Properties

Label 105.4.a.f.1.2
Level $105$
Weight $4$
Character 105.1
Self dual yes
Analytic conductor $6.195$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [105,4,Mod(1,105)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(105, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("105.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{65}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.53113\) of defining polynomial
Character \(\chi\) \(=\) 105.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.53113 q^{2} +3.00000 q^{3} +12.5311 q^{4} +5.00000 q^{5} +13.5934 q^{6} -7.00000 q^{7} +20.5311 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+4.53113 q^{2} +3.00000 q^{3} +12.5311 q^{4} +5.00000 q^{5} +13.5934 q^{6} -7.00000 q^{7} +20.5311 q^{8} +9.00000 q^{9} +22.6556 q^{10} -19.0623 q^{11} +37.5934 q^{12} -2.93774 q^{13} -31.7179 q^{14} +15.0000 q^{15} -7.21984 q^{16} -6.49806 q^{17} +40.7802 q^{18} -5.43580 q^{19} +62.6556 q^{20} -21.0000 q^{21} -86.3735 q^{22} +49.3774 q^{23} +61.5934 q^{24} +25.0000 q^{25} -13.3113 q^{26} +27.0000 q^{27} -87.7179 q^{28} -291.494 q^{29} +67.9669 q^{30} +244.307 q^{31} -196.963 q^{32} -57.1868 q^{33} -29.4436 q^{34} -35.0000 q^{35} +112.780 q^{36} -193.121 q^{37} -24.6303 q^{38} -8.81323 q^{39} +102.656 q^{40} +315.113 q^{41} -95.1537 q^{42} -300.996 q^{43} -238.872 q^{44} +45.0000 q^{45} +223.735 q^{46} +86.5058 q^{47} -21.6595 q^{48} +49.0000 q^{49} +113.278 q^{50} -19.4942 q^{51} -36.8132 q^{52} +509.677 q^{53} +122.340 q^{54} -95.3113 q^{55} -143.718 q^{56} -16.3074 q^{57} -1320.80 q^{58} -83.3852 q^{59} +187.967 q^{60} -5.25291 q^{61} +1106.99 q^{62} -63.0000 q^{63} -834.706 q^{64} -14.6887 q^{65} -259.121 q^{66} +205.992 q^{67} -81.4281 q^{68} +148.132 q^{69} -158.590 q^{70} +1004.31 q^{71} +184.780 q^{72} -1007.29 q^{73} -875.055 q^{74} +75.0000 q^{75} -68.1168 q^{76} +133.436 q^{77} -39.9339 q^{78} -863.237 q^{79} -36.0992 q^{80} +81.0000 q^{81} +1427.82 q^{82} +1334.72 q^{83} -263.154 q^{84} -32.4903 q^{85} -1363.85 q^{86} -874.483 q^{87} -391.370 q^{88} +326.249 q^{89} +203.901 q^{90} +20.5642 q^{91} +618.755 q^{92} +732.922 q^{93} +391.969 q^{94} -27.1790 q^{95} -590.889 q^{96} +1526.77 q^{97} +222.025 q^{98} -171.560 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 6 q^{3} + 17 q^{4} + 10 q^{5} + 3 q^{6} - 14 q^{7} + 33 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + 6 q^{3} + 17 q^{4} + 10 q^{5} + 3 q^{6} - 14 q^{7} + 33 q^{8} + 18 q^{9} + 5 q^{10} - 22 q^{11} + 51 q^{12} - 22 q^{13} - 7 q^{14} + 30 q^{15} - 87 q^{16} + 116 q^{17} + 9 q^{18} + 102 q^{19} + 85 q^{20} - 42 q^{21} - 76 q^{22} + 260 q^{23} + 99 q^{24} + 50 q^{25} + 54 q^{26} + 54 q^{27} - 119 q^{28} - 196 q^{29} + 15 q^{30} + 150 q^{31} - 15 q^{32} - 66 q^{33} - 462 q^{34} - 70 q^{35} + 153 q^{36} - 96 q^{37} - 404 q^{38} - 66 q^{39} + 165 q^{40} - 176 q^{41} - 21 q^{42} - 344 q^{43} - 252 q^{44} + 90 q^{45} - 520 q^{46} + 560 q^{47} - 261 q^{48} + 98 q^{49} + 25 q^{50} + 348 q^{51} - 122 q^{52} + 326 q^{53} + 27 q^{54} - 110 q^{55} - 231 q^{56} + 306 q^{57} - 1658 q^{58} - 844 q^{59} + 255 q^{60} - 204 q^{61} + 1440 q^{62} - 126 q^{63} - 839 q^{64} - 110 q^{65} - 228 q^{66} - 104 q^{67} + 466 q^{68} + 780 q^{69} - 35 q^{70} + 1670 q^{71} + 297 q^{72} - 386 q^{73} - 1218 q^{74} + 150 q^{75} + 412 q^{76} + 154 q^{77} + 162 q^{78} - 888 q^{79} - 435 q^{80} + 162 q^{81} + 3162 q^{82} + 928 q^{83} - 357 q^{84} + 580 q^{85} - 1212 q^{86} - 588 q^{87} - 428 q^{88} + 588 q^{89} + 45 q^{90} + 154 q^{91} + 1560 q^{92} + 450 q^{93} - 1280 q^{94} + 510 q^{95} - 45 q^{96} + 522 q^{97} + 49 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.53113 1.60200 0.800998 0.598667i \(-0.204303\pi\)
0.800998 + 0.598667i \(0.204303\pi\)
\(3\) 3.00000 0.577350
\(4\) 12.5311 1.56639
\(5\) 5.00000 0.447214
\(6\) 13.5934 0.924913
\(7\) −7.00000 −0.377964
\(8\) 20.5311 0.907356
\(9\) 9.00000 0.333333
\(10\) 22.6556 0.716434
\(11\) −19.0623 −0.522499 −0.261249 0.965271i \(-0.584135\pi\)
−0.261249 + 0.965271i \(0.584135\pi\)
\(12\) 37.5934 0.904356
\(13\) −2.93774 −0.0626756 −0.0313378 0.999509i \(-0.509977\pi\)
−0.0313378 + 0.999509i \(0.509977\pi\)
\(14\) −31.7179 −0.605498
\(15\) 15.0000 0.258199
\(16\) −7.21984 −0.112810
\(17\) −6.49806 −0.0927066 −0.0463533 0.998925i \(-0.514760\pi\)
−0.0463533 + 0.998925i \(0.514760\pi\)
\(18\) 40.7802 0.533999
\(19\) −5.43580 −0.0656347 −0.0328173 0.999461i \(-0.510448\pi\)
−0.0328173 + 0.999461i \(0.510448\pi\)
\(20\) 62.6556 0.700511
\(21\) −21.0000 −0.218218
\(22\) −86.3735 −0.837041
\(23\) 49.3774 0.447648 0.223824 0.974630i \(-0.428146\pi\)
0.223824 + 0.974630i \(0.428146\pi\)
\(24\) 61.5934 0.523862
\(25\) 25.0000 0.200000
\(26\) −13.3113 −0.100406
\(27\) 27.0000 0.192450
\(28\) −87.7179 −0.592040
\(29\) −291.494 −1.86652 −0.933261 0.359200i \(-0.883050\pi\)
−0.933261 + 0.359200i \(0.883050\pi\)
\(30\) 67.9669 0.413634
\(31\) 244.307 1.41545 0.707724 0.706489i \(-0.249722\pi\)
0.707724 + 0.706489i \(0.249722\pi\)
\(32\) −196.963 −1.08808
\(33\) −57.1868 −0.301665
\(34\) −29.4436 −0.148516
\(35\) −35.0000 −0.169031
\(36\) 112.780 0.522130
\(37\) −193.121 −0.858077 −0.429038 0.903286i \(-0.641147\pi\)
−0.429038 + 0.903286i \(0.641147\pi\)
\(38\) −24.6303 −0.105147
\(39\) −8.81323 −0.0361858
\(40\) 102.656 0.405782
