 + 0.765711i
\(591\) −7217.73 −0.502365
\(592\) 17112.9i 1.18807i
\(593\) 4241.04i 0.293691i 0.989159 + 0.146845i \(0.0469120\pi\)
−0.989159 + 0.146845i \(0.953088\pi\)
\(594\) 1651.50 0.114077
\(595\) 1753.56 + 813.233i 0.120822 + 0.0560324i
\(596\) −8492.97 −0.583701
\(597\) 3577.05i 0.245224i
\(598\) 5059.61i 0.345992i
\(599\) 16536.6 1.12799 0.563995 0.825778i \(-0.309264\pi\)
0.563995 + 0.825778i \(0.309264\pi\)
\(600\) −3929.16 4642.98i −0.267346 0.315915i
\(601\) −6030.83 −0.409322 −0.204661 0.978833i \(-0.565609\pi\)
−0.204661 + 0.978833i \(0.565609\pi\)
\(602\) 5154.28i 0.348958i
\(603\) 7371.69i 0.497842i
\(604\) −1221.24 −0.0822710
\(605\) −10093.7 4681.06i −0.678291 0.314566i
\(606\) −16490.2 −1.10539
\(607\) 12639.0i 0.845143i 0.906330 + 0.422572i \(0.138872\pi\)
−0.906330 + 0.422572i \(0.861128\pi\)
\(608\) 10437.0i 0.696176i
\(609\) −216.266 −0.0143900
\(610\) −10267.3 + 22139.2i −0.681494 + 1.46949i
\(611\) 2160.59 0.143058
\(612\) 698.088i 0.0461087i
\(613\) 226.217i 0.0149051i 0.999972 + 0.00745254i \(0.00237224\pi\)
−0.999972 + 0.00745254i \(0.997628\pi\)
\(614\) 6693.84 0.439970
\(615\) −6985.93 + 15063.6i −0.458049 + 0.987680i
\(616\) −2080.67 −0.136092
\(617\) 6491.49i 0.423561i −0.977317 0.211781i \(-0.932074\pi\)
0.977317 0.211781i \(-0.0679263\pi\)
\(618\) 9225.77i 0.600510i
\(619\) −19224.9 −1.24833 −0.624163 0.781294i \(-0.714560\pi\)
−0.624163 + 0.781294i \(0.714560\pi\)
\(620\) −3963.27 1838.01i −0.256724 0.119059i
\(621\) −4034.11 −0.260681
\(622\) 33448.8i 2.15623i
\(623\) 236.808i 0.0152287i
\(624\) −2412.48 −0.154770
\(625\) −2584.33 + 15409.8i −0.165397 + 0.986227i
\(626\) −2106.71 −0.134506
\(627\) 4256.79i 0.271132i
\(628\) 9062.79i 0.575868i
\(629\) 5332.50 0.338030
\(630\) 2132.78 + 989.103i 0.134876 + 0.0625505i
\(631\) 21123.5 1.33267 0.666334 0.745653i \(-0.267862\pi\)
0.666334 + 0.745653i \(0.267862\pi\)
\(632\) 13141.0i 0.827090i
\(633\) 2294.71i 0.144086i
\(634\) 4014.34 0.251467
\(635\) 1717.57 3703.56i 0.107338 0.231451i
\(636\) −5016.53 −0.312765
\(637\) 497.138i 0.0309220i
\(638\) 629.916i 0.0390887i
\(639\) 4202.46 0.260167
\(640\) 7964.01 17172.6i 0.491883 1.06064i
\(641\) −8079.31 −0.497837 −0.248918 0.968524i \(-0.580075\pi\)
−0.248918 + 0.968524i \(0.580075\pi\)
\(642\) 10622.5i 0.653014i
\(643\) 28025.8i 1.71887i 0.511249 + 0.859433i \(0.329183\pi\)
−0.511249 + 0.859433i \(0.670817\pi\)
\(644\) −3284.59 −0.200980
\(645\) −6712.63 3113.06i −0.409782 0.190041i
\(646\) −6382.93 −0.388751
\(647\) 9585.95i 0.582477i 0.956650 + 0.291239i \(0.0940674\pi\)
−0.956650 + 0.291239i \(0.905933\pi\)
\(648\) 1313.80i 0.0796464i
\(649\) 5940.17 0.359279
\(650\) 2734.44 + 3231.21i 0.165006 + 0.194982i
\(651\) −2612.88 −0.157307
\(652\) 1796.22i 0.107892i
