Properties

Label 105.4.a.e
Level $105$
Weight $4$
Character orbit 105.a
Self dual yes
Analytic conductor $6.195$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,4,Mod(1,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.19520055060\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} - 3 q^{3} + ( - 2 \beta + 1) q^{4} + 5 q^{5} + ( - 3 \beta + 3) q^{6} - 7 q^{7} + ( - 5 \beta - 9) q^{8} + 9 q^{9} + (5 \beta - 5) q^{10} + ( - 20 \beta - 8) q^{11} + (6 \beta - 3) q^{12}+ \cdots + ( - 180 \beta - 72) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 6 q^{3} + 2 q^{4} + 10 q^{5} + 6 q^{6} - 14 q^{7} - 18 q^{8} + 18 q^{9} - 10 q^{10} - 16 q^{11} - 6 q^{12} - 76 q^{13} + 14 q^{14} - 30 q^{15} - 78 q^{16} - 124 q^{17} - 18 q^{18} - 96 q^{19}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−3.82843 −3.00000 6.65685 5.00000 11.4853 −7.00000 5.14214 9.00000 −19.1421
1.2 1.82843 −3.00000 −4.65685 5.00000 −5.48528 −7.00000 −23.1421 9.00000 9.14214
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.4.a.e 2
3.b odd 2 1 315.4.a.k 2
4.b odd 2 1 1680.4.a.bo 2
5.b even 2 1 525.4.a.l 2
5.c odd 4 2 525.4.d.l 4
7.b odd 2 1 735.4.a.o 2
15.d odd 2 1 1575.4.a.q 2
21.c even 2 1 2205.4.a.bb 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.e 2 1.a even 1 1 trivial
315.4.a.k 2 3.b odd 2 1
525.4.a.l 2 5.b even 2 1
525.4.d.l 4 5.c odd 4 2
735.4.a.o 2 7.b odd 2 1
1575.4.a.q 2 15.d odd 2 1
1680.4.a.bo 2 4.b odd 2 1
2205.4.a.bb 2 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} - 7 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 7 \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16T - 3136 \) Copy content Toggle raw display
$13$ \( T^{2} + 76T + 1412 \) Copy content Toggle raw display
$17$ \( T^{2} + 124T + 3812 \) Copy content Toggle raw display
$19$ \( T^{2} + 96T + 256 \) Copy content Toggle raw display
$23$ \( T^{2} + 16T - 9184 \) Copy content Toggle raw display
$29$ \( T^{2} - 188T - 14492 \) Copy content Toggle raw display
$31$ \( T^{2} + 120T + 1008 \) Copy content Toggle raw display
$37$ \( T^{2} + 132T - 30492 \) Copy content Toggle raw display
$41$ \( T^{2} - 100T - 48700 \) Copy content Toggle raw display
$43$ \( T^{2} + 536T + 41072 \) Copy content Toggle raw display
$47$ \( T^{2} + 928T + 201184 \) Copy content Toggle raw display
$53$ \( T^{2} - 884T + 162596 \) Copy content Toggle raw display
$59$ \( T^{2} - 104T - 330224 \) Copy content Toggle raw display
$61$ \( T^{2} + 468T + 40644 \) Copy content Toggle raw display
$67$ \( T^{2} + 1688 T + 700784 \) Copy content Toggle raw display
$71$ \( T^{2} + 136T - 175376 \) Copy content Toggle raw display
$73$ \( T^{2} - 508T - 764956 \) Copy content Toggle raw display
$79$ \( T^{2} + 432T - 383936 \) Copy content Toggle raw display
$83$ \( T^{2} + 584T + 28816 \) Copy content Toggle raw display
$89$ \( T^{2} + 1404 T + 392452 \) Copy content Toggle raw display
$97$ \( T^{2} + 1188 T + 335908 \) Copy content Toggle raw display
show more
show less