\(41\) 315.113 1.20030 0.600151 0.799887i \(-0.295107\pi\)
0.600151 + 0.799887i \(0.295107\pi\)
\(42\) −95.1537 −0.349584
\(43\) −300.996 −1.06748 −0.533738 0.845650i \(-0.679213\pi\)
−0.533738 + 0.845650i \(0.679213\pi\)
\(44\) −238.872 −0.818437
\(45\) 45.0000 0.149071
\(46\) 223.735 0.717130
\(47\) 86.5058 0.268472 0.134236 0.990949i \(-0.457142\pi\)
0.134236 + 0.990949i \(0.457142\pi\)
\(48\) −21.6595 −0.0651309
\(49\) 49.0000 0.142857
\(50\) 113.278 0.320399
\(51\) −19.4942 −0.0535242
\(52\) −36.8132 −0.0981745
\(53\) 509.677 1.32093 0.660467 0.750855i \(-0.270358\pi\)
0.660467 + 0.750855i \(0.270358\pi\)
\(54\) 122.340 0.308304
\(55\) −95.3113 −0.233669
\(56\) −143.718 −0.342948
\(57\) −16.3074 −0.0378942
\(58\) −1320.80 −2.99016
\(59\) −83.3852 −0.183997 −0.0919985 0.995759i \(-0.529326\pi\)
−0.0919985 + 0.995759i \(0.529326\pi\)
\(60\) 187.967 0.404440
\(61\) −5.25291 −0.0110257 −0.00551283 0.999985i \(-0.501755\pi\)
−0.00551283 + 0.999985i \(0.501755\pi\)
\(62\) 1106.99 2.26754
\(63\) −63.0000 −0.125988
\(64\) −834.706 −1.63029
\(65\) −14.6887 −0.0280294
\(66\) −259.121 −0.483266
\(67\) 205.992 0.375611 0.187806 0.982206i \(-0.439862\pi\)
0.187806 + 0.982206i \(0.439862\pi\)
\(68\) −81.4281 −0.145215
\(69\) 148.132 0.258450
\(70\) −158.590 −0.270787
\(71\) 1004.31 1.67872 0.839362 0.543573i \(-0.182929\pi\)
0.839362 + 0.543573i \(0.182929\pi\)
\(72\) 184.780 0.302452
\(73\) −1007.29 −1.61499 −0.807494 0.589876i \(-0.799177\pi\)
−0.807494 + 0.589876i \(0.799177\pi\)
\(74\) −875.055 −1.37464
\(75\) 75.0000 0.115470
\(76\) −68.1168 −0.102810
\(77\) 133.436 0.197486
\(78\) −39.9339 −0.0579695
\(79\) −863.237 −1.22939 −0.614695 0.788765i \(-0.710721\pi\)
−0.614695 + 0.788765i \(0.710721\pi\)
\(80\) −36.0992 −0.0504502
\(81\) 81.0000 0.111111
\(82\) 1427.82 1.92288
\(83\) 1334.72 1.76512 0.882560 0.470200i \(-0.155818\pi\)
0.882560 + 0.470200i \(0.155818\pi\)
\(84\) −263.154 −0.341815
\(85\) −32.4903 −0.0414596
\(86\) −1363.85 −1.71009
\(87\) −874.483 −1.07764
\(88\) −391.370 −0.474093
\(89\) 326.249 0.388565 0.194283 0.980946i \(-0.437762\pi\)
0.194283 + 0.980946i \(0.437762\pi\)
\(90\) 203.901 0.238811
\(91\) 20.5642 0.0236892
\(92\) 618.755 0.701192
\(93\) 732.922 0.817210
\(94\) 391.969 0.430091
\(95\) −27.1790 −0.0293527
\(96\) −590.889 −0.628202
\(97\) 1526.77 1.59815 0.799075 0.601232i \(-0.205323\pi\)
0.799075 + 0.601232i \(0.205323\pi\)
\(98\) 222.025 0.228857
\(99\) −171.560 −0.174166
\(100\) 313.278 0.313278
\(101\) 96.8716 0.0954365 0.0477182 0.998861i \(-0.484805\pi\)
0.0477182 + 0.998861i \(0.484805\pi\)
\(102\) −88.3307 −0.0857455
\(103\) 1321.99 1.26466 0.632329 0.774700i \(-0.282099\pi\)
0.632329 + 0.774700i \(0.282099\pi\)
\(104\) −60.3152 −0.0568691
\(105\) −105.000 −0.0975900
\(106\) 2309.41 2.11613
\(107\) 1745.71 1.57724 0.788619 0.614883i \(-0.210797\pi\)
0.788619 + 0.614883i \(0.210797\pi\)
\(108\) 338.340 0.301452
\(109\) 476.856 0.419032 0.209516 0.977805i \(-0.432811\pi\)
0.209516 + 0.977805i \(0.432811\pi\)
\(110\) −431.868 −0.374336
\(111\) −579.362 −0.495411
\(112\) 50.5389 0.0426382
\(113\) 1641.65 1.36666 0.683332 0.730108i \(-0.260530\pi\)
0.683332 + 0.730108i \(0.260530\pi\)
\(114\) −73.8910 −0.0607064
\(115\) 246.887 0.200194
\(116\) −3652.75 −2.92370
\(117\) −26.4397 −0.0208919
\(118\) −377.829 −0.294763
\(119\) 45.4864 0.0350398
\(120\) 307.967 0.234278
\(121\) −967.630 −0.726995
\(122\) −23.8016 −0.0176631
\(123\) 945.339 0.692994
\(124\) 3061.45 2.21715
\(125\) 125.000 0.0894427
\(126\) −285.461 −0.201833
\(127\) −844.016 −0.589719 −0.294859 0.955541i \(-0.595273\pi\)
−0.294859 + 0.955541i \(0.595273\pi\)
\(128\) −2206.46 −1.52363
\(129\) −902.988 −0.616308
\(130\) −66.5564 −0.0449030
\(131\) −2796.20 −1.86493 −0.932463 0.361265i \(-0.882345\pi\)
−0.932463 + 0.361265i \(0.882345\pi\)
\(132\) −716.615 −0.472525
\(133\) 38.0506 0.0248076
\(134\) 933.377 0.601728
\(135\) 135.000 0.0860663
\(136\) −133.413 −0.0841179
\(137\) −2057.13 −1.28287 −0.641433 0.767179i \(-0.721660\pi\)
−0.641433 + 0.767179i \(0.721660\pi\)
\(138\) 671.206 0.414035
\(139\) −1745.12 −1.06489 −0.532444 0.846465i \(-0.678726\pi\)
−0.532444 + 0.846465i \(0.678726\pi\)
\(140\) −438.590 −0.264768
\(141\) 259.517 0.155002
\(142\) 4550.65 2.68931
\(143\) 56.0000 0.0327479
\(144\) −64.9786 −0.0376033
\(145\) −1457.47 −0.834734
\(146\) −4564.15 −2.58720
\(147\) 147.000 0.0824786
\(148\) −2420.02 −1.34408
\(149\) −1173.57 −0.645254 −0.322627 0.946526i \(-0.604566\pi\)
−0.322627 + 0.946526i \(0.604566\pi\)
\(150\) 339.835 0.184983
\(151\) 1540.07 0.829994 0.414997 0.909823i \(-0.363783\pi\)
0.414997 + 0.909823i \(0.363783\pi\)
\(152\) −111.603 −0.0595540
\(153\) −58.4826 −0.0309022
\(154\) 604.615 0.316372
\(155\) 1221.54 0.633008
\(156\) −110.440 −0.0566811
\(157\) −2544.53 −1.29348 −0.646738 0.762712i \(-0.723867\pi\)
−0.646738 + 0.762712i \(0.723867\pi\)
\(158\) −3911.44 −1.96948
\(159\) 1529.03 0.762642
\(160\) −984.815 −0.486603
\(161\) −345.642 −0.169195
\(162\) 367.021 0.178000
\(163\) −594.708 −0.285774 −0.142887 0.989739i \(-0.545639\pi\)
−0.142887 + 0.989739i \(0.545639\pi\)
\(164\) 3948.72 1.88014
\(165\) −285.934 −0.134909
\(166\) 6047.81 2.82772
\(167\) 928.498 0.430236 0.215118 0.976588i \(-0.430986\pi\)
0.215118 + 0.976588i \(0.430986\pi\)
\(168\) −431.154 −0.198001
\(169\) −2188.37 −0.996072
\(170\) −147.218 −0.0664182