\(653\) 6356.08i 0.380908i 0.981696 + 0.190454i \(0.0609959\pi\)
−0.981696 + 0.190454i \(0.939004\pi\)
\(654\) 15350.5 0.917819
\(655\) 13193.9 + 6118.82i 0.787065 + 0.365011i
\(656\) −39238.8 −2.33539
\(657\) 1557.60i 0.0924925i
\(658\) 4975.57i 0.294784i
\(659\) −2394.70 −0.141554 −0.0707772 0.997492i \(-0.522548\pi\)
−0.0707772 + 0.997492i \(0.522548\pi\)
\(660\) 812.140 1751.20i 0.0478978 0.103281i
\(661\) −23502.0 −1.38294 −0.691470 0.722406i \(-0.743036\pi\)
−0.691470 + 0.722406i \(0.743036\pi\)
\(662\) 31032.8i 1.82194i
\(663\) 751.745i 0.0440353i
\(664\) 199.840 0.0116796
\(665\) 2549.44 5497.31i 0.148667 0.320566i
\(666\) 6485.71 0.377351
\(667\) 1538.69i 0.0893229i
\(668\) 7612.46i 0.440921i
\(669\) 4755.54 0.274828
\(670\) 27728.8 + 12859.5i 1.59889 + 0.741504i
\(671\) 11984.4 0.689500
\(672\) 2830.71i 0.162495i
\(673\) 31304.2i 1.79300i 0.443047 + 0.896498i \(0.353897\pi\)
−0.443047 + 0.896498i \(0.646103\pi\)
\(674\) −1694.66 −0.0968486
\(675\) 2576.30 2180.21i 0.146906 0.124321i
\(676\) −6576.42 −0.374170
\(677\) 16821.3i 0.954940i 0.878648 + 0.477470i \(0.158446\pi\)
−0.878648 + 0.477470i \(0.841554\pi\)
\(678\) 20754.1i 1.17560i
\(679\) 5675.32 0.320764
\(680\) 4063.17 + 1884.35i 0.229141 + 0.106267i
\(681\) −7089.21 −0.398912
\(682\) 7610.53i 0.427306i
\(683\) 106.287i 0.00595453i 0.999996 + 0.00297726i \(0.000947694\pi\)
−0.999996 + 0.00297726i \(0.999052\pi\)
\(684\) −2188.47 −0.122337
\(685\) 12128.3 26151.9i 0.676493 1.45871i
\(686\) 1144.84 0.0637177
\(687\) 4879.32i 0.270972i
\(688\) 17485.5i 0.968938i
\(689\) −5402.12 −0.298700
\(690\) −7037.30 + 15174.4i −0.388269 + 0.837215i
\(691\) −19383.5 −1.06712 −0.533562 0.845761i \(-0.679147\pi\)
−0.533562 + 0.845761i \(0.679147\pi\)
\(692\) 1967.34i 0.108074i
\(693\) 1154.52i 0.0632853i
\(694\) −22898.9 −1.25249
\(695\) −31092.4 14419.5i −1.69698 0.786995i
\(696\) −501.110 −0.0272910
\(697\) 12227.1i 0.664467i
\(698\) 30828.9i 1.67176i
\(699\) 5161.03 0.279267
\(700\) 2097.63 1775.14i 0.113261 0.0958484i
\(701\) −13338.2 −0.718652 −0.359326 0.933212i \(-0.616993\pi\)
−0.359326 + 0.933212i \(0.616993\pi\)
\(702\) 914.318i 0.0491577i
\(703\) 16717.1i 0.896868i
\(704\) −3375.20 −0.180692
\(705\) −6479.88 3005.12i −0.346165 0.160538i
\(706\) 31440.0 1.67600
\(707\) 11527.9i 0.613227i
\(708\) 3053.92i 0.162109i
\(709\) −15225.3 −0.806487 −0.403243 0.915093i \(-0.632117\pi\)
−0.403243 + 0.915093i \(0.632117\pi\)
\(710\) 7330.98 15807.6i 0.387502 0.835563i
\(711\) 7291.68 0.384612
\(712\) 548.708i 0.0288816i
\(713\) 18590.2i 0.976450i
\(714\) −1731.17 −0.0907387
\(715\) 874.565 1885.80i 0.0457439 0.0986365i
\(716\) 7292.59 0.380638
\(717\) 21653.3i 1.12783i
\(718\) 9648.79i 0.501518i
