Defining parameters
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(105, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 52 | 32 | 20 |
Cusp forms | 44 | 32 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(105, [\chi])\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||
105.4.b.a | \(16\) | \(6.195\) | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(-2\) | \(-80\) | \(-4\) | \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(-4+\beta _{2})q^{4}-5q^{5}+\cdots\) |
105.4.b.b | \(16\) | \(6.195\) | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(2\) | \(80\) | \(-4\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-4+\beta _{2})q^{4}+5q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(105, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(105, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 2}\)