\(171\) −48.9222 −0.0218782
\(172\) −3771.82 −1.67209
\(173\) −315.642 −0.138716 −0.0693578 0.997592i \(-0.522095\pi\)
−0.0693578 + 0.997592i \(0.522095\pi\)
\(174\) −3962.39 −1.72637
\(175\) −175.000 −0.0755929
\(176\) 137.626 0.0589431
\(177\) −250.156 −0.106231
\(178\) 1478.28 0.622480
\(179\) −1445.49 −0.603581 −0.301791 0.953374i \(-0.597584\pi\)
−0.301791 + 0.953374i \(0.597584\pi\)
\(180\) 563.901 0.233504
\(181\) −1843.81 −0.757180 −0.378590 0.925564i \(-0.623591\pi\)
−0.378590 + 0.925564i \(0.623591\pi\)
\(182\) 93.1790 0.0379499
\(183\) −15.7587 −0.00636567
\(184\) 1013.77 0.406176
\(185\) −965.603 −0.383744
\(186\) 3320.97 1.30917
\(187\) 123.868 0.0484391
\(188\) 1084.02 0.420532
\(189\) −189.000 −0.0727393
\(190\) −123.152 −0.0470229
\(191\) −244.074 −0.0924637 −0.0462318 0.998931i \(-0.514721\pi\)
−0.0462318 + 0.998931i \(0.514721\pi\)
\(192\) −2504.12 −0.941246
\(193\) −1733.03 −0.646355 −0.323178 0.946338i \(-0.604751\pi\)
−0.323178 + 0.946338i \(0.604751\pi\)
\(194\) 6918.01 2.56023
\(195\) −44.0661 −0.0161828
\(196\) 614.025 0.223770
\(197\) 358.230 0.129557 0.0647787 0.997900i \(-0.479366\pi\)
0.0647787 + 0.997900i \(0.479366\pi\)
\(198\) −777.362 −0.279014
\(199\) −3203.63 −1.14120 −0.570601 0.821227i \(-0.693290\pi\)
−0.570601 + 0.821227i \(0.693290\pi\)
\(200\) 513.278 0.181471
\(201\) 617.977 0.216859
\(202\) 438.938 0.152889
\(203\) 2040.46 0.705479
\(204\) −244.284 −0.0838398
\(205\) 1575.56 0.536791
\(206\) 5990.12 2.02598
\(207\) 444.397 0.149216
\(208\) 21.2100 0.00707044
\(209\) 103.619 0.0342940
\(210\) −475.769 −0.156339
\(211\) 4943.16 1.61280 0.806401 0.591369i \(-0.201412\pi\)
0.806401 + 0.591369i \(0.201412\pi\)
\(212\) 6386.83 2.06910
\(213\) 3012.92 0.969211
\(214\) 7910.05 2.52673
\(215\) −1504.98 −0.477390
\(216\) 554.340 0.174621
\(217\) −1710.15 −0.534989
\(218\) 2160.70 0.671288
\(219\) −3021.86 −0.932414
\(220\) −1194.36 −0.366016
\(221\) 19.0896 0.00581044
\(222\) −2625.16 −0.793646
\(223\) 3160.15 0.948965 0.474482 0.880265i \(-0.342635\pi\)
0.474482 + 0.880265i \(0.342635\pi\)
\(224\) 1378.74 0.411255
\(225\) 225.000 0.0666667
\(226\) 7438.51 2.18939
\(227\) −3651.11 −1.06755 −0.533773 0.845628i \(-0.679226\pi\)
−0.533773 + 0.845628i \(0.679226\pi\)
\(228\) −204.350 −0.0593571
\(229\) −4083.70 −1.17842 −0.589210 0.807980i \(-0.700561\pi\)
−0.589210 + 0.807980i \(0.700561\pi\)
\(230\) 1118.68 0.320710
\(231\) 400.307 0.114019
\(232\) −5984.70 −1.69360
\(233\) −3682.51 −1.03540 −0.517702 0.855561i \(-0.673212\pi\)
−0.517702 + 0.855561i \(0.673212\pi\)
\(234\) −119.802 −0.0334687
\(235\) 432.529 0.120064
\(236\) −1044.91 −0.288211
\(237\) −2589.71 −0.709789
\(238\) 206.105 0.0561336
\(239\) 2658.78 0.719591 0.359796 0.933031i \(-0.382846\pi\)
0.359796 + 0.933031i \(0.382846\pi\)
\(240\) −108.298 −0.0291274
\(241\) −4820.39 −1.28842 −0.644209 0.764850i \(-0.722813\pi\)
−0.644209 + 0.764850i \(0.722813\pi\)
\(242\) −4384.46 −1.16464
\(243\) 243.000 0.0641500
\(244\) −65.8249 −0.0172705
\(245\) 245.000 0.0638877
\(246\) 4283.45 1.11017
\(247\) 15.9690 0.00411369
\(248\) 5015.91 1.28432
\(249\) 4004.17 1.01909
\(250\) 566.391 0.143287
\(251\) 1672.27 0.420530 0.210265 0.977644i \(-0.432567\pi\)
0.210265 + 0.977644i \(0.432567\pi\)
\(252\) −789.461 −0.197347
\(253\) −941.245 −0.233896
\(254\) −3824.34 −0.944727
\(255\) −97.4709 −0.0239367
\(256\) −3320.09 −0.810569
\(257\) −3697.74 −0.897506 −0.448753 0.893656i \(-0.648132\pi\)
−0.448753 + 0.893656i \(0.648132\pi\)
\(258\) −4091.56 −0.987322
\(259\) 1351.84 0.324323
\(260\) −184.066 −0.0439050
\(261\) −2623.45 −0.622174
\(262\) −12670.0 −2.98760
\(263\) 7319.00 1.71600 0.858002 0.513646i \(-0.171706\pi\)
0.858002 + 0.513646i \(0.171706\pi\)
\(264\) −1174.11 −0.273717
\(265\) 2548.39 0.590740
\(266\) 172.412 0.0397416
\(267\) 978.747 0.224338
\(268\) 2581.32 0.588354
\(269\) −815.097 −0.184749 −0.0923743 0.995724i \(-0.529446\pi\)
−0.0923743 + 0.995724i \(0.529446\pi\)
\(270\) 611.702 0.137878
\(271\) −5106.02 −1.14453 −0.572267 0.820068i \(-0.693936\pi\)
−0.572267 + 0.820068i \(0.693936\pi\)
\(272\) 46.9150 0.0104582
\(273\) 61.6926 0.0136769
\(274\) −9321.13 −2.05515
\(275\) −476.556 −0.104500
\(276\) 1856.26 0.404833
\(277\) 1398.72 0.303398 0.151699 0.988427i \(-0.451526\pi\)
0.151699 + 0.988427i \(0.451526\pi\)
\(278\) −7907.39 −1.70595
\(279\) 2198.77 0.471816
\(280\) −718.590 −0.153371
\(281\) −7102.38 −1.50780 −0.753901 0.656988i \(-0.771830\pi\)
−0.753901 + 0.656988i \(0.771830\pi\)
\(282\) 1175.91 0.248313
\(283\) 4465.18 0.937907 0.468953 0.883223i \(-0.344631\pi\)
0.468953 + 0.883223i \(0.344631\pi\)
\(284\) 12585.1 2.62954
\(285\) −81.5371 −0.0169468
\(286\) 253.743 0.0524621
\(287\) −2205.79 −0.453671
\(288\) −1772.67 −0.362692
\(289\) −4870.78 −0.991405
\(290\) −6603.99 −1.33724
\(291\) 4580.32 0.922692
\(292\) −12622.5 −2.52970
\(293\) 7590.61 1.51348 0.756738 0.653718i \(-0.226792\pi\)
0.756738 + 0.653718i \(0.226792\pi\)
\(294\) 666.076 0.132130
\(295\) −416.926 −0.0822860
\(296\) −3964.98 −0.778581
\(297\) −514.681 −0.100555
\(298\) −5317.61 −1.03369
\(299\) −145.058 −0.0280566
\(300\) 939.835 0.180871
\(301\) 2106.97 0.403468
\(302\) 6978.26 1.32965
\(303\) 290.615 0.0551003
\(304\) 39.2456 0.00740425
\(305\) −26.2645 −0.00493083
\(306\) −264.992 −0.0495052
