Properties

Label 105.4.a.g
Level $105$
Weight $4$
Character orbit 105.a
Self dual yes
Analytic conductor $6.195$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,4,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{41}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{41})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 1) q^{2} + 3 q^{3} + (3 \beta + 3) q^{4} - 5 q^{5} + (3 \beta + 3) q^{6} + 7 q^{7} + (\beta + 25) q^{8} + 9 q^{9} + ( - 5 \beta - 5) q^{10} + ( - 2 \beta + 32) q^{11} + (9 \beta + 9) q^{12}+ \cdots + ( - 18 \beta + 288) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + 6 q^{3} + 9 q^{4} - 10 q^{5} + 9 q^{6} + 14 q^{7} + 51 q^{8} + 18 q^{9} - 15 q^{10} + 62 q^{11} + 27 q^{12} - 6 q^{13} + 21 q^{14} - 30 q^{15} + 25 q^{16} + 40 q^{17} + 27 q^{18} - 122 q^{19}+ \cdots + 558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.70156
3.70156
−1.70156 3.00000 −5.10469 −5.00000 −5.10469 7.00000 22.2984 9.00000 8.50781
1.2 4.70156 3.00000 14.1047 −5.00000 14.1047 7.00000 28.7016 9.00000 −23.5078
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.4.a.g 2
3.b odd 2 1 315.4.a.g 2
4.b odd 2 1 1680.4.a.y 2
5.b even 2 1 525.4.a.i 2
5.c odd 4 2 525.4.d.j 4
7.b odd 2 1 735.4.a.q 2
15.d odd 2 1 1575.4.a.y 2
21.c even 2 1 2205.4.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.g 2 1.a even 1 1 trivial
315.4.a.g 2 3.b odd 2 1
525.4.a.i 2 5.b even 2 1
525.4.d.j 4 5.c odd 4 2
735.4.a.q 2 7.b odd 2 1
1575.4.a.y 2 15.d odd 2 1
1680.4.a.y 2 4.b odd 2 1
2205.4.a.v 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} - 3T_{2} - 8 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3T - 8 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 62T + 920 \) Copy content Toggle raw display
$13$ \( T^{2} + 6T - 1016 \) Copy content Toggle raw display
$17$ \( T^{2} - 40T - 1076 \) Copy content Toggle raw display
$19$ \( T^{2} + 122T + 3680 \) Copy content Toggle raw display
$23$ \( T^{2} - 16T - 23552 \) Copy content Toggle raw display
$29$ \( T^{2} - 352T + 29500 \) Copy content Toggle raw display
$31$ \( T^{2} - 66T - 13712 \) Copy content Toggle raw display
$37$ \( T^{2} + 188T - 56764 \) Copy content Toggle raw display
$41$ \( T^{2} - 16T - 119492 \) Copy content Toggle raw display
$43$ \( T^{2} + 396T - 63296 \) Copy content Toggle raw display
$47$ \( T^{2} + 188T - 192064 \) Copy content Toggle raw display
$53$ \( T^{2} - 982T + 206600 \) Copy content Toggle raw display
$59$ \( T^{2} - 516T + 7360 \) Copy content Toggle raw display
$61$ \( T^{2} + 880T + 121276 \) Copy content Toggle raw display
$67$ \( T^{2} + 356T - 501152 \) Copy content Toggle raw display
$71$ \( T^{2} - 310T - 51784 \) Copy content Toggle raw display
$73$ \( T^{2} - 326T + 11768 \) Copy content Toggle raw display
$79$ \( T^{2} - 1832 T + 838400 \) Copy content Toggle raw display
$83$ \( T^{2} + 680T - 398704 \) Copy content Toggle raw display
$89$ \( T^{2} - 796T - 998780 \) Copy content Toggle raw display
$97$ \( T^{2} + 670T - 679936 \) Copy content Toggle raw display
show more
show less