\(719\) 23884.3 1.23885 0.619427 0.785054i \(-0.287365\pi\)
0.619427 + 0.785054i \(0.287365\pi\)
\(720\) 7235.31 + 3355.46i 0.374505 + 0.173681i
\(721\) −6449.52 −0.333138
\(722\) 2883.40i 0.148628i
\(723\) 15284.3i 0.786211i
\(724\) 14650.3 0.752034
\(725\) 831.578 + 982.653i 0.0425987 + 0.0503377i
\(726\) 9964.82 0.509406
\(727\) 27929.5i 1.42482i −0.701761 0.712412i \(-0.747603\pi\)
0.701761 0.712412i \(-0.252397\pi\)
\(728\) 1151.92i 0.0586443i
\(729\) −729.000 −0.0370370
\(730\) 5858.93 + 2717.15i 0.297053 + 0.137762i
\(731\) 5448.62 0.275683
\(732\) 6161.36i 0.311107i
\(733\) 17970.8i 0.905548i 0.891625 + 0.452774i \(0.149566\pi\)
−0.891625 + 0.452774i \(0.850434\pi\)
\(734\) 5241.97 0.263603
\(735\) 691.458 1490.98i 0.0347004 0.0748238i
\(736\) −20140.0 −1.00865
\(737\) 15010.2i 0.750215i
\(738\) 14871.3i 0.741762i
\(739\) 1280.61 0.0637455 0.0318728 0.999492i \(-0.489853\pi\)
0.0318728 + 0.999492i \(0.489853\pi\)
\(740\) 3189.41 6877.25i 0.158439 0.341639i
\(741\) −2356.68 −0.116835
\(742\) 12440.4i 0.615499i
\(743\) 28570.1i 1.41068i 0.708869 + 0.705340i \(0.249206\pi\)
−0.708869 + 0.705340i \(0.750794\pi\)
\(744\) −6054.32 −0.298336
\(745\) 27429.3 + 12720.6i 1.34890 + 0.625568i
\(746\) −29083.0 −1.42735
\(747\) 110.887i 0.00543125i
\(748\) 1421.44i 0.0694828i
\(749\) 7425.91 0.362265
\(750\) −3706.69 13494.1i −0.180466 0.656978i
\(751\) 32836.7 1.59551 0.797754 0.602982i \(-0.206021\pi\)
0.797754 + 0.602982i \(0.206021\pi\)
\(752\) 16879.2i 0.818514i
\(753\) 13039.5i 0.631059i
\(754\) 348.740 0.0168440
\(755\) 3944.18 + 1829.16i 0.190123 + 0.0881721i
\(756\) −593.555 −0.0285547
\(757\) 1086.72i 0.0521763i −0.999660 0.0260882i \(-0.991695\pi\)
0.999660 0.0260882i \(-0.00830507\pi\)
\(758\) 19291.0i 0.924379i
\(759\) 8214.23 0.392830
\(760\) 5907.33 12737.8i 0.281949 0.607961i
\(761\) −17097.7 −0.814443 −0.407221 0.913329i \(-0.633502\pi\)
−0.407221 + 0.913329i \(0.633502\pi\)
\(762\) 3656.28i 0.173823i
\(763\) 10731.2i 0.509168i
\(764\) 11714.9 0.554751
\(765\) −1045.59 + 2254.57i −0.0494160 + 0.106555i
\(766\) −41188.5 −1.94282
\(767\) 3288.65i 0.154819i
\(768\) 12533.1i 0.588868i
\(769\) 24796.1 1.16277 0.581386 0.813628i \(-0.302511\pi\)
0.581386 + 0.813628i \(0.302511\pi\)
\(770\) −4342.76 2014.01i −0.203250 0.0942595i
\(771\) 4284.40 0.200128
\(772\) 8119.01i 0.378510i
\(773\) 33325.8i 1.55064i 0.631567 + 0.775321i \(0.282412\pi\)
−0.631567 + 0.775321i \(0.717588\pi\)
\(774\) 6626.93 0.307752
\(775\) 10047.0 + 11872.2i 0.465675 + 0.550275i
\(776\) 13150.3 0.608336
\(777\) 4534.00i 0.209339i
\(778\) 26529.8i 1.22255i
\(779\) −38331.3 −1.76298
\(780\) −969.516 449.625i −0.0445054 0.0206399i
\(781\) −8557.02 −0.392054
\(782\) 12317.0i 0.563241i
\(783\) 278.056i 0.0126908i
\(784\) 3883.80