\(307\) 9480.12 1.76241 0.881203 0.472737i \(-0.156734\pi\)
0.881203 + 0.472737i \(0.156734\pi\)
\(308\) 1672.10 0.309340
\(309\) 3965.98 0.730151
\(310\) 5534.94 1.01408
\(311\) 7078.01 1.29054 0.645268 0.763956i \(-0.276746\pi\)
0.645268 + 0.763956i \(0.276746\pi\)
\(312\) −180.945 −0.0328334
\(313\) 5593.84 1.01017 0.505084 0.863070i \(-0.331461\pi\)
0.505084 + 0.863070i \(0.331461\pi\)
\(314\) −11529.6 −2.07214
\(315\) −315.000 −0.0563436
\(316\) −10817.3 −1.92571
\(317\) 3567.81 0.632139 0.316070 0.948736i \(-0.397637\pi\)
0.316070 + 0.948736i \(0.397637\pi\)
\(318\) 6928.24 1.22175
\(319\) 5556.54 0.975255
\(320\) −4173.53 −0.729086
\(321\) 5237.14 0.910618
\(322\) −1566.15 −0.271050
\(323\) 35.3222 0.00608477
\(324\) 1015.02 0.174043
\(325\) −73.4436 −0.0125351
\(326\) −2694.70 −0.457809
\(327\) 1430.57 0.241928
\(328\) 6469.62 1.08910
\(329\) −605.541 −0.101473
\(330\) −1295.60 −0.216123
\(331\) −4389.67 −0.728936 −0.364468 0.931216i \(-0.618749\pi\)
−0.364468 + 0.931216i \(0.618749\pi\)
\(332\) 16725.6 2.76487
\(333\) −1738.09 −0.286026
\(334\) 4207.14 0.689236
\(335\) 1029.96 0.167978
\(336\) 151.617 0.0246172
\(337\) 2348.83 0.379671 0.189835 0.981816i \(-0.439205\pi\)
0.189835 + 0.981816i \(0.439205\pi\)
\(338\) −9915.79 −1.59570
\(339\) 4924.94 0.789044
\(340\) −407.140 −0.0649420
\(341\) −4657.05 −0.739570
\(342\) −221.673 −0.0350488
\(343\) −343.000 −0.0539949
\(344\) −6179.79 −0.968581
\(345\) 740.661 0.115582
\(346\) −1430.21 −0.222222
\(347\) 558.436 0.0863931 0.0431965 0.999067i \(-0.486246\pi\)
0.0431965 + 0.999067i \(0.486246\pi\)
\(348\) −10958.3 −1.68800
\(349\) 3233.89 0.496006 0.248003 0.968759i \(-0.420226\pi\)
0.248003 + 0.968759i \(0.420226\pi\)
\(350\) −792.948 −0.121100
\(351\) −79.3190 −0.0120619
\(352\) 3754.56 0.568519
\(353\) −7516.35 −1.13330 −0.566650 0.823959i \(-0.691761\pi\)
−0.566650 + 0.823959i \(0.691761\pi\)
\(354\) −1133.49 −0.170181
\(355\) 5021.54 0.750748
\(356\) 4088.27 0.608646
\(357\) 136.459 0.0202302
\(358\) −6549.70 −0.966935
\(359\) −6577.76 −0.967021 −0.483511 0.875338i \(-0.660639\pi\)
−0.483511 + 0.875338i \(0.660639\pi\)
\(360\) 923.901 0.135261
\(361\) −6829.45 −0.995692
\(362\) −8354.56 −1.21300
\(363\) −2902.89 −0.419731
\(364\) 257.693 0.0371065
\(365\) −5036.44 −0.722245
\(366\) −71.4048 −0.0101978
\(367\) 8307.17 1.18155 0.590777 0.806835i \(-0.298821\pi\)
0.590777 + 0.806835i \(0.298821\pi\)
\(368\) −356.497 −0.0504992
\(369\) 2836.02 0.400101
\(370\) −4375.27 −0.614756
\(371\) −3567.74 −0.499266
\(372\) 9184.34 1.28007
\(373\) −4551.09 −0.631760 −0.315880 0.948799i \(-0.602300\pi\)
−0.315880 + 0.948799i \(0.602300\pi\)
\(374\) 561.261 0.0775992
\(375\) 375.000 0.0516398
\(376\) 1776.06 0.243599
\(377\) 856.335 0.116985
\(378\) −856.383 −0.116528
\(379\) −1788.29 −0.242370 −0.121185 0.992630i \(-0.538669\pi\)
−0.121185 + 0.992630i \(0.538669\pi\)
\(380\) −340.584 −0.0459778
\(381\) −2532.05 −0.340474
\(382\) −1105.93 −0.148126
\(383\) −1358.47 −0.181240 −0.0906199 0.995886i \(-0.528885\pi\)
−0.0906199 + 0.995886i \(0.528885\pi\)
\(384\) −6619.37 −0.879670
\(385\) 667.179 0.0883184
\(386\) −7852.60 −1.03546
\(387\) −2708.97 −0.355825
\(388\) 19132.2 2.50333
\(389\) 9722.54 1.26723 0.633615 0.773649i \(-0.281570\pi\)
0.633615 + 0.773649i \(0.281570\pi\)
\(390\) −199.669 −0.0259247
\(391\) −320.858 −0.0414999
\(392\) 1006.03 0.129622
\(393\) −8388.61 −1.07672
\(394\) 1623.19 0.207551
\(395\) −4316.19 −0.549800
\(396\) −2149.84 −0.272812
\(397\) −4788.04 −0.605302 −0.302651 0.953101i \(-0.597872\pi\)
−0.302651 + 0.953101i \(0.597872\pi\)
\(398\) −14516.1 −1.82820
\(399\) 114.152 0.0143227
\(400\) −180.496 −0.0225620
\(401\) 9681.41 1.20565 0.602826 0.797873i \(-0.294041\pi\)
0.602826 + 0.797873i \(0.294041\pi\)
\(402\) 2800.13 0.347408
\(403\) −717.712 −0.0887141
\(404\) 1213.91 0.149491
\(405\) 405.000 0.0496904
\(406\) 9245.58 1.13017
\(407\) 3681.32 0.448344
\(408\) −400.238 −0.0485655
\(409\) 11113.1 1.34353 0.671767 0.740763i \(-0.265536\pi\)
0.671767 + 0.740763i \(0.265536\pi\)
\(410\) 7139.09 0.859937
\(411\) −6171.40 −0.740663
\(412\) 16566.1 1.98095
\(413\) 583.696 0.0695443
\(414\) 2013.62 0.239043
\(415\) 6673.62 0.789386
\(416\) 578.627 0.0681959
\(417\) −5235.37 −0.614814
\(418\) 469.510 0.0549389
\(419\) −1230.09 −0.143421 −0.0717107 0.997425i \(-0.522846\pi\)
−0.0717107 + 0.997425i \(0.522846\pi\)
\(420\) −1315.77 −0.152864
\(421\) −12356.5 −1.43044 −0.715222 0.698897i \(-0.753674\pi\)
−0.715222 + 0.698897i \(0.753674\pi\)
\(422\) 22398.1 2.58370
\(423\) 778.552 0.0894906
\(424\) 10464.2 1.19856
\(425\) −162.452 −0.0185413
\(426\) 13651.9 1.55267
\(427\) 36.7703 0.00416731
\(428\) 21875.7 2.47057
\(429\) 168.000 0.0189070
\(430\) −6819.26 −0.764777
\(431\) −7375.27 −0.824256 −0.412128 0.911126i \(-0.635214\pi\)
−0.412128 + 0.911126i \(0.635214\pi\)
\(432\) −194.936 −0.0217103
\(433\) −690.067 −0.0765877 −0.0382939 0.999267i \(-0.512192\pi\)
−0.0382939 + 0.999267i \(0.512192\pi\)
\(434\) −7748.92 −0.857051
\(435\) −4372.41 −0.481934
\(436\) 5975.55 0.656369
\(437\) −268.406 −0.0293812
\(438\) −13692.5 −1.49372
\(439\) 8408.79 0.914191 0.457095 0.889418i \(-0.348890\pi\)
0.457095 + 0.889418i \(0.348890\pi\)
\(440\) −1956.85 −0.212021
\(441\) 441.000 0.0476190
\(442\) 86.4976 0.00930830
\(443\) 6568.55 0.704473 0.352236 0.935911i \(-0.385421\pi\)
0.352236 + 0.935911i \(0.385421\pi\)
\(444\) −7260.06 −0.776007
\(445\) 1631.25 0.173772
\(446\) 14319.0 1.52024
\(447\) −3520.72 −0.372537
\(448\) 5842.94 0.616190
\(449\) 2954.55 0.310543 0.155271 0.987872i \(-0.450375\pi\)
0.155271 + 0.987872i \(0.450375\pi\)
\(450\) 1019.50 0.106800
\(451\) −6006.76 −0.627156
\(452\) 20571.7 2.14073
\(453\) 4620.21 0.479197
\(454\) −16543.7 −1.71020
\(455\) 102.821 0.0105941
\(456\) −334.810 −0.0343835
\(457\) −8144.84 −0.833697 −0.416849 0.908976i \(-0.636865\pi\)
−0.416849 + 0.908976i \(0.636865\pi\)
\(458\) −18503.8 −1.88782
\(459\) −175.448 −0.0178414
\(460\) 3093.77 0.313583
\(461\) 2495.26 0.252095 0.126048 0.992024i \(-0.459771\pi\)
0.126048 + 0.992024i \(0.459771\pi\)
\(462\) 1813.84 0.182657
\(463\) −5755.66 −0.577728 −0.288864 0.957370i \(-0.593278\pi\)
−0.288864 + 0.957370i \(0.593278\pi\)
\(464\) 2104.54 0.210562
\(465\) 3664.61 0.365467
\(466\) −16685.9 −1.65871
\(467\) −4143.73 −0.410598 −0.205299 0.978699i \(-0.565817\pi\)
−0.205299 + 0.978699i \(0.565817\pi\)
\(468\) −331.319 −0.0327248
\(469\) −1441.95 −0.141968
\(470\) 1959.84 0.192342
\(471\) −7633.60 −0.746789
\(472\) −1711.99 −0.166951
\(473\) 5737.67 0.557755
\(474\) −11734.3 −1.13708
\(475\) −135.895 −0.0131269
\(476\) 569.996 0.0548860
\(477\) 4587.09 0.440312
\(478\) 12047.3 1.15278
\(479\) −6765.96 −0.645396 −0.322698 0.946502i \(-0.604590\pi\)
−0.322698 + 0.946502i \(0.604590\pi\)
\(480\) −2954.45 −0.280940
\(481\) 567.339 0.0537805
\(482\) −21841.8 −2.06404
\(483\) −1036.93 −0.0976848
\(484\) −12125.5 −1.13876
\(485\) 7633.87 0.714714
\(486\) 1101.06 0.102768
\(487\) 6360.42 0.591824 0.295912 0.955215i \(-0.404377\pi\)
0.295912 + 0.955215i \(0.404377\pi\)
\(488\) −107.848 −0.0100042
\(489\) −1784.12 −0.164992
\(490\) 1110.13 0.102348
\(491\) −7072.54 −0.650060 −0.325030 0.945704i \(-0.605374\pi\)
−0.325030 + 0.945704i \(0.605374\pi\)
\(492\) 11846.2 1.08550
\(493\) 1894.15 0.173039
\(494\) 72.3576 0.00659012
\(495\) −857.802 −0.0778895
\(496\) −1763.86 −0.159677
\(497\) −7030.15 −0.634498
\(498\) 18143.4 1.63258
\(499\) −18473.9 −1.65732 −0.828661 0.559751i \(-0.810897\pi\)
−0.828661 + 0.559751i \(0.810897\pi\)
\(500\) 1566.39 0.140102
\(501\) 2785.49 0.248397
\(502\) 7577.28 0.673687
\(503\) 11379.2 1.00869 0.504347 0.863501i \(-0.331733\pi\)
0.504347 + 0.863501i \(0.331733\pi\)
\(504\) −1293.46 −0.114316
\(505\) 484.358 0.0426805
\(506\) −4264.90 −0.374700
\(507\) −6565.11 −0.575082
\(508\) −10576.5 −0.923730
\(509\) 6064.48 0.528101 0.264051 0.964509i \(-0.414941\pi\)
0.264051 + 0.964509i \(0.414941\pi\)
\(510\) −441.653 −0.0383465
\(511\) 7051.02 0.610408
\(512\) 2607.89 0.225105
\(513\) −146.767 −0.0126314
\(514\) −16755.0 −1.43780
\(515\) 6609.96 0.565572
\(516\) −11315.5 −0.965379
\(517\) −1649.00 −0.140276
\(518\) 6125.38 0.519563
\(519\) −946.926 −0.0800875
\(520\) −301.576 −0.0254326
\(521\) 2682.88 0.225603 0.112801 0.993618i \(-0.464018\pi\)
0.112801 + 0.993618i \(0.464018\pi\)
\(522\) −11887.2 −0.996720
\(523\) −4309.02 −0.360268 −0.180134 0.983642i \(-0.557653\pi\)
−0.180134 + 0.983642i \(0.557653\pi\)
\(524\) −35039.6 −2.92120
\(525\) −525.000 −0.0436436
\(526\) 33163.3 2.74903
\(527\) −1587.52 −0.131221
\(528\) 412.879 0.0340308
\(529\) −9728.87 −0.799611
\(530\) 11547.1 0.946363
\(531\) −750.467 −0.0613323
\(532\) 476.817 0.0388584
\(533\) −925.720 −0.0752296
\(534\) 4434.83 0.359389
\(535\) 8728.56 0.705362
\(536\) 4229.25 0.340813
\(537\) −4336.47 −0.348478
\(538\) −3693.31 −0.295966
\(539\) −934.051 −0.0746427
\(540\) 1691.70 0.134813
\(541\) 4081.47 0.324355 0.162178 0.986762i \(-0.448148\pi\)
0.162178 + 0.986762i \(0.448148\pi\)
\(542\) −23136.0 −1.83354
\(543\) −5531.44 −0.437158
\(544\) 1279.88 0.100872
\(545\) 2384.28 0.187397
\(546\) 279.537 0.0219104
\(547\) 8844.82 0.691366 0.345683 0.938351i \(-0.387647\pi\)
0.345683 + 0.938351i \(0.387647\pi\)
\(548\) −25778.2 −2.00947
\(549\) −47.2762 −0.00367522
\(550\) −2159.34 −0.167408
\(551\) 1584.51 0.122509
\(552\) 3041.32 0.234506
\(553\) 6042.66 0.464666
\(554\) 6337.80 0.486042
\(555\) −2896.81 −0.221554
\(556\) −21868.4 −1.66803
\(557\) −11144.7 −0.847787 −0.423894 0.905712i \(-0.639337\pi\)
−0.423894 + 0.905712i \(0.639337\pi\)
\(558\) 9962.90 0.755848
\(559\) 884.249 0.0669047
\(560\) 252.694 0.0190684
\(561\) 371.603 0.0279663
\(562\) −32181.8 −2.41549
\(563\) −21857.5 −1.63621 −0.818104 0.575071i \(-0.804975\pi\)
−0.818104 + 0.575071i \(0.804975\pi\)
\(564\) 3252.05 0.242794
\(565\) 8208.23 0.611191
\(566\) 20232.3 1.50252
\(567\) −567.000 −0.0419961
\(568\) 20619.6 1.52320
\(569\) 23496.4 1.73115 0.865573 0.500783i \(-0.166954\pi\)
0.865573 + 0.500783i \(0.166954\pi\)
\(570\) −369.455 −0.0271487
\(571\) 11067.8 0.811164 0.405582 0.914059i \(-0.367069\pi\)
0.405582 + 0.914059i \(0.367069\pi\)
\(572\) 701.743 0.0512961
\(573\) −732.222 −0.0533839
\(574\) −9994.72 −0.726780
\(575\) 1234.44 0.0895296
\(576\) −7512.36 −0.543429
\(577\) 20482.9 1.47784 0.738922 0.673791i \(-0.235335\pi\)
0.738922 + 0.673791i \(0.235335\pi\)
\(578\) −22070.1 −1.58823
\(579\) −5199.10 −0.373173
\(580\) −18263.8 −1.30752
\(581\) −9343.07 −0.667153
\(582\) 20754.0 1.47815
\(583\) −9715.60 −0.690187
\(584\) −20680.8 −1.46537
\(585\) −132.198 −0.00934313
\(586\) 34394.1 2.42458
\(587\) −23444.3 −1.64847 −0.824235 0.566248i \(-0.808394\pi\)
−0.824235 + 0.566248i \(0.808394\pi\)
\(588\) 1842.08 0.129194
\(589\) −1328.01 −0.0929025
\(590\) −1889.14 −0.131822
\(591\) 1074.69 0.0748000
\(592\) 1394.30 0.0967996
\(593\) 4404.69 0.305024 0.152512 0.988302i \(-0.451264\pi\)
0.152512 + 0.988302i \(0.451264\pi\)
\(594\) −2332.09 −0.161089
\(595\) 227.432 0.0156703
\(596\) −14706.2 −1.01072
\(597\) −9610.89 −0.658874
\(598\) −657.277 −0.0449466
\(599\) 3327.05 0.226945 0.113472 0.993541i \(-0.463803\pi\)
0.113472 + 0.993541i \(0.463803\pi\)
\(600\) 1539.83 0.104772
\(601\) −14244.8 −0.966818 −0.483409 0.875395i \(-0.660602\pi\)
−0.483409 + 0.875395i \(0.660602\pi\)
\(602\) 9546.97 0.646354
\(603\) 1853.93 0.125204
\(604\) 19298.8 1.30010
\(605\) −4838.15 −0.325122
\(606\) 1316.81 0.0882704
\(607\) 11446.5 0.765402 0.382701 0.923872i \(-0.374994\pi\)
0.382701 + 0.923872i \(0.374994\pi\)
\(608\) 1070.65 0.0714156
\(609\) 6121.38 0.407308
\(610\) −119.008 −0.00789917
\(611\) −254.132 −0.0168266
\(612\) −732.852 −0.0484049
\(613\) −19436.4 −1.28063 −0.640316 0.768111i \(-0.721197\pi\)
−0.640316 + 0.768111i \(0.721197\pi\)
\(614\) 42955.6 2.82337
\(615\) 4726.69 0.309917
\(616\) 2739.59 0.179190
\(617\) −20530.1 −1.33956 −0.669781 0.742558i \(-0.733612\pi\)
−0.669781 + 0.742558i \(0.733612\pi\)
\(618\) 17970.4 1.16970
\(619\) 5833.35 0.378776 0.189388 0.981902i \(-0.439350\pi\)
0.189388 + 0.981902i \(0.439350\pi\)
\(620\) 15307.2 0.991538
\(621\) 1333.19 0.0861499
\(622\) 32071.4 2.06744
\(623\) −2283.74 −0.146864
\(624\) 63.6301 0.00408212
\(625\) 625.000 0.0400000
\(626\) 25346.4 1.61829
\(627\) 310.856 0.0197997
\(628\) −31885.9 −2.02609
\(629\) 1254.91 0.0795493
\(630\) −1427.31 −0.0902622
\(631\) 24776.6 1.56314 0.781568 0.623820i \(-0.214420\pi\)
0.781568 + 0.623820i \(0.214420\pi\)
\(632\) −17723.2 −1.11549
\(633\) 14829.5 0.931152
\(634\) 16166.2 1.01268
\(635\) −4220.08 −0.263730
\(636\) 19160.5 1.19460
\(637\) −143.949 −0.00895366
\(638\) 25177.4 1.56235
\(639\) 9038.77 0.559574
\(640\) −11032.3 −0.681390
\(641\) 27219.4 1.67723 0.838613 0.544728i \(-0.183367\pi\)
0.838613 + 0.544728i \(0.183367\pi\)
\(642\) 23730.1 1.45881
\(643\) 7091.79 0.434950 0.217475 0.976066i \(-0.430218\pi\)
0.217475 + 0.976066i \(0.430218\pi\)
\(644\) −4331.28 −0.265026
\(645\) −4514.94 −0.275621
\(646\) 160.049 0.00974777
\(647\) 27773.0 1.68758 0.843792 0.536670i \(-0.180318\pi\)
0.843792 + 0.536670i \(0.180318\pi\)
\(648\) 1663.02 0.100817
\(649\) 1589.51 0.0961382
\(650\) −332.782 −0.0200812
\(651\) −5130.46 −0.308876
\(652\) −7452.37 −0.447634
\(653\) 21380.4 1.28129 0.640643 0.767839i \(-0.278668\pi\)
0.640643 + 0.767839i \(0.278668\pi\)
\(654\) 6482.09 0.387568
\(655\) −13981.0 −0.834020
\(656\) −2275.06 −0.135406
\(657\) −9065.59 −0.538329
\(658\) −2743.78 −0.162559
\(659\) −17232.3 −1.01863 −0.509315 0.860580i \(-0.670101\pi\)
−0.509315 + 0.860580i \(0.670101\pi\)
\(660\) −3583.07 −0.211320
\(661\) 26577.7 1.56392 0.781962 0.623326i \(-0.214219\pi\)
0.781962 + 0.623326i \(0.214219\pi\)
\(662\) −19890.1 −1.16775
\(663\) 57.2689 0.00335466
\(664\) 27403.4 1.60159
\(665\) 190.253 0.0110943
\(666\) −7875.49 −0.458212
\(667\) −14393.2 −0.835544
\(668\) 11635.1 0.673917
\(669\) 9480.44 0.547885
\(670\) 4666.89 0.269101
\(671\) 100.132 0.00576090
\(672\) 4136.22 0.237438
\(673\) −31695.2 −1.81540 −0.907698 0.419624i \(-0.862162\pi\)
−0.907698 + 0.419624i \(0.862162\pi\)
\(674\) 10642.9 0.608231
\(675\) 675.000 0.0384900
\(676\) −27422.7 −1.56024
\(677\) 20440.3 1.16039 0.580195 0.814477i \(-0.302976\pi\)
0.580195 + 0.814477i \(0.302976\pi\)
\(678\) 22315.5 1.26405
\(679\) −10687.4 −0.604044
\(680\) −667.063 −0.0376187
\(681\) −10953.3 −0.616348
\(682\) −21101.7 −1.18479
\(683\) −22896.9 −1.28276 −0.641381 0.767223i \(-0.721638\pi\)
−0.641381 + 0.767223i \(0.721638\pi\)
\(684\) −613.051 −0.0342699
\(685\) −10285.7 −0.573715
\(686\) −1554.18 −0.0864997
\(687\) −12251.1 −0.680361
\(688\) 2173.14 0.120422
\(689\) −1497.30 −0.0827904
\(690\) 3356.03 0.185162
\(691\) −23764.0 −1.30829 −0.654143 0.756371i \(-0.726971\pi\)
−0.654143 + 0.756371i \(0.726971\pi\)
\(692\) −3955.35 −0.217283
\(693\) 1200.92 0.0658287
\(694\) 2530.34 0.138401
\(695\) −8725.62 −0.476233
\(696\) −17954.1 −0.977800
\(697\) −2047.62 −0.111276
\(698\) 14653.2 0.794600
\(699\) −11047.5 −0.597791
\(700\) −2192.95 −0.118408
\(701\) 26259.5 1.41485 0.707423 0.706791i \(-0.249858\pi\)
0.707423 + 0.706791i \(0.249858\pi\)
\(702\) −359.405 −0.0193232
\(703\) 1049.77 0.0563196
\(704\) 15911.4 0.851822
\(705\) 1297.59 0.0693191
\(706\) −34057.6 −1.81554
\(707\) −678.101 −0.0360716
\(708\) −3134.73 −0.166399
\(709\) 12783.0 0.677116 0.338558 0.940945i \(-0.390061\pi\)
0.338558 + 0.940945i \(0.390061\pi\)
\(710\) 22753.2 1.20270
\(711\) −7769.14 −0.409797
\(712\) 6698.26 0.352567
\(713\) 12063.3 0.633623
\(714\) 618.315 0.0324087
\(715\) 280.000 0.0146453
\(716\) −18113.6 −0.945444
\(717\) 7976.35 0.415456
\(718\) −29804.7 −1.54916
\(719\) −27609.0 −1.43205 −0.716025 0.698075i \(-0.754040\pi\)
−0.716025 + 0.698075i \(0.754040\pi\)
\(720\) −324.893 −0.0168167
\(721\) −9253.95 −0.477996
\(722\) −30945.1 −1.59509
\(723\) −14461.2 −0.743868
\(724\) −23105.1 −1.18604
\(725\) −7287.35 −0.373304
\(726\) −13153.4 −0.672407
\(727\) 31306.2 1.59709 0.798544 0.601937i \(-0.205604\pi\)
0.798544 + 0.601937i \(0.205604\pi\)
\(728\) 422.206 0.0214945
\(729\) 729.000 0.0370370
\(730\) −22820.8 −1.15703
\(731\) 1955.89 0.0989621
\(732\) −197.475 −0.00997113
\(733\) −15765.8 −0.794441 −0.397220 0.917723i \(-0.630025\pi\)
−0.397220 + 0.917723i \(0.630025\pi\)
\(734\) 37640.8 1.89285
\(735\) 735.000 0.0368856
\(736\) −9725.53 −0.487076
\(737\) −3926.68 −0.196256
\(738\) 12850.4 0.640959
\(739\) 3966.51 0.197443 0.0987216 0.995115i \(-0.468525\pi\)
0.0987216 + 0.995115i \(0.468525\pi\)
\(740\) −12100.1 −0.601093
\(741\) 47.9070 0.00237504
\(742\) −16165.9 −0.799823
\(743\) 8224.50 0.406094 0.203047 0.979169i \(-0.434916\pi\)
0.203047 + 0.979169i \(0.434916\pi\)
\(744\) 15047.7 0.741500
\(745\) −5867.86 −0.288566
\(746\) −20621.6 −1.01208
\(747\) 12012.5 0.588373
\(748\) 1552.20 0.0758745
\(749\) −12220.0 −0.596140
\(750\) 1699.17 0.0827267
\(751\) 18929.2 0.919754 0.459877 0.887983i \(-0.347894\pi\)
0.459877 + 0.887983i \(0.347894\pi\)
\(752\) −624.558 −0.0302863
\(753\) 5016.82 0.242793
\(754\) 3880.16 0.187410
\(755\) 7700.35 0.371185
\(756\) −2368.38 −0.113938
\(757\) −34906.8 −1.67597 −0.837984 0.545695i \(-0.816266\pi\)
−0.837984 + 0.545695i \(0.816266\pi\)
\(758\) −8102.96 −0.388276
\(759\) −2823.74 −0.135040
\(760\) −558.016 −0.0266334
\(761\) −13683.4 −0.651803 −0.325902 0.945404i \(-0.605668\pi\)
−0.325902 + 0.945404i \(0.605668\pi\)
\(762\) −11473.0 −0.545438
\(763\) −3337.99 −0.158379
\(764\) −3058.52 −0.144834
\(765\) −292.413 −0.0138199
\(766\) −6155.42 −0.290345
\(767\) 244.964 0.0115321
\(768\) −9960.28 −0.467982
\(769\) 41837.3 1.96189 0.980943 0.194294i \(-0.0622416\pi\)
0.980943 + 0.194294i \(0.0622416\pi\)
\(770\) 3023.07 0.141486
\(771\) −11093.2 −0.518175
\(772\) −21716.9 −1.01245
\(773\) 19640.0 0.913843 0.456921 0.889507i \(-0.348952\pi\)
0.456921 + 0.889507i \(0.348952\pi\)
\(774\) −12274.7 −0.570031
\(775\) 6107.69 0.283090
\(776\) 31346.4 1.45009
\(777\) 4055.53 0.187248
\(778\) 44054.1 2.03010
\(779\) −1712.89 −0.0787814
\(780\) −552.198 −0.0253486
\(781\) −19144.4 −0.877131
\(782\) −1453.85 −0.0664827
\(783\) −7870.34 −0.359212
\(784\) −353.772 −0.0161157
\(785\) −12722.7 −0.578460
\(786\) −38009.9 −1.72489
\(787\) 24935.3 1.12941 0.564705 0.825293i \(-0.308990\pi\)
0.564705 + 0.825293i \(0.308990\pi\)
\(788\) 4489.02 0.202938
\(789\) 21957.0 0.990736
\(790\) −19557.2 −0.880777
\(791\) −11491.5 −0.516551
\(792\) −3522.33 −0.158031
\(793\) 15.4317 0.000691041 0
\(794\) −21695.2 −0.969692
\(795\) 7645.16 0.341064
\(796\) −40145.1 −1.78757
\(797\) −1168.33 −0.0519251 −0.0259625 0.999663i \(-0.508265\pi\)
−0.0259625 + 0.999663i \(0.508265\pi\)
\(798\) 517.237 0.0229448
\(799\) −562.120 −0.0248891
\(800\) −4924.08 −0.217615
\(801\) 2936.24 0.129522
\(802\) 43867.7 1.93145
\(803\) 19201.2 0.843829
\(804\) 7743.95 0.339686
\(805\) −1728.21 −0.0756663
\(806\) −3252.05 −0.142120
\(807\) −2445.29 −0.106665
\(808\) 1988.88 0.0865949
\(809\) −35175.7 −1.52869 −0.764345 0.644807i \(-0.776938\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(810\) 1835.11 0.0796038
\(811\) −15256.5 −0.660577 −0.330288 0.943880i \(-0.607146\pi\)
−0.330288 + 0.943880i \(0.607146\pi\)
\(812\) 25569.3 1.10506
\(813\) −15318.1 −0.660797
\(814\) 16680.5 0.718245
\(815\) −2973.54 −0.127802
\(816\) 140.745 0.00603806
\(817\) 1636.16 0.0700635
\(818\) 50354.7 2.15233
\(819\) 185.078 0.00789639
\(820\) 19743.6 0.840825
\(821\) −15971.9 −0.678956 −0.339478 0.940614i \(-0.610250\pi\)
−0.339478 + 0.940614i \(0.610250\pi\)
\(822\) −27963.4 −1.18654
\(823\) 2312.41 0.0979409 0.0489705 0.998800i \(-0.484406\pi\)
0.0489705 + 0.998800i \(0.484406\pi\)
\(824\) 27142.0 1.14750
\(825\) −1429.67 −0.0603330
\(826\) 2644.80 0.111410
\(827\) 10422.4 0.438238 0.219119 0.975698i \(-0.429682\pi\)
0.219119 + 0.975698i \(0.429682\pi\)
\(828\) 5568.79 0.233731
\(829\) −13213.4 −0.553584 −0.276792 0.960930i \(-0.589271\pi\)
−0.276792 + 0.960930i \(0.589271\pi\)
\(830\) 30239.0 1.26459
\(831\) 4196.17 0.175167
\(832\) 2452.15 0.102179
\(833\) −318.405 −0.0132438
\(834\) −23722.2 −0.984929
\(835\) 4642.49 0.192407
\(836\) 1298.46 0.0537179
\(837\) 6596.30 0.272403
\(838\) −5573.67 −0.229761
\(839\) −10119.6 −0.416409 −0.208205 0.978085i \(-0.566762\pi\)
−0.208205 + 0.978085i \(0.566762\pi\)
\(840\) −2155.77 −0.0885489
\(841\) 60579.9 2.48390
\(842\) −55988.7 −2.29157
\(843\) −21307.1 −0.870530
\(844\) 61943.4 2.52628
\(845\) −10941.8 −0.445457
\(846\) 3527.72 0.143364
\(847\) 6773.41 0.274778
\(848\) −3679.79 −0.149015
\(849\) 13395.5 0.541501
\(850\) −736.089 −0.0297031
\(851\) −9535.80 −0.384116
\(852\) 37755.3 1.51816
\(853\) 35378.1 1.42007 0.710037 0.704165i \(-0.248678\pi\)
0.710037 + 0.704165i \(0.248678\pi\)
\(854\) 166.611 0.00667602
\(855\) −244.611 −0.00978424
\(856\) 35841.4 1.43112
\(857\) 6697.57 0.266960 0.133480 0.991052i \(-0.457385\pi\)
0.133480 + 0.991052i \(0.457385\pi\)
\(858\) 761.230 0.0302890
\(859\) −24298.4 −0.965135 −0.482568 0.875859i \(-0.660296\pi\)
−0.482568 + 0.875859i \(0.660296\pi\)
\(860\) −18859.1 −0.747779
\(861\) −6617.37 −0.261927
\(862\) −33418.3 −1.32045
\(863\) 24942.9 0.983853 0.491926 0.870637i \(-0.336293\pi\)
0.491926 + 0.870637i \(0.336293\pi\)
\(864\) −5318.00 −0.209401
\(865\) −1578.21 −0.0620355
\(866\) −3126.78 −0.122693
\(867\) −14612.3 −0.572388
\(868\) −21430.1 −0.838002
\(869\) 16455.3 0.642355
\(870\) −19812.0 −0.772056
\(871\) −605.152 −0.0235417
\(872\) 9790.39 0.380212
\(873\) 13741.0 0.532716
\(874\) −1216.18 −0.0470686
\(875\) −875.000 −0.0338062
\(876\) −37867.4 −1.46052
\(877\) −16276.6 −0.626705 −0.313353 0.949637i \(-0.601452\pi\)
−0.313353 + 0.949637i \(0.601452\pi\)
\(878\) 38101.3 1.46453
\(879\) 22771.8 0.873806
\(880\) 688.132 0.0263602
\(881\) 26636.5 1.01862 0.509311 0.860582i \(-0.329900\pi\)
0.509311 + 0.860582i \(0.329900\pi\)
\(882\) 1998.23 0.0762855
\(883\) −21788.3 −0.830392 −0.415196 0.909732i \(-0.636287\pi\)
−0.415196 + 0.909732i \(0.636287\pi\)
\(884\) 239.215 0.00910142
\(885\) −1250.78 −0.0475078
\(886\) 29763.0 1.12856
\(887\) −26813.2 −1.01499 −0.507496 0.861654i \(-0.669429\pi\)
−0.507496 + 0.861654i \(0.669429\pi\)
\(888\) −11895.0 −0.449514
\(889\) 5908.11 0.222893
\(890\) 7391.38 0.278382
\(891\) −1544.04 −0.0580554
\(892\) 39600.2 1.48645
\(893\) −470.229 −0.0176211
\(894\) −15952.8 −0.596803
\(895\) −7227.45 −0.269930
\(896\) 15445.2 0.575879
\(897\) −435.174 −0.0161985
\(898\) 13387.4 0.497488
\(899\) −71214.2 −2.64196
\(900\) 2819.50 0.104426
\(901\) −3311.91 −0.122459
\(902\) −27217.4 −1.00470
\(903\) 6320.92 0.232942
\(904\) 33704.8 1.24005
\(905\) −9219.07 −0.338621
\(906\) 20934.8 0.767672
\(907\) 15543.0 0.569014 0.284507 0.958674i \(-0.408170\pi\)
0.284507 + 0.958674i \(0.408170\pi\)
\(908\) −45752.6 −1.67219
\(909\) 871.844 0.0318122
\(910\) 465.895 0.0169717
\(911\) 48711.1 1.77154 0.885768 0.464128i \(-0.153632\pi\)
0.885768 + 0.464128i \(0.153632\pi\)
\(912\) 117.737 0.00427485
\(913\) −25442.8 −0.922273
\(914\) −36905.3 −1.33558
\(915\) −78.7936 −0.00284682
\(916\) −51173.3 −1.84587
\(917\) 19573.4 0.704876
\(918\) −794.976 −0.0285818
\(919\) 1030.47 0.0369883 0.0184941 0.999829i \(-0.494113\pi\)
0.0184941 + 0.999829i \(0.494113\pi\)
\(920\) 5068.87 0.181648
\(921\) 28440.4 1.01753
\(922\) 11306.3 0.403855
\(923\) −2950.40 −0.105215
\(924\) 5016.30 0.178598
\(925\) −4828.02 −0.171615
\(926\) −26079.6 −0.925518
\(927\) 11897.9 0.421553
\(928\) 57413.6 2.03092
\(929\) 879.756 0.0310698 0.0155349 0.999879i \(-0.495055\pi\)
0.0155349 + 0.999879i \(0.495055\pi\)
\(930\) 16604.8 0.585477
\(931\) −266.354 −0.00937638
\(932\) −46146.0 −1.62185
\(933\) 21234.0 0.745092
\(934\) −18775.8 −0.657776
\(935\) 619.339 0.0216626
\(936\) −542.836 −0.0189564
\(937\) −18668.1 −0.650864 −0.325432 0.945565i \(-0.605510\pi\)
−0.325432 + 0.945565i \(0.605510\pi\)
\(938\) −6533.64 −0.227432
\(939\) 16781.5 0.583221
\(940\) 5420.08 0.188067
\(941\) 29613.4 1.02590 0.512948 0.858420i \(-0.328553\pi\)
0.512948 + 0.858420i \(0.328553\pi\)
\(942\) −34588.8 −1.19635
\(943\) 15559.5 0.537313
\(944\) 602.028 0.0207567
\(945\) −945.000 −0.0325300
\(946\) 25998.1 0.893521
\(947\) 20738.9 0.711640 0.355820 0.934554i \(-0.384202\pi\)
0.355820 + 0.934554i \(0.384202\pi\)
\(948\) −32452.0 −1.11181
\(949\) 2959.15 0.101220
\(950\) −615.758 −0.0210293
\(951\) 10703.4 0.364966
\(952\) 933.888 0.0317936
\(953\) −45776.5 −1.55598 −0.777988 0.628279i \(-0.783760\pi\)
−0.777988 + 0.628279i \(0.783760\pi\)
\(954\) 20784.7 0.705377
\(955\) −1220.37 −0.0413510
\(956\) 33317.5 1.12716
\(957\) 16669.6 0.563064
\(958\) −30657.4 −1.03392
\(959\) 14399.9 0.484878
\(960\) −12520.6 −0.420938
\(961\) 29895.1 1.00349
\(962\) 2570.68 0.0861561
\(963\) 15711.4 0.525746
\(964\) −60404.9 −2.01817
\(965\) −8665.17 −0.289059
\(966\) −4698.44 −0.156491
\(967\) 34461.0 1.14601 0.573005 0.819552i \(-0.305778\pi\)
0.573005 + 0.819552i \(0.305778\pi\)
\(968\) −19866.5 −0.659643
\(969\) 105.967 0.00351304
\(970\) 34590.1 1.14497
\(971\) −22762.8 −0.752309 −0.376154 0.926557i \(-0.622754\pi\)
−0.376154 + 0.926557i \(0.622754\pi\)
\(972\) 3045.06 0.100484
\(973\) 12215.9 0.402490
\(974\) 28819.9 0.948099
\(975\) −220.331 −0.00723716
\(976\) 37.9251 0.00124381
\(977\) 4809.57 0.157494 0.0787470 0.996895i \(-0.474908\pi\)
0.0787470 + 0.996895i \(0.474908\pi\)
\(978\) −8084.10 −0.264316
\(979\) −6219.04 −0.203025
\(980\) 3070.13 0.100073
\(981\) 4291.70 0.139677
\(982\) −32046.6 −1.04139
\(983\) −27591.6 −0.895256 −0.447628 0.894220i \(-0.647731\pi\)
−0.447628 + 0.894220i \(0.647731\pi\)
\(984\) 19408.9 0.628793
\(985\) 1791.15 0.0579399
\(986\) 8582.63 0.277207
\(987\) −1816.62 −0.0585853
\(988\) 200.109 0.00644365
\(989\) −14862.4 −0.477854
\(990\) −3886.81 −0.124779
\(991\) −22263.4 −0.713643 −0.356822 0.934173i \(-0.616140\pi\)
−0.356822 + 0.934173i \(0.616140\pi\)
\(992\) −48119.5 −1.54012
\(993\) −13169.0 −0.420851
\(994\) −31854.5 −1.01646
\(995\) −16018.2 −0.510361
\(996\) 50176.8 1.59630
\(997\) 30378.2 0.964983 0.482491 0.875901i \(-0.339732\pi\)
0.482491 + 0.875901i \(0.339732\pi\)
\(998\) −83707.4 −2.65502
\(999\) −5214.26 −0.165137
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.4.a.f.1.2 2
3.2 odd 2 315.4.a.i.1.1 2
4.3 odd 2 1680.4.a.bg.1.2 2
5.2 odd 4 525.4.d.h.274.4 4
5.3 odd 4 525.4.d.h.274.1 4
5.4 even 2 525.4.a.k.1.1 2
7.6 odd 2 735.4.a.p.1.2 2
15.14 odd 2 1575.4.a.w.1.2 2
21.20 even 2 2205.4.a.z.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.f.1.2 2 1.1 even 1 trivial
315.4.a.i.1.1 2 3.2 odd 2
525.4.a.k.1.1 2 5.4 even 2
525.4.d.h.274.1 4 5.3 odd 4
525.4.d.h.274.4 4 5.2 odd 4
735.4.a.p.1.2 2 7.6 odd 2
1575.4.a.w.1.2 2 15.14 odd 2
1680.4.a.bg.1.2 2 4.3 odd 2
2205.4.a.z.1.1 2 21.20 even 2